1
|
Liang X, Liu Y, Tian M, Jiang W, Zheng Y, Chen Z, Liu X, Wang L. The natural variation allele OsGSW3.2 in Oryza rufipogon is involved in brassinosteroid signaling and influences grain size and weight. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70110. [PMID: 40131790 PMCID: PMC11936100 DOI: 10.1111/tpj.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Oryza rufipogon is the ancestor of cultivated rice and harbors many elite genes; thus, this plant is an important germplasm for improving rice varieties. Grain size is an important factor in determining rice yield and quality. In this study, we identified a natural variation allele from the O. rufipogon inbred line Huaye3 (HY3), which is located on chromosome 3 and named it GRAIN SIZE and WEIGHT 3.2 (OsGSW3.2). The OsGSW3.2 knockout (KO) mutant presented increased grain size and weight, which was associated with decreased chlorophyll content and long awns. The overexpression of OsGSW3.2HY3 caused a significant decrease in grain size and weight. OsGSW3.2 negatively regulates grain size through cell proliferation. Transcriptomic analysis of spikelet hulls from the KO lines and wild-type HY3 revealed that the differentially expressed genes (DEGs) were enriched mainly in plant-pathogen interactions, plant hormone signal transduction, and the plant MAPK signaling pathway, and so on. A laminar inclination experiment verified that OsGSW3.2 was involved in the BR signaling pathway. Yeast two-hybrid, BiFC, LAC, and pull-down experiments verified that OsGSW3.2 interacted with OsGSK4, which was related to BR signaling, in yeast and plant cells. OsGSW3.2 influenced rice grain size and weight via interaction with OsGSK4. Haplotype analysis of a core collection of cultivated rice revealed that transcriptional accumulation and differential SNPs in the coding region may influence grain size and weight. Our results provide new insight into the role of OsGSW3.2 in affecting grain size and weight, which will help elucidate the genetic basis of rice domestication.
Collapse
Affiliation(s)
- Xiaoyu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Yang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Pharmaceutical Engineering InstituteCollege of Humanities & Information Changchun University of TechnologyChangchun130122China
| | - Min Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Weixun Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Yuebin Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Lan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
2
|
Aggarwal PR, Mehanathan M, Choudhary P. Exploring genetics and genomics trends to understand the link between secondary metabolic genes and agronomic traits in cereals under stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154379. [PMID: 39549316 DOI: 10.1016/j.jplph.2024.154379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
The plant metabolome is considered an important interface between the genome and its phenome, where it plays a significant role in regulating plant growth in response to various environmental cues. A wide array of specialized metabolites is produced by plants, which are essential for mediating environmental interactions and their adaptation. Notably, enhanced accumulation of these specialized metabolites, particularly plant secondary metabolites (PSMs), is a part of the chemical defense response that is directly linked to improved stress tolerance. Therefore, exploring the genetic diversity underlying the immense variation of the secondary metabolite pool could unravel the adaptation mechanisms in plants against different environmental stresses. The post-genomic profiling platforms have enabled the exploration of the link between metabolic diversity and important agronomic traits. The current review focuses on the major achievements and future challenges associated with plant secondary metabolite (PSM) research in graminaceous crops using advanced omics approaches. Given this, we briefly summarize different strategies adopted to explore the genetic diversity and evolution of PSMs in cereal crops. Further, we have discussed the recent technological advancements to integrate multi-omics approaches linking the metabolome diversity with the genome, transcriptome, and proteome of these crops under stress. Combining these data with phenomics (the omics of phenotypes) provides a holistic view of how plants respond to stress. Next, we outlined the genetic manipulation studies performed so far in cereals to engineer secondary metabolic pathways for enhanced stress tolerance. In summary, our review provides new insight into developing genetic and genomic trends in exploring the secondary metabolite diversity in graminaceous crops and discusses how this information can be utilized in designing strategies to generate future stress-resilient crops.
