1
|
Fukudome M, Watanabe E, Osuki KI, Uchi N, Uchiumi T. Ectopic or Over-Expression of Class 1 Phytoglobin Genes Confers Flooding Tolerance to the Root Nodules of Lotus japonicus by Scavenging Nitric Oxide. Antioxidants (Basel) 2019; 8:antiox8070206. [PMID: 31277471 PMCID: PMC6681080 DOI: 10.3390/antiox8070206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
Flooding limits biomass production in agriculture. Leguminous plants, important agricultural crops, use atmospheric dinitrogen gas as nitrogen nutrition by symbiotic nitrogen fixation with rhizobia, but this root-nodule symbiosis is sometimes broken down by flooding of the root system. In this study, we analyzed the effect of flooding on the symbiotic system of transgenic Lotus japonicus lines which overexpressed class 1 phytoglobin (Glb1) of L. japonicus (LjGlb1-1) or ectopically expressed that of Alnus firma (AfGlb1). In the roots of wild-type plants, flooding increased nitric oxide (NO) level and expression of senescence-related genes and decreased nitrogenase activity; in the roots of transgenic lines, these effects were absent or less pronounced. The decrease of chlorophyll content in leaves and the increase of reactive oxygen species (ROS) in roots and leaves caused by flooding were also suppressed in these lines. These results suggest that increased levels of Glb1 help maintain nodule symbiosis under flooding by scavenging NO and controlling ROS.
Collapse
Affiliation(s)
- Mitsutaka Fukudome
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Eri Watanabe
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Ken-Ichi Osuki
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Nahoko Uchi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
2
|
Gesto-Borroto R, Sánchez-Sánchez M, Arredondo-Peter R. A bioinformatics insight to rhizobial globins: gene identification and mapping, polypeptide sequence and phenetic analysis, and protein modeling. F1000Res 2015; 4:117. [PMID: 26594329 PMCID: PMC4648194 DOI: 10.12688/f1000research.6392.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 11/20/2022] Open
Abstract
Globins (Glbs) are proteins widely distributed in organisms. Three evolutionary families have been identified in Glbs: the M, S and T Glb families. The M Glbs include flavohemoglobins (fHbs) and single-domain Glbs (SDgbs); the S Glbs include globin-coupled sensors (GCSs), protoglobins and sensor single domain globins, and the T Glbs include truncated Glbs (tHbs). Structurally, the M and S Glbs exhibit 3/3-folding whereas the T Glbs exhibit 2/2-folding. Glbs are widespread in bacteria, including several rhizobial genomes. However, only few rhizobial Glbs have been characterized. Hence, we characterized Glbs from 62 rhizobial genomes using bioinformatics methods such as data mining in databases, sequence alignment, phenogram construction and protein modeling. Also, we analyzed soluble extracts from
Bradyrhizobiumjaponicum USDA38 and USDA58 by (reduced + carbon monoxide (CO)
minus reduced) differential spectroscopy. Database searching showed that only
fhb,
sdgb,
gcs and
thb genes exist in the rhizobia analyzed in this work. Promoter analysis revealed that apparently several rhizobial
glb genes are not regulated by a -10 promoter but might be regulated by -35 and Fnr (fumarate-nitrate reduction regulator)-like promoters. Mapping analysis revealed that rhizobial
fhbs and
thbs are flanked by a variety of genes whereas several rhizobial
sdgbs and
gcss are flanked by genes coding for proteins involved in the metabolism of nitrates and nitrites and chemotaxis, respectively. Phenetic analysis showed that rhizobial Glbs segregate into the M, S and T Glb families, while structural analysis showed that predicted rhizobial SDgbs and fHbs and GCSs globin domain and tHbs fold into the 3/3- and 2/2-folding, respectively. Spectra from
B.
japonicum USDA38 and USDA58 soluble extracts exhibited peaks and troughs characteristic of bacterial and vertebrate Glbs thus indicating that putative Glbs are synthesized in
B.
japonicum USDA38 and USDA58.
Collapse
Affiliation(s)
- Reinier Gesto-Borroto
- Laboratorio de Biofísica y Biología Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Colonia Chamilpa, Morelos, 62210, Mexico
| | - Miriam Sánchez-Sánchez
- Laboratorio de Biofísica y Biología Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Colonia Chamilpa, Morelos, 62210, Mexico
| | - Raúl Arredondo-Peter
- Laboratorio de Biofísica y Biología Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Colonia Chamilpa, Morelos, 62210, Mexico
| |
Collapse
|
3
|
Abstract
Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (
Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the
nshb genes, consisting of
hb1,
hb2,
hb3,
hb4 and
hb5, and a single copy of the
thb gene exist in
Oryza sativa var. indica and
O.
sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O
2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O
2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O
2-transport, O
2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice
nshb and
thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice
nshbs and
thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the
cis-elements and
trans-acting factors that regulate the expression of rice
hb genes, and the partial understanding of the evolution of rice Hbs.
