1
|
Rao MJ, Zheng B. The Role of Polyphenols in Abiotic Stress Tolerance and Their Antioxidant Properties to Scavenge Reactive Oxygen Species and Free Radicals. Antioxidants (Basel) 2025; 14:74. [PMID: 39857408 PMCID: PMC11761259 DOI: 10.3390/antiox14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Plants have evolved complex mechanisms to cope with diverse abiotic stresses, with the phenylpropanoid pathway playing a central role in stress adaptation. This pathway produces an array of secondary metabolites, particularly polyphenols, which serve multiple functions in plant growth, development, regulating cellular processes, and stress responses. Recent advances in understanding the molecular mechanisms underlying phenylpropanoid metabolism have revealed complex regulatory networks involving MYB transcription factors as master regulators and their interactions with stress signaling pathways. This review summarizes our current understanding of polyphenol-mediated stress adaptations in plants, emphasizing the regulation and function of key phenylpropanoid pathway compounds. We discussed how various abiotic stresses, including heat and chilling stress, drought, salinity, light stress, UV radiation, nanoparticles stress, chemical stress, and heavy metal toxicity, modulate phenylpropanoid metabolism and trigger the accumulation of specific polyphenolic compounds. The antioxidant properties of these metabolites, including phenolic acids, flavonoids, anthocyanins, lignin, and polyphenols, and their roles in reactive oxygen species scavenging, neutralizing free radicals, membrane stabilization, and osmotic adjustment are discussed. Understanding these mechanisms and metabolic responses is crucial for developing stress-resilient crops and improving agricultural productivity under increasingly challenging environmental conditions. This review provides comprehensive insights into integrating phenylpropanoid metabolism with plant stress adaptation mechanisms, highlighting potential targets for enhancing crop stress tolerance through metabolic adjustment.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Liu B, Han J, Zhang H, Li Y, An Y, Ji S, Liu Z. The regulatory pathway of transcription factor MYB36 from Trichoderma asperellum Tas653 resistant to poplar leaf blight pathogen Alternaria alternata Aal004. Microbiol Res 2024; 282:127637. [PMID: 38382286 DOI: 10.1016/j.micres.2024.127637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
In fungi, MYB transcription factors (TFs) mainly regulate growth, development, and resistance to stress. However, as major disease-resistance TFs, they have rarely been studied in biocontrol fungi. In this study, MYB36 of Trichoderma asperellum Tas653 (Ta) was shown to respond strongly to the stress caused by Alternaria alternata Aa1004. Compared with wild-type Ta (Ta-Wt), the inhibition rate of the MYB36 knockout strain (Ta-Kn) on Aa1004 decreased by 11.06%; the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities decreased by 82.15 U/g, 0.19 OD470/min/g, and 1631.2 μmol/min/g, respectively. The MYB36 overexpression strain (Ta-Oe) not only enhanced hyperparasitism on Aa1004, caused its hyphae to swell, deform, or even rupture, but also reduced the incidence rate of poplar leaf blight. MYB36 regulates downstream (TFs, detoxification genes, defense genes, and other antifungal-related genes by binding to the cis-acting elements "ACAT" and "ATCG". Zinc finger TFs, as the main antifungal TFs, account for 90% of the total TFs, and Zn37.5 (23.24-) and Zn83.7 (23.18-fold) showed the greatest expression difference when regulated directly by MYB36. The detoxification genes mainly comprised 11 major major facilitator superfamily (MFS) genes, among which MYB36 directly increased the expression levels of three genes by more than 2-3.44-fold. The defense genes mainly encoded cytochrome P450 (P450) and hydrolases. e.g., P45061.3 (2-10.95-), P45060.2 (2-7.07-), and Hyd44.6 (2-2.30-fold). This study revealed the molecular mechanism of MYB36 regulation of the resistance of T. asperellum to A. alternata and provides theoretical guidance for the biocontrol of poplar leaf blight and the anti-disease mechanism of biocontrol fungi.
