1
|
Bai Y, Wang J, Tang W, Sun D, Wang S, Chen K, Zhou Y, Wang C, Chen J, Xu Z, Chen M, Wang H, Ma Y. Genome-Wide Identification of NLP Gene Families and Haplotype Analysis of SiNLP2 in Foxtail Millet ( Setaria italica). Int J Mol Sci 2024; 25:12938. [PMID: 39684649 DOI: 10.3390/ijms252312938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Nitrogen is a critical factor in plant growth, development, and crop yield. NODULE-INCEPTION-like proteins (NLPs), which are plant-specific transcription factors, function as nitrate sensors and play a vital role in the nitrogen response of plants. However, the genome-wide identification of the NLP gene family, the elucidation of the underlying molecular mechanism governing nitrogen response, and haplotype mining remain elusive in millet. In this study, we identified seven members of the NLP gene family in the millet genome and systematically analyzed their physicochemical properties. Evolutionary tree analysis indicated that SiNLP members can be classified into three subgroups, with NLP members from the same species preferentially grouped together within each subgroup. Analysis of gene structure characteristics revealed that all SiNLP members contained 10 conserved motifs, as well as the RWP-RK and PB1 domains, indicating that these motifs and domains have been relatively conserved throughout evolution. Additionally, we identified a significant abundance of response elements related to hormones, stress, growth, and development within the promoter regions of SiNLP members, suggesting that these members are involved in regulating diverse physiological processes in millet. Transcriptome data under low-nitrogen conditions showed significant differences in the expression profiles of SiNLP2 and SiNLP4 compared to the other members. RNA-seq and qRT-PCR results demonstrated that SiNLP2 significantly responds to low-nitrogen stress. Notably, we found that SiNLP2 is involved in nitrogen pathways by regulating the expression of the SiNAR2.1A, SiNAR2.1B, SiNRT1.1, and SiNR2 genes. More importantly, we identified an elite haplotype, Hap2, of SiNLP2, which is gradually being utilized in the breeding process. Our study established a foundation for a comprehensive understanding of the SiNLP gene family and provided gene resources for variety improvement and marker-assisted selection breeding.
Collapse
Affiliation(s)
- Yanming Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Juncheng Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Wensi Tang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Daizhen Sun
- Key Laboratory of Sustainable Dryland Agriculture, College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shuguang Wang
- Key Laboratory of Sustainable Dryland Agriculture, College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Kai Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yongbin Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Chunxiao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jun Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Zhaoshi Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Ming Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Huajun Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Youzhi Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|
2
|
Xu N, Cheng L, Kong Y, Chen G, Zhao L, Liu F. Functional analyses of the NRT2 family of nitrate transporters in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1351998. [PMID: 38501135 PMCID: PMC10944928 DOI: 10.3389/fpls.2024.1351998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
Nitrogen is an essential macronutrient for plant growth and development. Nitrate is the major form of nitrogen acquired by most crops and also serves as a vital signaling molecule. Nitrate is absorbed from the soil into root cells usually by the low-affinity NRT1 NO3 - transporters and high-affinity NRT2 NO3 - transporters, with NRT2s serving to absorb NO3 - under NO3 -limiting conditions. Seven NRT2 members have been identified in Arabidopsis, and they have been shown to be involved in various biological processes. In this review, we summarize the spatiotemporal expression patterns, localization, and biotic and abiotic responses of these transporters with a focus on recent advances in the current understanding of the functions of the seven AtNRT2 genes. This review offers beneficial insight into the mechanisms by which plants adapt to changing environmental conditions and provides a theoretical basis for crop research in the near future.
Collapse
Affiliation(s)
- Na Xu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Li Cheng
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Yuan Kong
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Guiling Chen
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Lufei Zhao
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, Shandong, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
3
|
Zhou Z, Zhang L, Shu J, Wang M, Li H, Shu H, Wang X, Sun Q, Zhang S. Root Breeding in the Post-Genomics Era: From Concept to Practice in Apple. PLANTS (BASEL, SWITZERLAND) 2022; 11:1408. [PMID: 35684181 PMCID: PMC9182997 DOI: 10.3390/plants11111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The development of rootstocks with a high-quality dwarf-type root system is a popular research topic in the apple industry. However, the precise breeding of rootstocks is still challenging, mainly because the root system is buried deep underground, roots have a complex life cycle, and research on root architecture has progressed slowly. This paper describes ideas for the precise breeding and domestication of wild apple resources and the application of key genes. The primary goal of this research is to combine the existing rootstock resources with molecular breeding and summarize the methods of precision breeding. Here, we reviewed the existing rootstock germplasm, high-quality genome, and genetic resources available to explain how wild resources might be used in modern breeding. In particular, we proposed the 'from genotype to phenotype' theory and summarized the difficulties in future breeding processes. Lastly, the genetics governing root diversity and associated regulatory mechanisms were elaborated on to optimize the precise breeding of rootstocks.
Collapse
Affiliation(s)
- Zhou Zhou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Lei Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Jing Shu
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Mengyu Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Han Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Huairui Shu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Xiaoyun Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| |
Collapse
|
4
|
Transcriptome Differences in Response Mechanisms to Low-Nitrogen Stress in Two Wheat Varieties. Int J Mol Sci 2021; 22:ijms222212278. [PMID: 34830160 PMCID: PMC8622133 DOI: 10.3390/ijms222212278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
Nitrogen plays a crucial role in wheat growth and development. Here, we analyzed the tolerance of wheat strains XM26 and LM23 to low-nitrogen stress using a chlorate sensitivity experiment. Subsequently, we performed transcriptome analyses of both varieties exposed to low-nitrogen (LN) and normal (CK) treatments. Compared with those under CK treatment, 3534 differentially expressed genes (DEGs) were detected in XM26 in roots and shoots under LN treatment (p < 0.05, and |log2FC| > 1). A total of 3584 DEGs were detected in LM23. A total of 3306 DEGs, including 863 DEGs in roots and 2443 DEGs in shoots, were specifically expressed in XM26 or showed huge differences between XM26 and LM23 (log2FC ratio > 3). These were selected for gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The calcium-mediated plant–pathogen interaction, MAPK signaling, and phosphatidylinositol signaling pathways were enriched in XM26 but not in LM23. We also verified the expression of important genes involved in these pathways in the two varieties using qRT-PCR. A total of 156 transcription factors were identified among the DEGs, and their expression patterns were different between the two varieties. Our findings suggest that calcium-related pathways play different roles in the two varieties, eliciting different tolerances to low-nitrogen stress.