Collapse
Affiliation(s)
- Raúl Arredondo-Peter
- Laboratorio de Biofísica y Biología Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62210, Mexico
| | - Jose F Moran
- Instituto de Agrobiotecnología, IdAB-CSIC-Universidad Pública de Navarra-Gobierno de Navarra, Navarre, E-31192, Spain
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, University of Nebraska-Lincoln, Lincoln, NE, 68583-0937, USA
| |
Collapse
|
4
|
Vázquez-Limón C, Hoogewijs D, Vinogradov SN, Arredondo-Peter R. The evolution of land plant hemoglobins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:71-81. [PMID: 22682566 DOI: 10.1016/j.plantsci.2012.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/24/2012] [Accepted: 04/25/2012] [Indexed: 05/04/2023]
Abstract
This review discusses the evolution of land plant hemoglobins within the broader context of eukaryote hemoglobins and the three families of bacterial globins. Most eukaryote hemoglobins, including metazoan globins and the symbiotic and non-symbiotic plant hemoglobins, are homologous to the bacterial 3/3-fold flavohemoglobins. The remaining plant hemoglobins are homologous to the bacterial 2/2-fold group 2 hemoglobins. We have proposed that all eukaryote globins were acquired via horizontal gene transfer concomitant with the endosymbiotic events responsible for the origin of mitochondria and chloroplasts. Although the 3/3 hemoglobins originated in the ancestor of green algae and plants prior to the emergence of embryophytes at about 450 mya, the 2/2 hemoglobins appear to have originated via horizontal gene transfer from a bacterium ancestral to present day Chloroflexi. Unlike the 2/2 hemoglobins, the evolution of the 3/3 hemoglobins was accompanied by duplication, diversification, and functional adaptations. Duplication of the ancestral plant nshb gene into the nshb-1 and nshb-2 lineages occurred prior to the monocot-dicot divergence at ca. 140 mya. It was followed by the emergence of symbiotic hemoglobins from a non-symbiotic hemoglobin precursor and further specialization, leading to leghemoglobins in N₂-fixing legume nodules concomitant with the origin of nodulation at ca. 60 mya. The transition of non-symbiotic to symbiotic hemoglobins (including to leghemoglobins) was accompanied by the alteration of heme-Fe coordination from hexa- to penta-coordination. Additional genomic information about Charophyte algae, the sister group to land plants, is required for the further clarification of plant globin phylogeny.
Collapse
Affiliation(s)
- Consuelo Vázquez-Limón
- Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | | | | | | |
Collapse
|
5
|
Violante-Mota F, Tellechea E, Moran JF, Sarath G, Arredondo-Peter R. Analysis of peroxidase activity of rice (Oryza sativa) recombinant hemoglobin 1: implications for in vivo function of hexacoordinate non-symbiotic hemoglobins in plants. PHYTOCHEMISTRY 2010; 71:21-26. [PMID: 19833360 DOI: 10.1016/j.phytochem.2009.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 08/07/2009] [Accepted: 09/15/2009] [Indexed: 05/28/2023]
Abstract
In plants, it has been proposed that hexacoordinate (class 1) non-symbiotic Hbs (nsHb-1) function in vivo as peroxidases. However, little is known about peroxidase activity of nsHb-1. We evaluated the peroxidase activity of rice recombinant Hb1 (a nsHb-1) by using the guaiacol/H2O2 system at pH 6.0 and compared it to that from horseradish peroxidase (HRP). Results showed that the affinity of rice Hb1 for H2O2 was 86-times lower than that of HRP (K(m)=23.3 and 0.27 mM, respectively) and that the catalytic efficiency of rice Hb1 for the oxidation of guaiacol using H2O2 as electron donor was 2838-times lower than that of HRP (k(cat)/K(m)=15.8 and 44,833 mM(-1) min(-1), respectively). Also, results from this work showed that rice Hb1 is not chemically modified and binds CO after incubation with high H2O2 concentration, and that it poorly protects recombinant Escherichia coli from H2O2 stress. These observations indicate that rice Hb1 inefficiently scavenges H2O2 as compared to a typical plant peroxidase, thus indicating that non-symbiotic Hbs are unlikely to function as peroxidases in planta.