Collapse
Affiliation(s)
- Bin Liu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Han
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Huifang Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Modern Agricultural Industry Research Institute of Henan Zhoukou National Agricultural High-tech Industry Demonstration Zone, Zhoukou Normal University, Henan 466000, China
| | - Yuxiao Li
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Yibo An
- National Forestry and Grassland National Reserve Forest Engineering Technology Research Center, Chongqing Forestry Investment and Development Co., Ltd., Chongqing 401120, China
| | - Shida Ji
- Horticultural College of Shenyang Agricultural University, Shenyang 110866, China
| | - Zhihua Liu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Baranov D, Timerbaev V. Recent Advances in Studying the Regulation of Fruit Ripening in Tomato Using Genetic Engineering Approaches. Int J Mol Sci 2024; 25:760. [PMID: 38255834 PMCID: PMC10815249 DOI: 10.3390/ijms25020760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
4
|
Han H, Dong L, Zhang W, Liao Y, Wang L, Wang Q, Ye J, Xu F. Ginkgo biloba GbbZIP08 transcription factor is involved in the regulation of flavonoid biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154054. [PMID: 37487356 DOI: 10.1016/j.jplph.2023.154054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Ginkgo biloba is the oldest relict plant on Earth and an economic plant resource derived from China. Flavonoids extracted from G. biloba are beneficial to the prevention and treatment of cardiovascular and cerebrovascular diseases. Basic leucine zipper (bZIP) transcription factors (TFs) have been recognized to play important roles in plant secondary metabolism. In this study, GbbZIP08 was isolated and characterized. It encodes a protein containing 154 amino acids, which belongs to hypocotyl 5 in group H of the bZIP family. Tobacco transient expression assay indicated that GbbZIP08 was localized in the plant nucleus. GbbZIP08 overexpression showed that the contents of total flavonoids, kaempferol, and anthocyanin in transgenic tobacco were significantly higher than those in the wild type. Transcriptome sequencing analysis revealed significant upregulation of structural genes in the flavonoid biosynthesis pathway. In addition, phytohormone signal transduction pathways, such as the abscisic acid, salicylic acid, auxin, and jasmonic acid pathways, were enriched with a large number of differentially expressed genes. TFs such as MYB, AP2, WRKY, NAC, bZIP, and bHLH, were also differentially expressed. The above results indicated that GbbZIP08 overexpression promoted flavonoid accumulation and increased the transcription levels of flavonoid-synthesis-related genes in plants.
Collapse
Affiliation(s)
- Huan Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Liwei Dong
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Qijian Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
5
|
Jiang L, Gao Y, Han L, Zhang W, Fan P. Designing plant flavonoids: harnessing transcriptional regulation and enzyme variation to enhance yield and diversity. FRONTIERS IN PLANT SCIENCE 2023; 14:1220062. [PMID: 37575923 PMCID: PMC10420081 DOI: 10.3389/fpls.2023.1220062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Plant synthetic biology has emerged as a powerful and promising approach to enhance the production of value-added metabolites in plants. Flavonoids, a class of plant secondary metabolites, offer numerous health benefits and have attracted attention for their potential use in plant-based products. However, achieving high yields of specific flavonoids remains challenging due to the complex and diverse metabolic pathways involved in their biosynthesis. In recent years, synthetic biology approaches leveraging transcription factors and enzyme diversity have demonstrated promise in enhancing flavonoid yields and expanding their production repertoire. This review delves into the latest research progress in flavonoid metabolic engineering, encompassing the identification and manipulation of transcription factors and enzymes involved in flavonoid biosynthesis, as well as the deployment of synthetic biology tools for designing metabolic pathways. This review underscores the importance of employing carefully-selected transcription factors to boost plant flavonoid production and harnessing enzyme promiscuity to broaden flavonoid diversity or streamline the biosynthetic steps required for effective metabolic engineering. By harnessing the power of synthetic biology and a deeper understanding of flavonoid biosynthesis, future researchers can potentially transform the landscape of plant-based product development across the food and beverage, pharmaceutical, and cosmetic industries, ultimately benefiting consumers worldwide.