Collapse
|
5
|
Nitrogen Uptake in Plants: The Plasma Membrane Root Transport Systems from a Physiological and Proteomic Perspective. PLANTS 2021; 10:plants10040681. [PMID: 33916130 PMCID: PMC8066207 DOI: 10.3390/plants10040681] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
Nitrogen nutrition in plants is a key determinant in crop productivity. The availability of nitrogen nutrients in the soil, both inorganic (nitrate and ammonium) and organic (urea and free amino acids), highly differs and influences plant physiology, growth, metabolism, and root morphology. Deciphering this multifaceted scenario is mandatory to improve the agricultural sustainability. In root cells, specific proteins located at the plasma membrane play key roles in the transport and sensing of nitrogen forms. This review outlines the current knowledge regarding the biochemical and physiological aspects behind the uptake of the individual nitrogen forms, their reciprocal interactions, the influences on root system architecture, and the relations with other proteins sustaining fundamental plasma membrane functionalities, such as aquaporins and H+-ATPase. This topic is explored starting from the information achieved in the model plant Arabidopsis and moving to crops in agricultural soils. Moreover, the main contributions provided by proteomics are described in order to highlight the goals and pitfalls of this approach and to get new hints for future studies.
Collapse
|
6
|
Arsova B, Foster KJ, Shelden MC, Bramley H, Watt M. Dynamics in plant roots and shoots minimize stress, save energy and maintain water and nutrient uptake. THE NEW PHYTOLOGIST 2020; 225:1111-1119. [PMID: 31127613 DOI: 10.1111/nph.15955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/19/2019] [Indexed: 05/12/2023]
Abstract
Plants are inherently dynamic. Dynamics minimize stress while enabling plants to flexibly acquire resources. Three examples are presented for plants tolerating saline soil: transport of sodium chloride (NaCl), water and macronutrients is nonuniform along a branched root; water and NaCl redistribute between shoot and soil at night-time; and ATP for salt exclusion is much lower in thinner branch roots than main roots, quantified using a biophysical model and geometry from anatomy. Noninvasive phenotyping and precision agriculture technologies can be used together to harness plant dynamics, but analytical methods are needed. A plant advancing in time through a soil and atmosphere space is proposed as a framework for dynamic data and their relationship to crop improvement.
Collapse
Affiliation(s)
- Borjana Arsova
- Root Dynamics Group, Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, Juelich, 52428, Germany
| | - Kylie J Foster
- Phenomics and Bioinformatics Research Centre, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Megan C Shelden
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Helen Bramley
- School of Life and Environmental Sciences, Plant Breeding Institute and Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, 2390, Australia
| | - Michelle Watt
- Root Dynamics Group, Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, Juelich, 52428, Germany
| |
Collapse
|
7
|
Zhang GB, Meng S, Gong JM. The Expected and Unexpected Roles of Nitrate Transporters in Plant Abiotic Stress Resistance and Their Regulation. Int J Mol Sci 2018; 19:ijms19113535. [PMID: 30423982 PMCID: PMC6274899 DOI: 10.3390/ijms19113535] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022] Open
Abstract
Nitrate transporters are primarily responsible for absorption of nitrate from soil and nitrate translocation among different parts of plants. They deliver nitrate to where it is needed. However, recent studies have revealed that nitrate transporters are extensively involved in coping with adverse environmental conditions besides limited nitrate/nitrogen availability. In this review, we describe the functions of the nitrate transporters related to abiotic stresses and their regulation. The expected and unexpected roles of nitrate transporters in plant abiotic stress resistance will also be discussed.