Collapse
Affiliation(s)
- Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Muthamilarasan Mehanathan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Choudhary
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Prakash NR, Kumar K, Muthusamy V, Zunjare RU, Hossain F. Unique genetic architecture of prolificacy in 'Sikkim Primitive' maize unraveled through whole-genome resequencing-based DNA polymorphism. PLANT CELL REPORTS 2024; 43:134. [PMID: 38702564 DOI: 10.1007/s00299-024-03176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
KEY MESSAGE 'Sikkim Primitive' maize landrace, unique for prolificacy (7-9 ears per plant) possesses unique genomic architecture in branching and inflorescence-related gene(s), and locus Zm00001eb365210 encoding glycosyltransferases was identified as the putative candidate gene underlying QTL (qProl-SP-8.05) for prolificacy. The genotype possesses immense usage in breeding high-yielding baby-corn genotypes. 'Sikkim Primitive' is a native landrace of North Eastern Himalayas, and is characterized by having 7-9 ears per plant compared to 1-2 ears in normal maize. Though 'Sikkim Primitive' was identified in the 1960s, it has not been characterized at a whole-genome scale. Here, we sequenced the entire genome of an inbred (MGUSP101) derived from 'Sikkim Primitive' along with three non-prolific (HKI1128, UMI1200, and HKI1105) and three prolific (CM150Q, CM151Q and HKI323) inbreds. A total of 942,417 SNPs, 24,160 insertions, and 27,600 deletions were identified in 'Sikkim Primitive'. The gene-specific functional mutations in 'Sikkim Primitive' were classified as 10,847 missense (54.36%), 402 non-sense (2.015%), and 8,705 silent (43.625%) mutations. The number of transitions and transversions specific to 'Sikkim Primitive' were 666,021 and 279,950, respectively. Among all base changes, (G to A) was the most frequent (215,772), while (C to G) was the rarest (22,520). Polygalacturonate 4-α-galacturonosyltransferase enzyme involved in pectin biosynthesis, cell-wall organization, nucleotide sugar, and amino-sugar metabolism was found to have unique alleles in 'Sikkim Primitive'. The analysis further revealed the Zm00001eb365210 gene encoding glycosyltransferases as the putative candidate underlying QTL (qProl-SP-8.05) for prolificacy in 'Sikkim Primitive'. High-impact nucleotide variations were found in ramosa3 (Zm00001eb327910) and zeaxanthin epoxidase1 (Zm00001eb081460) genes having a role in branching and inflorescence development in 'Sikkim Primitive'. The information generated unraveled the genetic architecture and identified key genes/alleles unique to the 'Sikkim Primitive' genome. This is the first report of whole-genome characterization of the 'Sikkim Primitive' landrace unique for its high prolificacy.
Collapse
Affiliation(s)
- Nitish Ranjan Prakash
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, Delhi, 110012, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India.
| |
Collapse
|
4
|
Azad MF, Dawar P, Esim N, Rock CD. Role of miRNAs in sucrose stress response, reactive oxygen species, and anthocyanin biosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1278320. [PMID: 38023835 PMCID: PMC10656695 DOI: 10.3389/fpls.2023.1278320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
In plants, sucrose is the main transported disaccharide that is the primary product of photosynthesis and controls a multitude of aspects of the plant life cycle including structure, growth, development, and stress response. Sucrose is a signaling molecule facilitating various stress adaptations by crosstalk with other hormones, but the molecular mechanisms are not well understood. Accumulation of high sucrose concentrations is a hallmark of many abiotic and biotic stresses, resulting in the accumulation of reactive oxygen species and secondary metabolite anthocyanins that have antioxidant properties. Previous studies have shown that several MYeloBlastosis family/MYB transcription factors are positive and negative regulators of sucrose-induced anthocyanin accumulation and subject to microRNA (miRNA)-mediated post-transcriptional silencing, consistent with the notion that miRNAs may be "nodes" in crosstalk signaling by virtue of their sequence-guided targeting of different homologous family members. In this study, we endeavored to uncover by deep sequencing small RNA and mRNA transcriptomes the effects of exogenous high sucrose stress on miRNA abundances and their validated target transcripts in Arabidopsis. We focused on genotype-by-treatment effects of high sucrose stress in Production of Anthocyanin Pigment 1-Dominant/pap1-D, an activation-tagged dominant allele of MYB75 transcription factor, a positive effector of secondary metabolite anthocyanin pathway. In the process, we discovered links to reactive oxygen species signaling through miR158/161/173-targeted Pentatrico Peptide Repeat genes and two novel non-canonical targets of high sucrose-induced miR408 and miR398b*(star), relevant to carbon metabolic fluxes: Flavonoid 3'-Hydroxlase (F3'H), an important enzyme in determining the B-ring hydroxylation pattern of flavonoids, and ORANGE a post-translational regulator of Phytoene Synthase expression, respectively. Taken together, our results contribute to understanding the molecular mechanisms of carbon flux shifts from primary to secondary metabolites in response to high sugar stress.