Collapse
Affiliation(s)
- Lina Jiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yifei Gao
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Leiqin Han
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxuan Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Pengxiang Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
6
|
Recent Advances in Research into Jasmonate Biosynthesis and Signaling Pathways in Agricultural Crops and Products. Processes (Basel) 2023. [DOI: 10.3390/pr11030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Jasmonates (JAs) are phospholipid-derived hormones that regulate plant development and responses to environmental stress. The synthesis of JAs and the transduction of their signaling pathways are precisely regulated at multiple levels within and outside the nucleus as a result of a combination of genetic and epigenetic regulation. In this review, we focus on recent advances in the regulation of JA biosynthesis and their signaling pathways. The biosynthesis of JAs was found to be regulated with an autocatalytic amplification mechanism via the MYC2 regulation pathway and inhibited by an autonomous braking mechanism via the MYC2-targeting bHLH1 protein to terminate JA signals in a highly ordered manner. The biological functions of JAs mainly include the promotion of fruit ripening at the initial stage via ethylene-dependent and independent ways, the regulation of mature coloring via regulating the degradation of chlorophyll and the metabolism of anthocyanin, and the improvement of aroma components via the regulation of fatty acid and aldehyde alcohol metabolism in agricultural crops. JA signaling pathways also function in the enhancement of biotic and abiotic stress resistance via the regulation of secondary metabolism and the redox system, and they relieve cold damage to crops through improving the stability of the cell membrane. These recently published findings indicate that JAs are an important class of plant hormones necessary for regulating plant growth and development, ripening, and the resistance to stress in agricultural crops and products.
Collapse
|
7
|
Comparison of Tomato Transcriptomic Profiles Reveals Overlapping Patterns in Abiotic and Biotic Stress Responses. Int J Mol Sci 2023; 24:ijms24044061. [PMID: 36835470 PMCID: PMC9961515 DOI: 10.3390/ijms24044061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Until a few years ago, many studies focused on the transcriptomic response to single stresses. However, tomato cultivations are often constrained by a wide range of biotic and abiotic stress that can occur singularly or in combination, and several genes can be involved in the defensive mechanism response. Therefore, we analyzed and compared the transcriptomic responses of resistant and susceptible genotypes to seven biotic stresses (Cladosporium fulvum, Phytophthora infestans, Pseudomonas syringae, Ralstonia solanacearum, Sclerotinia sclerotiorum, Tomato spotted wilt virus (TSWV) and Tuta absoluta) and five abiotic stresses (drought, salinity, low temperatures, and oxidative stress) to identify genes involved in response to multiple stressors. With this approach, we found genes encoding for TFs, phytohormones, or participating in signaling and cell wall metabolic processes, participating in defense against various biotic and abiotic stress. Moreover, a total of 1474 DEGs were commonly found between biotic and abiotic stress. Among these, 67 DEGs were involved in response to at least four different stresses. In particular, we found RLKs, MAPKs, Fasciclin-like arabinogalactans (FLAs), glycosyltransferases, genes involved in the auxin, ET, and JA pathways, MYBs, bZIPs, WRKYs and ERFs genes. Detected genes responsive to multiple stress might be further investigated with biotechnological approaches to effectively improve plant tolerance in the field.
Collapse
|
8
|
Pineda-Hidalgo KV, Flores-Leyva B, Salazar-Salas NY, Chávez-Ontiveros J, Garzon-Tiznado JA, Sánchez-López J, Delgado-Vargas F, López-Valenzuela JA. Expression of MYB transcription factors and target genes and its association with phenolic content and antioxidant activity of selected Solanum lycopersicum var. cerasiforme accessions from Mexico. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2144951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | - Brianda Flores-Leyva
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Nancy Y. Salazar-Salas
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
| | | | - José A. Garzon-Tiznado
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
| | | | | | | |
Collapse
|
9
|
Natale R, Coppola M, D'Agostino N, Zhang Y, Fernie AR, Castaldi V, Rao R. In silico and in vitro approaches allow the identification of the Prosystemin molecular network. Comput Struct Biotechnol J 2022; 21:212-223. [PMID: 36544481 PMCID: PMC9755248 DOI: 10.1016/j.csbj.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Tomato Prosystemin (ProSys), the precursor of Systemin, a small peptidic hormone, is produced at very low concentration in unchallenged plants, while its expression greatly increases in response to several different stressors triggering an array of defence responses. The molecular mechanisms that underpin such a wide array of defence barriers are not fully understood and are likely correlated with the intrinsically disordered (ID) structure of the protein. ID proteins interact with different protein partners forming complexes involved in the modulation of different biological mechanisms. Here we describe the ProSys-protein network that shed light on the molecular mechanisms underpinning ProSys associated defence responses. Three different approaches were used. In silico prediction resulted in 98 direct interactors, most clustering in phytohormone biosynthesis, transcription factors and signal transduction gene classes. The network shows the central role of ProSys during defence responses, that reflects its role as central hub. In vitro ProSys interactors, identified by Affinity Purification-Mass Spectrometry (AP-MS), revealed over three hundred protein partners, while Bimolecular Fluorescent Complementation (BiFC) experiments validated in vivo some interactors predicted in silico and in vitro. Our results demonstrate that ProSys interacts with several proteins and reveal new key molecular events in the ProSys-dependent defence response of tomato plant.