Collapse
Affiliation(s)
- Guo-Bin Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Shuan Meng
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
8
|
Gao W, Xu FC, Guo DD, Zhao JR, Liu J, Guo YW, Singh PK, Ma XN, Long L, Botella JR, Song CP. Calcium-dependent protein kinases in cotton: insights into early plant responses to salt stress. BMC PLANT BIOLOGY 2018; 18:15. [PMID: 29343239 PMCID: PMC5772696 DOI: 10.1186/s12870-018-1230-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/11/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Soil salinization is one of the major environmental constraints to plant growth and agricultural production worldwide. Signaling components involving calcium (Ca2+) and the downstream calcium-dependent protein kinases (CPKs) play key roles in the perception and transduction of stress signals. However, the study of CPKs in cotton and their functions in response to salt stress remain unexplored. RESULTS A total of 98 predicted CPKs were identified from upland cotton (Gossypium hirsutum L. 'TM-1'), and phylogenetic analyses classified them into four groups. Gene family distribution studies have revealed the substantial impacts of the genome duplication events to the total number of GhCPKs. Transcriptome analyses showed a wide distribution of CPKs' expression among different organs. A total of 19 CPKs were selected for their rapid responses to salt stress at the transcriptional level, most of which were also incduced by the thylene-releasing chemical ethephon, suggesting a partal overlap of the salinity and ethylene responses. Silencing of 4 of the 19 CPKs (GhCPK8, GhCPK38, GhCPK54, and GhCPK55) severely compromised the basal cotton resistance to salt stress. CONCLUSIONS Our genome-wide expression analysis of CPK genes from up-land cotton suggests that CPKs are involved in multiple developmental responses as well as the response to different abiotic stresses. A cluster of the cotton CPKs was shown to participate in the early signaling events in cotton responses to salt stress. Our results provide significant insights on functional analysis of CPKs in cotton, especially in the context of cotton adaptions to salt stress.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Fu-Chun Xu
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Dan-Dan Guo
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Jing-Ruo Zhao
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 People’s Republic of China
| | - Ya-Wei Guo
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Prashant Kumar Singh
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Xiao-Nan Ma
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Lu Long
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072 Australia
| | - Chun-Peng Song
- State Key Laboratory of Cotton Biology; Henan Key Laboratory of Plant Stress Biology; School of Life Science, Henan University, Kaifeng, Henan 475004 People’s Republic of China
| |
Collapse
|
9
|
dos Santos TB, Lima JE, Felicio MS, Soares JDM, Domingues DS. Genome-wide identification, classification and transcriptional analysis of nitrate and ammonium transporters in Coffea. Genet Mol Biol 2017; 40:346-359. [PMID: 28399192 PMCID: PMC5452133 DOI: 10.1590/1678-4685-gmb-2016-0041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 02/21/2017] [Indexed: 11/21/2022] Open
Abstract
Nitrogen (N) is quantitatively the main nutrient required by coffee plants, with acquisition mainly by the roots and mostly exported to coffee beans. Nitrate (NO3-) and ammonium (NH4+) are the most important inorganic sources for N uptake. Several N transporters encoded by different gene families mediate the uptake of these compounds. They have an important role in source preference for N uptake in the root system. In this study, we performed a genome-wide analysis, including in silico expression and phylogenetic analyses of AMT1, AMT2, NRT1/PTR, and NRT2 transporters in the recently sequenced Coffea canephora genome. We analyzed the expression of six selected transporters in Coffea arabica roots submitted to N deficiency. N source preference was also analyzed in C. arabica using isotopes. C. canephora N transporters follow the patterns observed for most eudicots, where each member of the AMT and NRT families has a particular role in N mobilization, and where some of these are modulated by N deficiency. Despite the prevalence of putative nitrate transporters in the Coffea genome, ammonium was the preferential inorganic N source for N-starved C. arabica roots. This data provides an important basis for fundamental and applied studies to depict molecular mechanisms involved in N uptake in coffee trees.
Collapse
Affiliation(s)
- Tiago Benedito dos Santos
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná,
Londrina, PR, Brazil
- Programa de pós-graduação em Agronomia, Universidade do Oeste
Paulista (UNOESTE), Presidente Prudente, SP, Brazil
| | - Joni Esrom Lima
- Departamento de Botânica, Instituto de Ciências Biológicas,
Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Centro de Energia Nuclear na Agricultura (CENA), Escola Superior de
Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), Piracicaba.
SP, Brazil
| | - Mariane Silva Felicio
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná,
Londrina, PR, Brazil
| | | | - Douglas Silva Domingues
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná,
Londrina, PR, Brazil
- Departamento de Botânica, Instituto de Biociências de Rio Claro,
Universidade Estadual Paulista “Júlio Mesquita Filho” (UNESP), Rio Claro, SP,
Brazil
| |
Collapse
|
10
|
Chamizo-Ampudia A, Sanz-Luque E, Llamas A, Galvan A, Fernandez E. Nitrate Reductase Regulates Plant Nitric Oxide Homeostasis. TRENDS IN PLANT SCIENCE 2017; 22:163-174. [PMID: 28065651 DOI: 10.1016/j.tplants.2016.12.001] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/16/2016] [Accepted: 12/04/2016] [Indexed: 05/18/2023]
Abstract
Nitrate reductase (NR) is a key enzyme for nitrogen acquisition by plants, algae, yeasts, and fungi. Nitrate, its main substrate, is required for signaling and is widely distributed in diverse tissues in plants. In addition, NR has been proposed as an important enzymatic source of nitric oxide (NO). Recently, NR has been shown to play a role in NO homeostasis by supplying electrons from NAD(P)H through its diaphorase/dehydrogenase domain both to a truncated hemoglobin THB1, which scavenges NO by its dioxygenase activity, and to the molybdoenzyme NO-forming nitrite reductase (NOFNiR) that is responsible for NO synthesis from nitrite. We review how NR may play a central role in plant biology by controlling the amounts of NO, a key signaling molecule in plant cells.
Collapse
Affiliation(s)
- Alejandro Chamizo-Ampudia
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, School of Sciences, Campus de Excelencia Internacional (CeiA3), Edifico Severo Ochoa, Cordoba, Spain
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, School of Sciences, Campus de Excelencia Internacional (CeiA3), Edifico Severo Ochoa, Cordoba, Spain; Present address: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Angel Llamas
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, School of Sciences, Campus de Excelencia Internacional (CeiA3), Edifico Severo Ochoa, Cordoba, Spain
| | - Aurora Galvan
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, School of Sciences, Campus de Excelencia Internacional (CeiA3), Edifico Severo Ochoa, Cordoba, Spain
| | - Emilio Fernandez
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Rabanales, School of Sciences, Campus de Excelencia Internacional (CeiA3), Edifico Severo Ochoa, Cordoba, Spain.