Collapse
Affiliation(s)
- Md. Fakhrul Azad
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Bіngöl University, Bingöl, Türkiye
| | - Christopher D. Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
5
|
Kang L, Zhang C, Liu J, Ye M, Zhang L, Chen F, Lin X, Yang D, Ren L, Li Y, Kim HS, Kwak SS, Li H, Deng X, Zhang P, Ke Q. Overexpression of potato ORANGE (StOR) and StOR mutant in Arabidopsis confers increased carotenoid accumulation and tolerance to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107809. [PMID: 37315350 DOI: 10.1016/j.plaphy.2023.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
ORANGE (OR) plays essential roles in regulating carotenoid homeostasis and enhancing the ability of plants to adapt to environmental stress. However, OR proteins have been functionally characterized in only a few plant species, and little is known about the role of potato OR (StOR). In this study, we characterized the StOR gene in potato (Solanum tuberosum L. cv. Atlantic). StOR is predominantly localized to the chloroplast, and its transcripts are tissue-specifically expressed and significantly induced in response to abiotic stress. Compared with wild type, overexpression of StOR increased β-carotene levels up to 4.8-fold, whereas overexpression of StORHis with a conserved arginine to histidine substitution promoted β-carotene accumulation up to 17.6-fold in Arabidopsis thaliana calli. Neither StOR nor StORHis overexpression dramatically affected the transcript levels of carotenoid biosynthetic genes. Furthermore, overexpression of either StOR or StORHis increased abiotic stress tolerance in Arabidopsis, which was associated with higher photosynthetic capacity and antioxidative activity. Taken together, these results indicate that StOR could be exploited as a potential new genetic tool for the improvement of crop nutritional quality and environmental stress tolerance.
Collapse
Affiliation(s)
- Le Kang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China; National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chunli Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Junke Liu
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Muying Ye
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Li Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Fengfeng Chen
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Xinyue Lin
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Dongjing Yang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu, 221131, China
| | - Liping Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Yunxiang Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Hongbing Li
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Xiping Deng
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Qingbo Ke
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
6
|
Liang MH, Xie SR, Dai JL, Chen HH, Jiang JG. Roles of Two Phytoene Synthases and Orange Protein in Carotenoid Metabolism of the β-Carotene-Accumulating Dunaliella salina. Microbiol Spectr 2023; 11:e0006923. [PMID: 37022233 PMCID: PMC10269666 DOI: 10.1128/spectrum.00069-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Phytoene synthase (PSY) is a key enzyme in carotenoid metabolism and often regulated by orange protein. However, few studies have focused on the functional differentiation of the two PSYs and their regulation by protein interaction in the β-carotene-accumulating Dunaliella salina CCAP 19/18. In this study, we confirmed that