Collapse
Affiliation(s)
- Fernando Violante-Mota
- Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
6
|
Jokipii-Lukkari S, Frey AD, Kallio PT, Häggman H. Intrinsic non-symbiotic and truncated haemoglobins and heterologous Vitreoscilla haemoglobin expression in plants. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:409-422. [PMID: 19129158 DOI: 10.1093/jxb/ern320] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To date, haemoglobins (Hbs) have been shown to exist in all kingdoms of life. The least studied and understood groups are plant non-symbiotic haemoglobins (nsHbs) and the recently found plant truncated Hbs (trHbs). From a biotechnological point of view, the best characterized and almost exclusively applied Hb is the bacterial Vitreoscilla haemoglobin (VHb). In this review, the present state of knowledge of structural features and ligand binding kinetics of plant nsHbs and trHbs and their proposed roles as oxygen carriers, oxygen sensors, and for oxygen storage, in nitric oxide (NO) detoxification, and in peroxidase activity are described. Furthermore, in order to predict the functioning of plant Hbs, their characteristics will be compared with those of the better known bacterial globins. In this context, the effects of heterologous applications of VHb on plants are reviewed. Finally, the challenging future of plant Hb research is discussed.
Collapse
|
7
|
Gopalasubramaniam SK, Kovacs F, Violante-Mota F, Twigg P, Arredondo-Peter R, Sarath G. Cloning and characterization of a caesalpinoid (Chamaecrista fasciculata) hemoglobin: the structural transition from a nonsymbiotic hemoglobin to a leghemoglobin. Proteins 2008; 72:252-60. [PMID: 18214970 DOI: 10.1002/prot.21917] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nonsymbiotic hemoglobins (nsHbs) and leghemoglobins (Lbs) are plant proteins that can reversibly bind O(2) and other ligands. The nsHbs are hexacoordinate and appear to modulate cellular concentrations of NO and maintain energy levels under hypoxic conditions. The Lbs are pentacoordinate and facilitate the diffusion of O(2) to symbiotic bacteroids within legume root nodules. Multiple lines of evidence suggest that all plant Hbs evolved from a common ancestor and that Lbs originated from nsHbs. However, little is known about the structural intermediates that occurred during the evolution of pentacoordinate Lbs from hexacoordinate nsHbs. We have cloned and characterized a Hb (ppHb) from the root nodules of the ancient caesalpinoid legume Chamaecrista fasciculata. Protein sequence, modeling data, and spectral analysis indicated that the properties of ppHb are intermediate between that of nsHb and Lb, suggesting that ppHb resembles a putative ancestral Lb. Predicted structural changes that appear to have occurred during the nsHb to Lb transition were a compaction of the CD-loop and decreased mobility of the distal His inhibiting its ability to coordinate directly with the heme-Fe, leading to a pentacoordinate protein. Other predicted changes include shortening of the N- and C-termini, compaction of the protein into a globular structure, disappearance of positive charges outside the heme pocket and appearance of negative charges in an area located between the N- and C-termini. A major consequence for some of these changes appears to be the decrease in O(2)-affinity of ancestral nsHb, which resulted in the origin of the symbiotic function of Lbs.
Collapse
Affiliation(s)
- Sabarinathan K Gopalasubramaniam
- Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Morelos, México
| | | | | | | | | | | |
Collapse
|
8
|
Garrocho-Villegas V, Arredondo-Peter R. Molecular Cloning and Characterization of a Moss (Ceratodon purpureus) Nonsymbiotic Hemoglobin Provides Insight into the Early Evolution of Plant Nonsymbiotic Hemoglobins. Mol Biol Evol 2008; 25:1482-7. [DOI: 10.1093/molbev/msn096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
9
|
Hoy JA, Hargrove MS. The structure and function of plant hemoglobins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:371-9. [PMID: 18321722 DOI: 10.1016/j.plaphy.2007.12.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Indexed: 05/24/2023]
Abstract
Plants, like humans, contain hemoglobin. Three distinct types of hemoglobin exist in plants: symbiotic, non-symbiotic, and truncated hemoglobins. Crystal structures and other structural and biophysical techniques have revealed important knowledge about ligand binding and conformational stabilization in all three types. In symbiotic hemoglobins (leghemoglobins), ligand binding regulatory mechanisms have been shown to differ dramatically from myoglobin and red blood cell hemoglobin. In the non-symbiotic hemoglobins found in all plants, crystal structures and vibrational spectroscopy have revealed the nature of the structural transition between the hexacoordinate and ligand-bound states. In truncated hemoglobins, the abbreviated globin is porous, providing tunnels that may assist in ligand binding, and the bound ligand is stabilized by more than one distal pocket residue. Research has implicated these plant hemoglobins in a number of possible functions differing among hemoglobin types, and possibly between plant species.