| |
Collapse
|
11
|
Le Deunff E, Lecourt J, Malagoli P. Fine-tuning of root elongation by ethylene: a tool to study dynamic structure-function relationships between root architecture and nitrate absorption. ANNALS OF BOTANY 2016; 118:607-620. [PMID: 27411681 PMCID: PMC5055632 DOI: 10.1093/aob/mcw123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/26/2016] [Accepted: 05/12/2016] [Indexed: 05/08/2023]
Abstract
Background Recently developed genetic and pharmacological approaches have been used to explore NO3-/ethylene signalling interactions and how the modifications in root architecture by pharmacological modulation of ethylene biosynthesis affect nitrate uptake. Key Results Structure-function studies combined with recent approaches to chemical genomics highlight the non-specificity of commonly used inhibitors of ethylene biosynthesis such as AVG (l-aminoethoxyvinylglycine). Indeed, AVG inhibits aminotransferases such as ACC synthase (ACS) and tryptophan aminotransferase (TAA) involved in ethylene and auxin biosynthesis but also some aminotransferases implied in nitrogen (N) metabolism. In this framework, it can be assumed that the products of nitrate assimilation and hormones may interact through a hub in carbon (C) and N metabolism to drive the root morphogenetic programme (RMP). Although ethylene/auxin interactions play a major role in cell division and elongation in root meristems, shaping of the root system depends also on energetic considerations. Based on this finding, the analysis is extended to nutrient ion-hormone interactions assuming a fractal or constructal model for root development. Conclusion Therefore, the tight control of root structure-function in the RMP may explain why over-expressing nitrate transporter genes to decouple structure-function relationships and improve nitrogen use efficiency (NUE) has been unsuccessful.
Collapse
Affiliation(s)
- Erwan Le Deunff
- Université de Caen Basse-Normandie, UMR Écophysiologie Végétale & Agronomie, Nutritions NCS, F-14032 Caen, France
- INRA, UMR 950, Écophysiologie Végétale & Agronomie, Nutritions NCS, F-14032 Caen, France
| | - Julien Lecourt
- East Malling Research, New Road, East Malling ME19 6BJ, Kent, UK
| | - Philippe Malagoli
- Université Blaise Pascal-INRA, 24, avenue des Landais, BP 80 006, F-63177 Aubière, France
- INRA, UMR 547 PIAF, Bâtiment Biologie Végétale Recherche, BP 80 006, F-63177 Aubière, France
| |
Collapse
|
12
|
Le Deunff E, Malagoli P. Breaking conceptual locks in modelling root absorption of nutrients: reopening the thermodynamic viewpoint of ion transport across the root. ANNALS OF BOTANY 2014; 114:1555-70. [PMID: 25425406 PMCID: PMC4416131 DOI: 10.1093/aob/mcu203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/29/2014] [Indexed: 05/13/2023]
Abstract
BACKGROUND The top-down analysis of nitrate influx isotherms through the Enzyme-Substrate interpretation has not withstood recent molecular and histochemical analyses of nitrate transporters. Indeed, at least four families of nitrate transporters operating at both high and/or low external nitrate concentrations, and which are located in series and/or parallel in the different cellular layers of the mature root, are involved in nitrate uptake. Accordingly, the top-down analysis of the root catalytic structure for ion transport from the Enzyme-Substrate interpretation of nitrate influx isotherms is inadequate. Moreover, the use of the Enzyme-Substrate velocity equation as a single reference in agronomic models is not suitable in its formalism to account for variations in N uptake under fluctuating environmental conditions. Therefore, a conceptual paradigm shift is required to improve the mechanistic modelling of N uptake in agronomic models. SCOPE An alternative formalism, the Flow-Force theory, was proposed in the 1970s to describe ion isotherms based upon biophysical 'flows and forces' relationships of non-equilibrium thermodynamics. This interpretation describes, with macroscopic parameters, the patterns of N uptake provided by a biological system such as roots. In contrast to the Enzyme-Substrate interpretation, this approach does not claim to represent molecular characteristics. Here it is shown that it is possible to combine the Flow-Force formalism with polynomial responses of nitrate influx rate induced by climatic and in planta factors in relation to nitrate availability. CONCLUSIONS Application of the Flow-Force formalism allows nitrate uptake to be modelled in a more realistic manner, and allows scaling-up in time and space of the regulation of nitrate uptake across the plant growth cycle.
Collapse
Affiliation(s)
- Erwan Le Deunff
- Université de Caen Basse-Normandie, UMR EVA, F-14032 Caen cedex, France INRA, UMR 950, Écophysiologie Végétale & Agronomie Nutritions NCS, F-14032 Caen cedex, France
| | - Philippe Malagoli
- Université Blaise Pascal-INRA, 24, avenue des Landais, BP 80 006, F-63177 Aubière, France INRA, UMR 547 PIAF, Bâtiment Biologie Végétale Recherche, BP 80 006, F-63177 Aubière, France
| |
Collapse
|
13
|
Le Deunff E, Malagoli P. An updated model for nitrate uptake modelling in plants. I. Functional component: cross-combination of flow-force interpretation of nitrate uptake isotherms, and environmental and in planta regulation of nitrate influx. ANNALS OF BOTANY 2014; 113:991-1005. [PMID: 24638820 PMCID: PMC3997639 DOI: 10.1093/aob/mcu021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/21/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS In spite of major breakthroughs in the last three decades in the identification of root nitrate uptake transporters in plants and the associated regulation of nitrate transport activities, a simplified and operational modelling approach for nitrate uptake is still lacking. This is due mainly to the difficulty in linking the various regulations of nitrate transport that act at different levels of time and on different spatial scales. METHODS A cross-combination of a Flow-Force approach applied to nitrate influx isotherms and experimentally determined environmental and in planta regulation is used to model nitrate in oilseed rape, Brassica napus. In contrast to 'Enzyme-Substrate' interpretations, a Flow-Force modelling approach considers the root as a single catalytic structure and does not infer hypothetical cellular processes among nitrate transporter activities across cellular layers in the mature roots. In addition, this approach accounts for the driving force on ion transport based on the gradient of electrochemical potential, which is more appropriate from a thermodynamic viewpoint. KEY RESULTS AND CONCLUSIONS Use of a Flow-Force formalism on nitrate influx isotherms leads to the development of a new conceptual mechanistic basis to model more accurately N uptake by a winter oilseed rape crop under field conditions during the whole growth cycle. This forms the functional component of a proposed new structure-function mechanistic model of N uptake.