DsPSY1 from D. salina possessed high PSY catalytic activity, whereas DsPSY2 almost had no activity. Two amino acid residues at positions 144 and 285 responsible for substrate binding were associated with the functional variance between DsPSY1 and DsPSY2. Moreover, orange protein from D. salina (DsOR) could interact with DsPSY1/2. DbPSY from Dunaliella sp. FACHB-847 also had high PSY activity, but DbOR could not interact with DbPSY, which might be one reason why it could not highly accumulate β-carotene. Overexpression of DsOR, especially the mutant DsORHis, could significantly improve the single-cell carotenoid content and change cell morphology (with larger cell size, bigger plastoglobuli, and fragmented starch granules) of D. salina. Overall, DsPSY1 played a dominant role in carotenoid biosynthesis in D. salina, and DsOR promoted carotenoid accumulation, especially β-carotene via interacting with DsPSY1/2 and regulating the plastid development. Our study provides a new clue for the regulatory mechanism of carotenoid metabolism in Dunaliella. IMPORTANCE Phytoene synthase (PSY) as the key rate-limiting enzyme in carotenoid metabolism can be regulated by various regulators and factors. We found that DsPSY1 played a dominant role in carotenogenesis in the β-carotene-accumulating Dunaliella salina, and two amino acid residues critical in the substrate binding were associated with the functional variance between DsPSY1 and DsPSY2. Orange protein from D. salina (DsOR) can promote carotenoid accumulation via interacting with DsPSY1/2 and regulating the plastid development, which provides new insights into the molecular mechanism of massive accumulation of β-carotene in D. salina.
Collapse
Affiliation(s)
- Ming-Hua Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shan-Rong Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jv-Liang Dai
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hao-Hong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Kim HK, Kim JY, Kim JH, Go JY, Jung YS, Lee HJ, Ahn MJ, Yu J, Bae S, Kim HS, Kwak SS, Kim MS, Cho YG, Jung YJ, Kang KK. Biochemical Characterization of Orange-Colored Rice Calli Induced by Target Mutagenesis of OsOr Gene. PLANTS (BASEL, SWITZERLAND) 2022; 12:56. [PMID: 36616184 PMCID: PMC9823629 DOI: 10.3390/plants12010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
We generated an orange-colored (OC) rice callus line by targeted mutagenesis of the orange gene (OsOr) using the CRISPR-Cas9 system. The OC line accumulated more lutein, β-carotene, and two β-carotene isomers compared to the WT callus line. We also analyzed the expression levels of carotenoid biosynthesis genes by qRT-PCR. Among the genes encoding carotenoid metabolic pathway enzymes, the number of transcripts of the PSY2, PSY3, PDS, ZDS and β-LCY genes were higher in the OC line than in the WT line. In contrast, transcription of the ε-LCY gene was downregulated in the OC line compared to the WT line. In addition, we detected increases in the transcript levels of two genes involved in carotenoid oxidation in the OC lines. The developed OC lines also showed increased tolerance to salt stress. Collectively, these findings indicate that targeted mutagenesis of the OsOr gene via CRISPR/Cas9-mediated genome editing results in β-carotene accumulation in rice calli. Accordingly, we believe that this type of genome-editing technology could represent an effective alternative approach for enhancing the β-carotene content of plants.
