1
|
De Coninck T, Desmet T, Van Damme EJM. Carbohydrate-active enzymes involved in rice cell wall metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6206-6227. [PMID: 38980746 DOI: 10.1093/jxb/erae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Plant cell walls are complex, multifunctional structures, built up of polysaccharides and proteins. The configuration and abundance of cell wall constituents determine cellular elongation and plant growth. The emphasis of this review is on rice, a staple crop with economic importance, serving as model for grasses/cereals. Recent advancements have contributed to a better understanding of the grass/cereal cell wall. This review brings together current knowledge of the organization and metabolism of the rice cell wall, and addresses gaps in the information regarding the cell wall and enzymes involved. Several cell wall fractions, including cellulose, mixed-linkage glucans, and glucuronoarabinoxylans, are well understood in rice and other grasses/grains. Conversely, there are still open questions and missing links in relation to xyloglucans, glucomannans, pectin, lignin, and arabinogalactan proteins. There is still a large and untapped potential to identify carbohydrate-active enzymes (CAZymes), to characterize their activity, and to elucidate their involvement in the metabolism of the mentioned cell wall fractions. This review highlights the involvement of carbohydrate-active enzymes in rice cell wall metabolism, providing an update of current understanding with the aim of demarcating research areas with potential for further investigations.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory for Biochemistry & Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Els J M Van Damme
- Laboratory for Biochemistry & Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Yu Y, Chen S, Yan M, Li Y, Yang M, Liu X, Miao J, Wang X, Xiao M, Mou H, Leng K. Identification, expression, and characterization of a marine-derived chitinase Ce0303 from Chitiniphilus eburneus YS-30 with exo- and endo-hydrolytic properties. Int J Biol Macromol 2024; 276:133980. [PMID: 39032901 DOI: 10.1016/j.ijbiomac.2024.133980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
N-acetyl-oligosaccharides exhibit antioxidant and antibacterial activities. However, the low catalytic efficiency of chitinase on crystalline chitin hinders the eco-friendly production of N-acetyl-oligosaccharides. A marine-derived chitinase-producing strain Chitiniphilus eburneus YS-30 was screened in this study. The genome of C. eburneus YS-30 spans 4,522,240 bp, with a G + C content of 63.96 % and 4244 coding genes. Among the chitinases secreted by C. eburneus YS-30, Ce0303 showed the highest content at 19.10 %, with a molecular weight of 73.5 kDa. Recombinant Ce0303 exhibited optimal activity at 50 °C and pH 5.0, maintaining stability across pH 4.0-10.0. Ce0303 demonstrated strict substrate specificity, with a specific activity toward colloidal chitin of 6.41 U mg-1, Km of 2.34 mg mL-1, and kcat of 3.27 s-1. The specific activity of Ce0303 toward α-chitin was 18.87 % of its activity on colloidal chitin. Ce0303 displayed both exo- and endo-hydrolytic properties, primarily producing (GlcNAc)1-3 from colloidal chitin. The structure of Ce0303 includes one catalytic domain and two chitin-binding domains. Docking results revealed that the GlcNAc at -1 subsite formed two hydrogen bonds with conserved Trp380. The hydrolytic properties of Ce0303 will provide technical support for the comprehensive utilization of crustacean raw materials.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Sunan Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Mingyan Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Yinping Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Min Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xiaofang Liu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Junkui Miao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Xixi Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China.
| | - Kailiang Leng
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| |
Collapse
|
3
|
Cazares-Álvarez JE, Báez-Astorga PA, Arroyo-Becerra A, Maldonado-Mendoza IE. Genome-Wide Identification of a Maize Chitinase Gene Family and the Induction of Its Expression by Fusarium verticillioides (Sacc.) Nirenberg (1976) Infection. Genes (Basel) 2024; 15:1087. [PMID: 39202446 PMCID: PMC11353892 DOI: 10.3390/genes15081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Maize chitinases are involved in chitin hydrolysis. Chitinases are distributed across various organisms including animals, plants, and fungi and are grouped into different glycosyl hydrolase families and classes, depending on protein structure. However, many chitinase functions and their interactions with other plant proteins remain unknown. The economic importance of maize (Zea mays L.) makes it relevant for studying the function of plant chitinases and their biological roles. This work aims to identify chitinase genes in the maize genome to study their gene structure, family/class classification, cis-related elements, and gene expression under biotic stress, such as Fusarium verticillioides infection. Thirty-nine chitinase genes were identified and found to be distributed in three glycosyl hydrolase (GH) families (18, 19 and 20). Likewise, the conserved domains and motifs were identified in each GH family member. The identified cis-regulatory elements are involved in plant development, hormone response, defense, and abiotic stress response. Chitinase protein-interaction network analysis predicted that they interact mainly with cell wall proteins. qRT-PCR analysis confirmed in silico data showing that ten different maize chitinase genes are induced in the presence of F. verticillioides, and that they could have several roles in pathogen infection depending on chitinase structure and cell wall localization.
