1
|
Adigun OA, Pham TH, Grapov D, Nadeem M, Jewell LE, Cheema M, Galagedara L, Thomas R. Phyto-oxylipin mediated plant immune response to colonization and infection in the soybean- Phytophthora sojae pathosystem. FRONTIERS IN PLANT SCIENCE 2023; 14:1141823. [PMID: 37251755 PMCID: PMC10219219 DOI: 10.3389/fpls.2023.1141823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Introduction Food security is a major challenge to sustainably supply food to meet the demands of the ever-growing global population. Crop loss due to pathogens is a major concern to overcoming this global food security challenge. Soybean root and stem rot caused by Phytophthora sojae results in approximately 20B $US crop loss annually. Phyto-oxylipins are metabolites biosynthesized in the plants by oxidative transformation of polyunsaturated fatty acids through an array of diverging metabolic pathways and play an important role in plant development and defense against pathogen colonization and infection. Lipid mediated plant immunity is a very attractive target for developing long term resistance in many plants' disease pathosystem. However, little is known about the phyto-oxylipin's role in the successful strategies used by tolerant soybean cultivar to mitigate Phytophthora sojae infection. Methods We used scanning electron microscopy to observe the alterations in root morphology and a targeted lipidomics approach using high resolution accurate mass tandem mass spectrometry to assess phyto-oxylipin anabolism at 48 h, 72 h and 96 h post infection. Results and discussion We observed the presence of biogenic crystals and reinforced epidermal walls in the tolerant cultivar suggesting a mechanism for disease tolerance when compared with susceptible cultivar. Similarly, the unequivocally unique biomarkers implicated in oxylipin mediated plant immunity [10(E),12(Z)-13S-hydroxy-9(Z),11(E),15(Z)-octadecatrienoic acid, (Z)-12,13-dihydroxyoctadec-9-enoic acid, (9Z,11E)-13-Oxo-9,11-octadecadienoic acid, 15(Z)-9-oxo-octadecatrienoic acid, 10(E),12(E)-9-hydroperoxyoctadeca-10,12-dienoic acid, 12-oxophytodienoic acid and (12Z,15Z)-9, 10-dihydroxyoctadeca-12,15-dienoic acid] generated from intact oxidized lipid precursors were upregulated in tolerant soybean cultivar while downregulated in infected susceptible cultivar relative to non-inoculated controls at 48 h, 72 h and 96 h post infection by Phytophthora sojae, suggesting that these molecules may be a critical component of the defense strategies used in tolerant cultivar against Phytophthora sojae infection. Interestingly, microbial originated oxylipins, 12S-hydroperoxy-5(Z),8(Z),10(E),14(Z)-eicosatetraenoic acid and (4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoic acid were upregulated only in infected susceptible cultivar but downregulated in infected tolerant cultivar. These microbial originated oxylipins are capable of modulating plant immune response to enhance virulence. This study demonstrated novel evidence for phyto-oxylipin metabolism in soybean cultivars during pathogen colonization and infection using the Phytophthora sojae-soybean pathosystem. This evidence may have potential applications in further elucidation and resolution of the role of phyto-oxylipin anabolism in soybean tolerance to Phytophthora sojae colonization and infection.
Collapse
Affiliation(s)
- Oludoyin Adeseun Adigun
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Thu Huong Pham
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Dmitry Grapov
- Creative Data Solution (CDS), Colfax, CA, United States
| | - Muhammad Nadeem
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Linda Elizabeth Jewell
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, St. John’s, NL, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Lakshman Galagedara
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Raymond Thomas
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Department of Biology/Biotron Climate Change Experimental Research Centre, Western University, London, ON, Canada
| |
Collapse
|
2
|
Essenberg M, McNally KL, Bayles MB, Pierce ML, Hall JA, Kuss CR, Shevell JL, Verhalen LM. Gene B5 in Cotton Confers High and Broad Resistance to Bacterial Blight and Conditions High Amounts of Sesquiterpenoid Phytoalexins. PHYTOPATHOLOGY 2023:PHYTO08220310FI. [PMID: 37059968 DOI: 10.1094/phyto-08-22-0310-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Bacterial blight resistance gene B5 has received little attention since it was first described in 1950. A near-isogenic line (NIL) of Gossypium hirsutum cotton, AcB5, was generated in an otherwise bacterial-blight-susceptible 'Acala 44' background. The introgressed locus B5 in AcB5 conferred strong and broad-spectrum resistance to bacterial blight. Segregation patterns of test crosses under Oklahoma field conditions indicated that AcB5 is likely homozygous for resistance at two loci with partial dominance gene action. In controlled-environment conditions, two of the four copies of B5 were required for effective resistance. Contrary to expectations of gene-for-gene theory, AcB5 conferred high resistance toward isogenic strains of Xanthomonas citri subsp. malvacearum carrying cloned avirulence genes avrB4, avrb7, avrBIn, avrB101, and avrB102, respectively, and weaker resistance toward the strain carrying cloned avrb6. The hypothesis that each B gene, in the absence of a polygenic complex, triggers sesquiterpenoid phytoalexin production was tested by measurement of cadalene and lacinilene phytoalexins during resistant responses in five NILs carrying different B genes, four other lines carrying multiple resistance genes, as well as susceptible Ac44E. Phytoalexin production was an obvious, but variable, response in all nine resistant lines. AcB5 accumulated an order of magnitude more of all four phytoalexins than any of the other resistant NILs. Its total levels were comparable to those detected in OK1.2, a highly resistant line that possesses several B genes in a polygenic background.