Collapse
Affiliation(s)
- Erwan Le Deunff
- Université de Caen Basse-Normandie, UMR EVA, F-14032 Caen cedex, France
- INRA, UMR 950, Écophysiologie Végétale & Agronomie Nutritions NCS, F-14032 Caen cedex, France
| | - Philippe Malagoli
- Clermont Universités, Université Blaise Pascal, UMR 547 PIAF, BP 10448, F-63000 Clermont Ferrand, France
- INRA, UMR 547 PIAF, F-63100 Clermont Ferrand, France
| |
Collapse
|
14
|
Lemaire L, Deleu C, Le Deunff E. Modulation of ethylene biosynthesis by ACC and AIB reveals a structural and functional relationship between the K15NO3 uptake rate and root absorbing surfaces. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2725-37. [PMID: 23811694 DOI: 10.1093/jxb/ert124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The modification of root traits in relation to nitrate uptake represents a source for improvement of nitrogen uptake efficiency. Because ethylene signalling modulates growth of exploratory and root hair systems more rapidly (minutes to hours) than nitrate signalling (days to weeks), a pharmacological approach was used to decipher the relationships between root elongation and N uptake. Rape seedlings were grown on agar plates supplied with 1mM K(15)NO3 and treated with different concentrations of either the ethylene precursor, ACC (0.1, 1, and 10 μM) or an inhibitor of ethylene biosynthesis, AIB (0.5 and 1 μM). The results showed that rapid modulation of root elongation (up to 8-fold) is more dependent on the ethylene than the nitrate signal. Indeed, ACC treatment induced a partial compensatory increase in (15)N uptake associated with overexpression of the BnNRT2.1 and BnNRT1.1 genes. Likewise, daily root elongation between treatments was not associated with daily nitrate uptake but was correlated with N status. This suggested that a part of the daily root response was modulated by cross talks between ethylene signalling and N and C metabolisms. This was confirmed by the reduction in C allocation to the roots induced by ACC treatment and the correlations of changes in the root length and shoot surface area with the aspartate content. The observed effects of ethylene signalling in the root elongation and NRT gene expression are discussed in the context of the putative role of NRT2.1 and NRT1.1 transporters as nitrate sensors.
Collapse
Affiliation(s)
- Lucile Lemaire
- Université de Caen Basse-Normandie, UMR EVA, F-14032 Caen cedex, France
| | | | | |
Collapse
|
15
|
Krapp A, Castaings L. [Plant adaptation to nitrogen availability]. Biol Aujourdhui 2013; 206:323-35. [PMID: 23419259 DOI: 10.1051/jbio/2012031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Indexed: 11/15/2022]
Abstract
Nitrogen is an essential macronutrient for plant development and productivity. The adaptation toward changes in nitrogen availability in the soil is crucial for the immobile plant. Nitrate is the primary nitrogen source in temperate climate. Nitrate transport and assimilation are discussed with emphasis on the adaptation to nitrogen starvation. The integration of nitrogen metabolism with primary and secondary metabolism and the homeostasis with other nutrients are discussed. However, nitrate is not only a nutrient, but also a signaling molecule acting on multiple levels. The molecular players involved in the regulatory network are discussed.
Collapse
Affiliation(s)
- Anne Krapp
- Institut National de la Recherche Agronomique INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10 78000 Versailles, France.
| | | |
Collapse
|
16
|
Leblanc A, Segura R, Deleu C, Le Deunff E. In low transpiring conditions, uncoupling the BnNrt2.1 and BnNrt1.1 NO 3(-) transporters by glutamate treatment reveals the essential role of BnNRT2.1 for nitrate uptake and the nitrate-signaling cascade during growth. PLANT SIGNALING & BEHAVIOR 2013; 8:e22904. [PMID: 23299418 PMCID: PMC3656991 DOI: 10.4161/psb.22904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In plants, the nitrate transporters, NRT1.1 and NRT2.1, are mainly responsible for nitrate uptake. Intriguingly, both nitrate transporters are located in a complementary manner in different cells layers of the mature root suggesting that their coordination should occur during nitrate uptake and plant growth. This hypothesis was examined on 5-d-old rape seedlings grown on agar medium supplemented with 1 or 5mM nitrate. Seedlings were treated with increasing potassium glutamate concentrations in order to uncouple the two nitrate transporters by inhibiting BnNRT2.1 expression and activity specifically. In both nitrate treatments, increasing the glutamate concentrations from 0.5 to 10mM induced a reduction in (15)NO 3(-) uptake and an inhibition of N assimilation. The decrease in (15)NO 3(-) uptake was caused by downregulation of BnNRT2.1 expression but surprisingly it was not compensated by the upregulation of BnNRT1.1. This created an unprecedented physiological situation where the effects of the nitrate signal on shoot growth were solely modulated by nitrate absorption. In these conditions, the osmotic water flow for volumetric shoot growth was mainly dependent on active nitrate transport and nitrate signaling. This behavior was confirmed by the allometric relationships found between changes in the root length with (15)N and water accumulation in the shoot. These findings demonstrate that the BnNRT2.1 transporter is essential for nitrate uptake and growth, and renew the question of the respective roles of the NRT2.1 and NRT1.1 transporters in nitrate uptake and sensing at the whole plant level.