Collapse
Affiliation(s)
- Roberto Natale
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
| | - Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Alisdair Robert Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Valeria Castaldi
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Portici 80055, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici 80055, Italy
| |
Collapse
|
10
|
Xie L, Wang J, Liu F, Zhou H, Chen Y, Pan L, Xiao W, Luo Y, Mi B, Sun X, Xiong C. Integrated analysis of multi-omics and fine-mapping reveals a candidate gene regulating pericarp color and flavonoids accumulation in wax gourd ( Benincasa hispida). FRONTIERS IN PLANT SCIENCE 2022; 13:1019787. [PMID: 36226283 PMCID: PMC9549291 DOI: 10.3389/fpls.2022.1019787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 06/02/2023]
Abstract
Wax gourd (Benincasa hispida), a popular fruit of the Cucurbitaceae (cucurbits) family, contains many nutrients with health benefits and is widely grown in China and other tropical areas. In this study, a wax gourd mutant hfc12 with light-color pericarp was obtained through ethane methylsulfonate (EMS) mutagenesis. Integrative analysis of the metabolome and transcriptome identified 31 differentially accumulated flavonoids (DAFs; flavonoids or flavonoid glycosides) and 828 differentially expressed genes (DEGs) between the hfc12 mutant and wild-type 'BWT'. Furthermore, BSA-seq and kompetitive allele specific PCR (KASP) analysis suggested that the light-color pericarp and higher flavonoid content was controlled by a single gene BhiPRR6 (Bhi12M000742), a typical two-component system (TCS) pseudo-response regulator (PRR). Genetic analysis detected only one nonsynonymous mutation (C-T) in the second exon region of the BhiPRR6. Weighted correlation network analysis (WGCNA) identified the downstream target genes of BhiPRR6, probably regulated by light and were intermediated in the regulatory enzyme reaction of flavonoid biosynthetic pathway. Thus, these results speculated that the transcription factor BhiPRR6, interacting with multiple genes, regulates the absorption of light signals and thereby changes the pericarp color and synthesis of flavonoids in wax gourd.