Collapse
Affiliation(s)
- Hee Kyoung Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jin Young Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jong Hee Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Ji Yun Go
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Yoo-Seob Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Hyo Ju Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jihyeon Yu
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sangsu Bae
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Me-Sun Kim
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
8
|
The DnaJ-like Zinc Finger Protein ORANGE Promotes Proline Biosynthesis in Drought-Stressed Arabidopsis Seedlings. Int J Mol Sci 2022; 23:ijms23073907. [PMID: 35409266 PMCID: PMC8999238 DOI: 10.3390/ijms23073907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Orange (OR) is a DnaJ-like zinc finger protein with both nuclear and plastidial localizations. OR, and its orthologs, are highly conserved in flowering plants, sharing a characteristic C-terminal tandem 4× repeats of the CxxCxxxG signature. It was reported to trigger chromoplast biogenesis, promote carotenoid accumulation in plastids of non-pigmented tissues, and repress chlorophyll biosynthesis and chloroplast biogenesis in the nucleus of de-etiolating cotyledons cells. Its ectopic overexpression was found to enhance plant resistance to abiotic stresses. Here, we report that the expression of OR in Arabidopsis thaliana was upregulated by drought treatment, and seedlings of the OR-overexpressing (OE) lines showed improved growth performance and survival rate under drought stress. Compared with the wild-type (WT) and OR-silencing (or) lines, drought-stressed OE seedlings possessed lower contents of reactive oxygen species (such as H2O2 and O2-), higher activities of both superoxide dismutase and catalase, and a higher level of proline content. Our enzymatic assay revealed a relatively higher activity of Δ1-pyrroline-5-carboxylate synthase (P5CS), a rate-limiting enzyme for proline biosynthesis, in drought-stressed OE seedlings, compared with the WT and or lines. We further demonstrated that the P5CS activity could be enhanced by supplementing exogenous OR in our in vitro assays. Taken together, our results indicated a novel contribution of OR to drought tolerance, through its impact on proline biosynthesis.
Collapse
|
9
|
Jung YJ, Go JY, Lee HJ, Park JS, Kim JY, Lee YJ, Ahn MJ, Kim MS, Cho YG, Kwak SS, Kim HS, Kang KK. Overexpression of Orange Gene ( OsOr-R115H) Enhances Heat Tolerance and Defense-Related Gene Expression in Rice ( Oryza sativa L.). Genes (Basel) 2021; 12:1891. [PMID: 34946840 PMCID: PMC8701904 DOI: 10.3390/genes12121891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
In plants, the orange (Or) gene plays roles in regulating carotenoid biosynthesis and responses to environmental stress. The present study investigated whether the expression of rice Or (OsOr) gene could enhance rice tolerance to heat stress conditions. The OsOr gene was cloned and constructed with OsOr or OsOr-R115H (leading to Arg to His substitution at position 115 on the OsOr protein), and transformed into rice plants. The chlorophyll contents and proline contents of transgenic lines were significantly higher than those of non-transgenic (NT) plants under heat stress conditions. However, we found that the levels of electrolyte leakage and malondialdehyde in transgenic lines were significantly reduced compared to NT plants under heat stress conditions. In addition, the levels of expression of four genes related to reactive oxygen species (ROS) scavenging enzymes (OsAPX2, OsCATA, OsCATB, OsSOD-Cu/Zn) and five genes (OsLEA3, OsDREB2A, OsDREB1A, OsP5CS, SNAC1) responded to abiotic stress was showed significantly higher in the transgenic lines than NT plants under heat stress conditions. Therefore, OsOr-R115H could be exploited as a promising strategy for developing new rice cultivars with improved heat stress tolerance.
Collapse
Affiliation(s)
- Yu Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.Y.G.); (H.J.L.); (J.S.P.); (J.Y.K.); (Y.J.L.)
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| | - Ji Yun Go
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.Y.G.); (H.J.L.); (J.S.P.); (J.Y.K.); (Y.J.L.)
| | - Hyo Ju Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.Y.G.); (H.J.L.); (J.S.P.); (J.Y.K.); (Y.J.L.)
| | - Jung Soon Park
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.Y.G.); (H.J.L.); (J.S.P.); (J.Y.K.); (Y.J.L.)
| | - Jin Young Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.Y.G.); (H.J.L.); (J.S.P.); (J.Y.K.); (Y.J.L.)
| | - Ye Ji Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.Y.G.); (H.J.L.); (J.S.P.); (J.Y.K.); (Y.J.L.)
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Me-Sun Kim
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Korea; (M.-S.K.); (Y.-G.C.)
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Korea; (M.-S.K.); (Y.-G.C.)
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.-S.K.); (H.S.K.)
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.-S.K.); (H.S.K.)
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.Y.G.); (H.J.L.); (J.S.P.); (J.Y.K.); (Y.J.L.)
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| |
Collapse
|