Collapse
Affiliation(s)
| | | | - Carole Deleu
- Université Rennes 1; UMR INRA 1349 IGEPP; Rennes, France
| | - Erwan Le Deunff
- Université Caen; IBFA; UMR INRA 950 EVA; Caen France
- Correspondence to: Erwan Le Deunff,
| |
Collapse
|
17
|
Chapman N, Miller AJ, Lindsey K, Whalley WR. Roots, water, and nutrient acquisition: let's get physical. TRENDS IN PLANT SCIENCE 2012; 17:701-10. [PMID: 22947614 DOI: 10.1016/j.tplants.2012.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/27/2012] [Accepted: 08/01/2012] [Indexed: 05/03/2023]
Abstract
Improved root water and nutrient acquisition can increase fertiliser use efficiency and is important for securing food production. Root nutrient acquisition includes proliferation, transporter function, exudation, symbioses, and the delivery of dissolved nutrients from the bulk soil to the root surface via mass flow and diffusion. The widespread adoption of simplified experimental systems has restricted consideration of the influence of soil symbiotic organisms and physical properties on root acquisition. The soil physical properties can directly influence root growth and explain some of the disparities obtained from different experimental systems. Turning this to an advantage, comparing results obtained with the same model plant Arabidopsis (Arabidopsis thaliana) in different systems, we can tease apart the specific effects of soil physical properties.
Collapse
Affiliation(s)
- Nick Chapman
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | | | | | | |
Collapse
|
18
|
Dechorgnat J, Patrit O, Krapp A, Fagard M, Daniel-Vedele F. Characterization of the Nrt2.6 gene in Arabidopsis thaliana: a link with plant response to biotic and abiotic stress. PLoS One 2012; 7:e42491. [PMID: 22880003 PMCID: PMC3413667 DOI: 10.1371/journal.pone.0042491] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/09/2012] [Indexed: 01/12/2023] Open
Abstract
The high affinity nitrate transport system in Arabidopsis thaliana involves one gene and potentially seven genes from the NRT1 and NRT2 family, respectively. Among them, NRT2.1, NRT2.2, NRT2.4 and NRT2.7 proteins have been shown to transport nitrate and are localized on the plasmalemma or the tonoplast membranes. NRT2.1, NRT2.2 and NRT2.4 play a role in nitrate uptake from soil solution by root cells while NRT2.7 is responsible for nitrate loading in the seed vacuole. We have undertaken the functional characterization of a third member of the family, the NRT2.6 gene. NRT2.6 was weakly expressed in most plant organs and its expression was higher in vegetative organs than in reproductive organs. Contrary to other NRT2 members, NRT2.6 expression was not induced by limiting but rather by high nitrogen levels, and no nitrate-related phenotype was found in the nrt2.6-1 mutant. Consistently, the over-expression of the gene failed to complement the nitrate uptake defect of an nrt2.1-nrt2.2 double mutant. The NRT2.6 expression is induced after inoculation of Arabidopsis thaliana by the phytopathogenic bacterium Erwinia amylovora. Interestingly, plants with a decreased NRT2.6 expression showed a lower tolerance to pathogen attack. A correlation was found between NRT2.6 expression and ROS species accumulation in response to infection by E. amylovora and treatment with the redox-active herbicide methyl viologen, suggesting a probable link between NRT2.6 activity and the production of ROS in response to biotic and abiotic stress.
Collapse
Affiliation(s)
- Julie Dechorgnat
- Institut National de la Recherche Agronomique, Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, Saclay Plant Sciences, Versailles, France
| | - Oriane Patrit
- AgroParisTech, UMR217, Laboratoire des Interactions Plantes Pathogènes, Paris, France
| | - Anne Krapp
- Institut National de la Recherche Agronomique, Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, Saclay Plant Sciences, Versailles, France
| | - Mathilde Fagard
- Institut National de la Recherche Agronomique, UMR217, Laboratoire des Interactions Plantes Pathogènes, Paris, France
| | - Françoise Daniel-Vedele
- Institut National de la Recherche Agronomique, Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, Saclay Plant Sciences, Versailles, France
- * E-mail:
| |
Collapse
|
19
|
Laugier E, Bouguyon E, Mauriès A, Tillard P, Gojon A, Lejay L. Regulation of high-affinity nitrate uptake in roots of Arabidopsis depends predominantly on posttranscriptional control of the NRT2.1/NAR2.1 transport system. PLANT PHYSIOLOGY 2012; 158:1067-78. [PMID: 22158677 PMCID: PMC3271743 DOI: 10.1104/pp.111.188532] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/06/2011] [Indexed: 05/21/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the NRT2.1 gene codes for the main component of the root nitrate (NO(3)(-)) high-affinity transport system (HATS). Due to the strong correlation generally found between high-affinity root NO(3)(-) influx and NRT2.1 mRNA level, it has been postulated that transcriptional regulation of NRT2.1 is a key mechanism for modulation of the HATS activity. However, this hypothesis has never been demonstrated, and is challenged by studies suggesting the occurrence of posttranscriptional regulation at the NRT2.1 protein level. To unambiguously clarify the respective roles of transcriptional and posttranscriptional regulations of NRT2.1, we generated transgenic lines expressing a functional 35S::NRT2.1 transgene in an atnrt2.1 mutant background. Despite a high and constitutive NRT2.1 transcript accumulation in the roots, the HATS activity was still down-regulated in the 35S::NRT2.1 transformants in response to repressive nitrogen or dark treatments that strongly reduce NRT2.1 transcription and NO(3)(-) HATS activity in the wild type. In some treatments, this was associated with a decline of NRT2.1 protein abundance, indicating posttranscriptional regulation of NRT2.1. However, in other instances, NRT2.1 protein level remained constant. Changes in abundance of NAR2.1, a partner protein of NRT2.1, closely followed those of NRT2.1, and thus could not explain the close-to-normal regulation of the HATS in the 35S::NRT2.1 transformants. Even if in certain conditions the transcriptional regulation of NRT2.1 contributes to a limited extent to the control of the HATS, we conclude from this study that posttranscriptional regulation of NRT2.1 and/or NAR2.1 plays a predominant role in the control of the NO(3)(-) HATS in Arabidopsis.