Collapse
Affiliation(s)
- Lingling Xie
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jin Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Feng Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Huoqiang Zhou
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ying Chen
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Luzhao Pan
- College of Horticulture, Hunan Agricultural University, Changsha, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wei Xiao
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yin Luo
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Baobin Mi
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiaowu Sun
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Cheng Xiong
- College of Horticulture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
11
|
Chacon DS, Santos MDM, Bonilauri B, Vilasboa J, da Costa CT, da Silva IB, Torres TDM, de Araújo TF, Roque ADA, Pilon AC, Selegatto DM, Freire RT, Reginaldo FPS, Voigt EL, Zuanazzi JAS, Scortecci KC, Cavalheiro AJ, Lopes NP, Ferreira LDS, dos Santos LV, Fontes W, de Sousa MV, Carvalho PC, Fett-Neto AG, Giordani RB. Non-target molecular network and putative genes of flavonoid biosynthesis in Erythrina velutina Willd., a Brazilian semiarid native woody plant. FRONTIERS IN PLANT SCIENCE 2022; 13:947558. [PMID: 36161018 PMCID: PMC9493460 DOI: 10.3389/fpls.2022.947558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Erythrina velutina is a Brazilian native tree of the Caatinga (a unique semiarid biome). It is widely used in traditional medicine showing anti-inflammatory and central nervous system modulating activities. The species is a rich source of specialized metabolites, mostly alkaloids and flavonoids. To date, genomic information, biosynthesis, and regulation of flavonoids remain unknown in this woody plant. As part of a larger ongoing research goal to better understand specialized metabolism in plants inhabiting the harsh conditions of the Caatinga, the present study focused on this important class of bioactive phenolics. Leaves and seeds of plants growing in their natural habitat had their metabolic and proteomic profiles analyzed and integrated with transcriptome data. As a result, 96 metabolites (including 43 flavonoids) were annotated. Transcripts of the flavonoid pathway totaled 27, of which EvCHI, EvCHR, EvCHS, EvCYP75A and EvCYP75B1 were identified as putative main targets for modulating the accumulation of these metabolites. The highest correspondence of mRNA vs. protein was observed in the differentially expressed transcripts. In addition, 394 candidate transcripts encoding for transcription factors distributed among the bHLH, ERF, and MYB families were annotated. Based on interaction network analyses, several putative genes of the flavonoid pathway and transcription factors were related, particularly TFs of the MYB family. Expression patterns of transcripts involved in flavonoid biosynthesis and those involved in responses to biotic and abiotic stresses were discussed in detail. Overall, these findings provide a base for the understanding of molecular and metabolic responses in this medicinally important species. Moreover, the identification of key regulatory targets for future studies aiming at bioactive metabolite production will be facilitated.
Collapse
Affiliation(s)
- Daisy Sotero Chacon
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | | - Bernardo Bonilauri
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Johnatan Vilasboa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cibele Tesser da Costa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Taffarel de Melo Torres
- Bioinformatics, Biostatistics and Computer Biology Nucleus, Rural Federal University of the Semiarid, Mossoró, RN, Brazil
| | | | - Alan de Araújo Roque
- Institute for Sustainable Development and Environment, Dunas Park Herbarium, Natal, RN, Brazil
| | - Alan Cesar Pilon
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Denise Medeiros Selegatto
- Zimmermann Group, European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Rafael Teixeira Freire
- Signal and Information Processing for Sensing Systems, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Eduardo Luiz Voigt
- Department of Cell Biology and Genetics, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Kátia Castanho Scortecci
- Department of Cell Biology and Genetics, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Norberto Peporine Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | | | - Leandro Vieira dos Santos
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Paulo Costa Carvalho
- Computational and Structural Proteomics Laboratory, Carlos Chagas Institute, Fiocruz, PR, Brazil
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Raquel Brandt Giordani
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
12
|
Integrated Metabolomic and Transcriptomic Analysis Reveals Differential Flavonoid Accumulation and Its Underlying Mechanism in Fruits of Distinct Canarium album Cultivars. Foods 2022; 11:foods11162527. [PMID: 36010527 PMCID: PMC9407539 DOI: 10.3390/foods11162527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Canarium album fruit has great potential to be consumed as a raw material not only for food but also medicine. The diverse active metabolites composition and content of C. album fruits greatly affect their pharmacological effects. However, up to now, there has been no report on the global metabolome differences among fruits from distinct C. album cultivars. In our present study, by using non-targeted metabolomics techniques, we identified 87 DAMs (differentially accumulated metabolites) including 17 types of flavonoids from fruits of four different C. album cultivars. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis revealed that the flavone and flavonol biosynthesis- and flavonoid biosynthesis-related DAMs were major factors determining their metabolome differences. Comparative transcriptomic analysis revealed that 15 KEGG pathways were significantly enriched by genes of the identified 3655 DEGs (differentially expressed genes) among different C. album cultivars. Consistent with the metabolome data, flavonoid biosynthesis-related DEGs, including eight key structural genes (such as FLS, CCoAOMT, CHI, C4H, DFR, LAR, and C3′H, etc.) and several regulatory transcription factor (TF) genes (including 32 MYBs and 34 bHLHs, etc.), were found to be significantly enriched (p < 0.01). Our study indicated that the differential expression of flavonoid biosynthesis-related genes and accumulation of flavonoids played dominant roles in the various metabolome compositions of fruits from different C. album cultivars.