Collapse
Affiliation(s)
- Jesús Eduardo Cazares-Álvarez
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Paúl Alán Báez-Astorga
- CONAHCYT—Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico;
| | - Ignacio Eduardo Maldonado-Mendoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| |
Collapse
|
4
|
Prathi NB, Durga Rani CV, Prakasam V, Mohan YC, Mahendranath G, Sri Vidya GK, Neeraja CN, Sundaram RM, Mangrauthia SK. Oschib1 gene encoding a GH18 chitinase confers resistance against sheath blight disease of rice caused by Rhizoctonia solani AG1-IA. PLANT MOLECULAR BIOLOGY 2024; 114:41. [PMID: 38625509 DOI: 10.1007/s11103-024-01442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
Sheath blight disease of rice caused by Rhizoctonia solani AG1-IA, is a major fungal disease responsible for huge loss to grain yield and quality. The major limitation of achieving persistent and reliable resistance against R. solani is the governance of disease resistance trait by many genes. Therefore, functional characterization of new genes involved in sheath blight resistance is necessary to understand the mechanism of resistance as well as evolving effective strategies to manage the disease through host-plant resistance. In this study, we performed RNA sequencing of six diverse rice genotypes (TN1, BPT5204, Vandana, N22, Tetep, and Pankaj) from sheath and leaf tissue of control and fungal infected samples. The approach for identification of candidate resistant genes led to identification of 352 differentially expressed genes commonly present in all the six genotypes. 23 genes were analyzed for RT-qPCR expression which helped identification of Oschib1 showing differences in expression level in a time-course manner between susceptible and resistant genotypes. The Oschib1 encoding classIII chitinase was cloned from resistant variety Tetep and over-expressed in susceptible variety Taipei 309. The over-expression lines showed resistance against R. solani, as analyzed by detached leaf and whole plant assays. Interestingly, the resistance response was correlated with the level of transgene expression suggesting that the enzyme functions in a dose dependent manner. We report here the classIIIb chitinase from chromosome10 of rice showing anti-R. solani activity to combat the dreaded sheath blight disease.
Collapse
Affiliation(s)
- Naresh Babu Prathi
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Chagamreddy Venkata Durga Rani
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India.
| | - Vellaisamy Prakasam
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - Gandikota Mahendranath
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | - G K Sri Vidya
- Department of Molecular Biology and Biotechnology, SV Agriculture College, Tirupati, 517502, India
| | - C N Neeraja
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Raman Meenakshi Sundaram
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Satendra K Mangrauthia
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India.
| |
Collapse
|
5
|
He T, Fan J, Jiao G, Liu Y, Zhang Q, Luo N, Ahmad B, Chen Q, Wen Z. Bioinformatics and Expression Analysis of the Chitinase Genes in Strawberry ( Fragaria vesca) and Functional Study of FvChi-14. PLANTS (BASEL, SWITZERLAND) 2023; 12:1543. [PMID: 37050169 PMCID: PMC10097121 DOI: 10.3390/plants12071543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Plant chitinases (EC 3.2.1.14) are pathogenesis-related (PR) proteins and are well studied in many plant species. However, little is known about the genomic organization and expression of chitinase genes in strawberries (Fragaria vesca). Here, 23 FvChi genes were identified in the genome of strawberry (F. vesca) and divided into GH18 and GH19 subfamilies based on phylogenetic relationships. A detailed bioinformatics analysis of the FvChi genes was performed, including gene physicochemical properties, chromosomal location, exon-intron distribution, domain arrangement, and subcellular localization. Twenty-two FvChi genes showed upregulation after Colletotrichum gloeosporioides infection. Following the exogenous application of SA, FvChi-3, 4, and 5 showed significant changes in expression. The ectopic expression of FvChi-14 in Arabidopsis thaliana increased resistance to C. higginsianum via controlling the SA and JA signaling pathway genes (AtPR1, AtICS1, AtPDF1.2, and AtLOX3). The FvChi-14 protein location was predicted in the cell wall or extracellular matrix. We speculate that FvChi-14 is involved in disease resistance by regulating the SA and JA signaling pathways. The findings of this study provide a theoretical reference for the functional studies of FvChi genes and new candidates for strawberry stress resistance breeding programs.
Collapse
Affiliation(s)
- Tiannan He
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianshuai Fan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaozhen Jiao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhan Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qimeng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ning Luo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bilal Ahmad
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qingxi Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhifeng Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|