Collapse
|
20
|
Chapman N, Whalley WR, Lindsey K, Miller AJ. Water supply and not nitrate concentration determines primary root growth in Arabidopsis. PLANT, CELL & ENVIRONMENT 2011; 34:1630-8. [PMID: 21707650 DOI: 10.1111/j.1365-3040.2011.02358.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Understanding how root system architecture (RSA) adapts to changing nitrogen and water availability is important for improving acquisition. A sand rhizotron system was developed to study RSA in a porous substrate under tightly regulated nutrient supply. The RSA of Arabidopsis seedlings under differing nitrate (NO₃⁻) and water supplies in agar and sand was described. The hydraulic conductivity of the root environment was manipulated by using altered sand particle size and matric potentials. Ion-selective microelectrodes were used to quantify NO₃⁻ at the surface of growing primary roots in sands of different particle sizes. Differences in RSA were observed between seedlings grown on agar and sand, and the influence of NO₃⁻ (0.1-10.0 mm) and water on RSA was determined. Primary root length (PRL) was a function of water flux and independent of NO₃⁻. The percentage of roots with laterals correlated with water flux, whereas NO₃⁻ supply was important for basal root (BR) growth. In agar and sand, the NO₃⁻ activities at the root surface were higher than those supplied in the nutrient solution. The sand rhizotron system is a useful tool for the study of RSA, providing a porous growth environment that can be used to simulate the effects of hydraulic conductivity on growth.
Collapse
Affiliation(s)
- Nick Chapman
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | | | | | |
Collapse
|
21
|
Kiba T, Kudo T, Kojima M, Sakakibara H. Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1399-409. [PMID: 21196475 DOI: 10.1093/jxb/erq410] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitrogen is the mineral nutrient that often limits plant growth and development. In response to changes in nitrogen supply, plants display elaborate responses at both physiological and morphological levels to adjust their growth and development. Because higher plants consist of multiple organs with different functions and nutritional requirements, they rely on local and long-distance signalling pathways to coordinate the responses at the whole-plant level. Phytohormones have been considered as signalling substances of such pathways. Amongst phytohormones, abscisic acid, auxin, and cytokinins have been closely linked to nitrogen signalling. Recent evidence has provided some insights into how nitrogen and the phytohormone signals are integrated to bring about changes in physiology and morphology. In this review, the evidence is summarized, mostly focusing on examples related to nitrogen acquisition.
Collapse
Affiliation(s)
- Takatoshi Kiba
- RIKEN Plant Science Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
22
|
Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F. From the soil to the seeds: the long journey of nitrate in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1349-59. [PMID: 21193579 DOI: 10.1093/jxb/erq409] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Under temperate climates and in cultivated soils, nitrate is the most important source of nitrogen (N) available for crops and, before its reduction and assimilation into amino acids, must enter the root cells and then move in the whole plant. The aim of this review is to provide an overall picture of the numerous membrane proteins that achieve these processes by being localized in different compartments and in different tissues. Nitrate transporters (NRT) from the NRT1 and NRT2 families ensure the capacity of root cells to take up nitrate, through high- and low-affinity systems (HATS and LATS) depending on nitrate concentrations in the soil solution. Other members of the NRT1 family are involved subsequently in loading and unloading of nitrate to and from the xylem vessels, allowing its distribution to aerial organs or its remobilization from old leaves. Once in the cell, nitrate can be stored in the vacuole by passing through the tonoplast, a step that involves chloride channels (CLC) or a NRT2 member. Finally, with the exception of one NRT1 member, the transport of nitrite towards the chloroplast is still largely unknown. All these fluxes are controlled by key factors, the 'major tour operators' like the internal nutritional status of the plant but also by external abiotic factors.
Collapse
Affiliation(s)
- Julie Dechorgnat
- Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, Institut National de la Recherche Agronomique, Route de St. Cyr, F-78026 Versailles, France
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Yong Z, Kotur Z, Glass ADM. Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:739-48. [PMID: 20561257 DOI: 10.1111/j.1365-313x.2010.04278.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
AtNRT2.1, a polypeptide of the Arabidopsis thaliana two-component inducible high-affinity nitrate transport system (IHATS), is located within the plasma membrane. The monomeric form of AtNRT2.1 has been reported to be the most abundant form, and was suggested to be the form that is active in nitrate transport. Here we have used immunological and transient protoplast expression methods to demonstrate that an intact two-component complex of AtNRT2.1 and AtNAR2.1 (AtNRT3.1) is localized in the plasma membrane. A. thaliana mutants lacking AtNAR2.1 have virtually no IHATS capacity and exhibit extremely poor growth on low nitrate as the sole source of nitrogen. Near-normal growth and nitrate transport in the mutant were restored by transformation with myc-tagged AtNAR2.1 cDNA. Membrane fractions from roots of the restored myc-tagged line were solubilized in 1.5% dodecyl-β-maltoside and partially purified in the first dimension by blue native gel electrophoresis. Using anti-NRT2.1 antibodies, an oligomeric polypeptide (approximate molecular mass 150 kDa) was identified, but monomeric AtNRT2.1 was absent. This oligomer was also observed in the wild-type, and was resolved, using SDS-PAGE for the second dimension, into two polypeptides with molecular masses of approximately 48 and 26 kDa, corresponding to AtNRT2.1 and myc-tagged AtNAR2.1, respectively. This result, together with the finding that the oligomer is absent from NRT2.1 or NAR2.1 mutants, suggests that this complex, rather than monomeric AtNRT2.1, is the form that is active in IHATS nitrate transport. The molecular mass of the intact oligomer suggests that the functional unit for high-affinity nitrate influx may be a tetramer consisting of two subunits each of AtNRT2.1 and AtNAR2.1.