Collapse
Affiliation(s)
- Julie A Hoy
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50014, USA
| | | |
Collapse
|
10
|
Gopalasubramaniam SK, Garrocho‐Villegas V, Rivera GB, Pastor N, Arredondo‐Peter R. Use of In Silico (Computer) Methods to Predict and Analyze the Tertiary Structure of Plant Hemoglobins. Methods Enzymol 2008; 436:393-410. [DOI: 10.1016/s0076-6879(08)36022-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Bruno S, Faggiano S, Spyrakis F, Mozzarelli A, Abbruzzetti S, Grandi E, Viappiani C, Feis A, Mackowiak S, Smulevich G, Cacciatori E, Dominici P. The reactivity with CO of AHb1 and AHb2 from Arabidopsis thaliana is controlled by the distal HisE7 and internal hydrophobic cavities. J Am Chem Soc 2007; 129:2880-9. [PMID: 17298064 DOI: 10.1021/ja066638d] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nonsymbiotic hemoglobins, AHb1 and AHb2, have recently been isolated from Arabidopsis thaliana. Using steady-state and time-resolved spectroscopic methods, we show that Fe2+ AHb1 contains a mixture of penta- and hexacoordinated heme, while Fe2+ AHb2 is fully hexacoordinated. In the CO complexes, polar interactions and H-bonds with the ligand are stronger for AHb1 than for AHb2. The ligand binding kinetics are substantially different, reflecting the distribution between the penta- and hexacoordinated species, and indicate that protein dynamics and ligand migration pathways are very specific for each of the two proteins. In particular, a very small, non-exponential geminate rebinding observed in AHb1 suggests that the distal heme cavity is connected with the exterior by a relatively open channel. The large, temperature-dependent geminate rebinding observed for AHb2 implies a major role of protein dynamics in the ligand migration from the distal cavity to the solvent. The structures of AHb1 and AHb2, modeled on the basis of the homologous rice hemoglobin, exhibit a different cavity system that is fully compatible with the observed ligand binding kinetics. Overall, these kinetic and structural data are consistent with the putative NO-dioxygenase activity previously attributed to AHb1, whereas the role of AHb2 remains elusive.
Collapse
Affiliation(s)
- Stefano Bruno
- Dipartimento di Biochimica e Biologia Molecolare, UniversitA degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nakajima S, Alvarez-Salgado E, Kikuchi T, Arredondo-Peter R. Prediction of folding pathway and kinetics among plant hemoglobins using an average distance map method. Proteins 2006; 61:500-6. [PMID: 16184600 DOI: 10.1002/prot.20658] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Computational methods, such as the ADM (average distance map) method, have been developed to predict folding of homologous proteins. In this work we used the ADM method to predict the folding pathway and kinetics among selected plant nonsymbiotic (nsHb), symbiotic (Lb), and truncated (tHb) hemoglobins (Hbs). Results predicted that (1) folding of plant Hbs occurs throughout the formation of compact folding modules mostly formed by helices A, B, and C, and E, F, G, and H (folding modules A/C and E/H, respectively), and (2) primitive (moss) nsHbs fold in the C-->N direction, evolved (monocot and dicot) nsHbs fold either in the C-->N or N-->C direction, and Lbs and plant tHbs fold in the C-->N direction. We also predicted relative folding rates of plant Hbs from qualitative analyses of the stability of subdomains and classified plant Hbs into fast and moderate folding. ADM analysis of nsHbs predicted that prehelix A plays a role during folding of the N-terminal domain of Ceratodon nsHb, and that CD-loop plays a role in folding of primitive (Physcomitrella and Ceratodon) but not evolved nsHbs. Modeling of the rice Hb1 A/C and E/H modules showed that module E/H overlaps to the Mycobacterium tuberculosis HbO two-on-two folding. This observation suggests that module E/H is an ancient tertiary structure in plant Hbs.
Collapse
Affiliation(s)
- Shunsuke Nakajima
- Department of Bioscience and Bioinformatics, College of Information Science and Engineering, Ritsumeikan University, Shiga, Japan
| | | | | | | |
Collapse
|