Collapse
|
13
|
Zhang L, Song Y, Liu K, Gong F. The tomato Mediator subunit MED8 positively regulates plant response to Botrytis cinerea. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153533. [PMID: 34601339 DOI: 10.1016/j.jplph.2021.153533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The Mediator complex acts as a bridge between specific transcription factors and the RNA polymerase II transcriptional machinery and plays a central role in plant immunity. Biological induction of plant resistance against pathogens requires endogenous hormone jasmonic acid (JA) and involves profound transcriptional changes controlled by the key transcription factor MYC2. Arabidopsis thaliana Mediator subunit 25 (AtMED25) regulates JA-dependent defense response through interacting with MYC2. Here, we report that the tomato (Solanum lycopersicum, Sl) Mediator subunit 8 (SlMED8) is another essential component in JA-dependent defense response. The transcript levels of SlMED8 could not be affected by treatment with MeJA, SA, ABA, and mechanical wounding. Yeast two-hybrid assays showed that SlMED8 could interact with itself, SlMYC2, and SlMED25, respectively. In addition, ectopic overexpression of SlMED8 complemented the late flowering and pathogen hypersensitivity phenotypes of Arabidopsis med8 mutant. Overexpression of SlMED8 rendered transgenic plants higher tolerance to necrotrophic pathogen Botrytis cinerea. Meanwhile, SlMED8 antisense plants displayed compromised resistance to Botrytis cinerea. Consistent with this, differential expression levels of several JA-responsive genes were detected within the transgenic plants. Overall, our results identified an important control point in the regulation of the JA signaling pathway within the transcriptional machinery.
Collapse
Affiliation(s)
- Lili Zhang
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Yunpeng Song
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Kaige Liu
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Fanrong Gong
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| |
Collapse
|
14
|
Tang N, Cao Z, Yang C, Ran D, Wu P, Gao H, He N, Liu G, Chen Z. A R2R3-MYB transcriptional activator LmMYB15 regulates chlorogenic acid biosynthesis and phenylpropanoid metabolism in Lonicera macranthoides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110924. [PMID: 34034872 DOI: 10.1016/j.plantsci.2021.110924] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Lonicera macranthoides Hand-Mazz is an important medicinal plant widely distributed in southern China that has long been used in Chinese traditional medicines. Chlorogenic acid (CGA, 3-caffeoylquinic acid) is the major biologically active ingredient in L. macranthoides. Although key CGA biosynthetic genes have been well documented, their transcriptional regulation remains largely unknown. In this study, we observed that a R2R3 MYB transcription factor LmMYB15 showed a significant correlation with CGA content, indicating its potential role in CGA biosynthesis. A yeast two-hybrid assay suggested that LmMYB15 functions as a transcriptional activator. Overexpression of LmMYB15 in tobacco led to increased accumulation of CGA compared to those in wild-type leaves. To elucidate its functional mechanism, genome-wide DAP-seq was employed and identified the conserved binding motifs of LmMYB15, that is [(C/T) (C/T) (C/T) ACCTA(C/A) (C/T) (A/T)], as well as its direct downstream target genes, including 4CL, MYB3, MYB4, KNAT6/7, IAA26, and ETR2. Subsequently, yeast one-hybrid and dual-luciferase reporter assays verified that LmMYB15 could bind and activate the promoters of 4CL, MYB3 and MYB4, thereby facilitating CGA biosynthesis and phenylpropanoid metabolism. Our findings provide a new track for breeding strategies aiming to enhance CGA content in L. macranthoides that can significantly contribute to better mechanical properties.
Collapse
Affiliation(s)
- Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China; Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, 400000, China; Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing, 400000, China.
| | - Zhengyan Cao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China; College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China.
| | - Cheng Yang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Dongsheng Ran
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Peiyin Wu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China; College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China.
| | - Hongmei Gao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Na He
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Guohua Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China; Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, 400000, China; Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing, 400000, China.
| |
Collapse
|