Collapse
Affiliation(s)
- Zhenhua Yong
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
25
|
Garnett T, Conn V, Kaiser BN. Root based approaches to improving nitrogen use efficiency in plants. PLANT, CELL & ENVIRONMENT 2009; 32:1272-83. [PMID: 19558408 DOI: 10.1111/j.1365-3040.2009.02011.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the majority of agricultural growing regions, crop production is highly dependent on the supply of exogenous nitrogen (N) fertilizers. Traditionally, this dependency and the use of N-fertilizers to restore N depleted soils has been rewarded with increased plant health and yields. In recent years, increased competition for non-renewable fossil fuel reserves has directly elevated prices of N-fertilizers and the cost of agricultural production worldwide. Furthermore, N-fertilizer based pollution is becoming a serious issue for many regions where agriculture is highly concentrated. To help minimize the N footprint associated with agricultural production there is significant interest at the plant level to develop technologies which can allow economically viable production while using less applied N. To complement recent reviews examining N utilization efficiency in agricultural plants, this review will explore those strategies operating specifically at the root level, which may directly contribute to improved N use efficiencies in agricultural crops such as cereals, where the majority of N-fertilizers are used and lost to the environment. Root specific phenotypes that will be addressed in the context of improvements to N acquisition and assimilation efficiencies include: root morphology; root to shoot ratios; root vigour, root length density; and root N transport and metabolism.
Collapse
Affiliation(s)
- Trevor Garnett
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | | | | |
Collapse
|
26
|
Leblanc A, Renault H, Lecourt J, Etienne P, Deleu C, Le Deunff E. Elongation changes of exploratory and root hair systems induced by aminocyclopropane carboxylic acid and aminoethoxyvinylglycine affect nitrate uptake and BnNrt2.1 and BnNrt1.1 transporter gene expression in oilseed rape. PLANT PHYSIOLOGY 2008; 146:1928-40. [PMID: 18287493 PMCID: PMC2287360 DOI: 10.1104/pp.107.109363] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 02/01/2008] [Indexed: 05/20/2023]
Abstract
Ethylene is a plant hormone that plays a major role in the elongation of both exploratory and root hair systems. Here, we demonstrate in Brassica napus seedlings that treatments with the ethylene precursor, aminocyclopropane carboxylic acid (ACC) and the ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG), cause modification of the dynamic processes of primary root and root hair elongation in a dose-dependent way. Moreover, restoration of root elongation in AVG-treated seedlings by 1 mm l-glutamate suggested that high concentrations of AVG affect root elongation through nonoverlapping ethylene metabolic pathway involving pyridoxal 5'-P-dependent enzymes of nitrate (N) metabolism. In this respect, treatments with high concentrations of ACC and AVG (10 mum) over 5 d revealed significant differences in relationships between root growth architecture and N uptake capacities. Indeed, if these treatments decreased severely the elongation of the exploratory root system (primary root and lateral roots) they had opposing effects on the root hair system. Although ACC increased the length and number of root hairs, the rate of N uptake and the transcript level of the N transporter BnNrt2.1 were markedly reduced. In contrast, the decrease in root hair length and number in AVG-treated seedlings was overcompensated by an increase of N uptake and BnNrt2.1 gene expression. These root architectural changes demonstrated that BnNrt2.1 expression levels were more correlated to the changes of the exploratory root system than the changes of the root hair system. The difference between treatments in N transporters BnNrt1.1 and BnNrt2.1 gene expression is discussed with regard to presumed transport functions of BnNrt1.1 in relation to root elongation.
Collapse
Affiliation(s)
- Antonin Leblanc
- INRA, UMR 950, Laboratoire d'Ecophysiologie Végétale, Agronomie et Nutritions NC&S, Université de Caen Basse-Normandie, F-14000 Caen, France
| | | | | | | | | | | |
Collapse
|
27
|
Lejay L, Wirth J, Pervent M, Cross JMF, Tillard P, Gojon A. Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis. PLANT PHYSIOLOGY 2008; 146:2036-53. [PMID: 18305209 PMCID: PMC2287369 DOI: 10.1104/pp.107.114710] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 02/20/2008] [Indexed: 05/18/2023]
Abstract
Root ion transport systems are regulated by light and/or sugars, but the signaling mechanisms are unknown. We showed previously that induction of the NRT2.1 NO(3)(-) transporter gene by sugars was dependent on carbon metabolism downstream hexokinase (HXK) in glycolysis. To gain further insights on this signaling pathway and to explore more systematically the mechanisms coordinating root nutrient uptake with photosynthesis, we studied the regulation of 19 light-/sugar-induced ion transporter genes. A combination of sugar, sugar analogs, light, and CO(2) treatments provided evidence that these genes are not regulated by a common mechanism and unraveled at least four different signaling pathways involved: regulation by light per se, by HXK-dependent sugar sensing, and by sugar sensing upstream or downstream HXK, respectively. More specific investigation of sugar-sensing downstream HXK, using NRT2.1 and NRT1.1 NO(3)(-) transporter genes as models, highlighted a correlation between expression of these genes and the concentration of glucose-6-P in the roots. Furthermore, the phosphogluconate dehydrogenase inhibitor 6-aminonicotinamide almost completely prevented induction of NRT2.1 and NRT1.1 by sucrose, indicating that glucose-6-P metabolization within the oxidative pentose phosphate pathway is required for generating the sugar signal. Out of the 19 genes investigated, most of those belonging to the NO(3)(-), NH(4)(+), and SO(4)(2-) transporter families were regulated like NRT2.1 and NRT1.1. These data suggest that a yet-unidentified oxidative pentose phosphate pathway-dependent sugar-sensing pathway governs the regulation of root nitrogen and sulfur acquisition by the carbon status of the plant to coordinate the availability of these three elements for amino acid synthesis.
Collapse
Affiliation(s)
- Laurence Lejay
- Institut de Biologie Intégrative des Plantes, UMR 5004, Biochimie et Physiologie Moléculaire des Plantes, Agro-M/CNRS/INRA/SupAgro/UM2, F-34060 Montpellier, France.
| | | | | | | | | | | |
Collapse
|