Collapse
Affiliation(s)
- Margaret Essenberg
- Department of Biochemistry and Molecular Biology, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
| | - Kenneth L McNally
- Department of Biochemistry and Molecular Biology, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Melanie B Bayles
- Department of Plant and Soil Sciences, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
| | - Margaret L Pierce
- Department of Biochemistry and Molecular Biology, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
| | - Judy A Hall
- Department of Biochemistry and Molecular Biology, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
| | - Christine R Kuss
- Department of Biochemistry and Molecular Biology, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
| | - Judith L Shevell
- Department of Biochemistry and Molecular Biology, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
| | - Laval M Verhalen
- Department of Plant and Soil Sciences, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|
3
|
Khoudi H. SHINE clade of ERF transcription factors: A significant player in abiotic and biotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:77-88. [PMID: 36603451 DOI: 10.1016/j.plaphy.2022.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
SHINE (SHN) clade transcription factors (TFs) represents a subfamily of APETALA2/ethylene-responsive factor (AP2/ERF) proteins. The latter, is characterized by its responsiveness to the phytohormone ethylene and the presence of AP2 DNA-binding domain. They are involved in many biological processes and in responses to different environmental constraints. SHN TFs were among the first identified regulators of cuticle formation. Cuticle plays crucial role in plant tolerance to drought, salinity and high temperature as well as in defense against pathogens. In addition, SHN were shown to be involved in the regulation of stomatal development which influences resistance to drought and diseases. Interestingly, recent studies have also shown that SHN TFs are involved in mediating the beneficial effects of arbuscular mycorrhizal fungi (AMF) as well as disease resistance conferred by nanoparticles. To fulfill their roles, SHN TFs are controlled upstream by other TFs and they control, in their turn, different downstream genes. In this review, we highlight the role of SHN TFs in different abiotic and biotic stresses through their involvement in cuticle biosynthesis, stomatal development and molecular regulation of biochemical and physiological traits. In addition, we discuss the regulation of SHN TFs by plant hormones and their influence on hormone biosynthesis and signaling pathways. Knowledge of this complex regulation can be put into contribution to increase multiple abiotic stress tolerances through transgenesis, gene editing and classical breeding.
Collapse
Affiliation(s)
- Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, Center of Biotechnology of Sfax (CBS), University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia.
| |
Collapse
|
4
|
Tran AD, Cho K, Han O. Rice peroxygenase catalyzes lipoxygenase-dependent regiospecific epoxidation of lipid peroxides in the response to abiotic stressors. Bioorg Chem 2023; 131:106285. [PMID: 36450198 DOI: 10.1016/j.bioorg.2022.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
The peroxygenase pathway plays pivotal roles in plant responses to oxidative stress and other environmental stressors. Analysis of a network of co-expressed stress-regulated rice genes demonstrated that expression of OsPXG9 is negatively correlated with expression of genes involved in jasmonic acid biosynthesis. DNA sequence analysis and structure/function studies reveal that OsPXG9 is a caleosin-like peroxygenase with amphipathic α-helices that localizes to lipid droplets in rice cells. Enzymatic studies demonstrate that 12-epoxidation is slightly more favorable with 9(S)-hydroperoxyoctadecatrienoic acid than with 9(S)-hydroperoxyoctadecadienoic acid as substrate. The products of 12-epoxidation are labile, and the epoxide ring is hydrolytically cleaved into corresponding trihydroxy compounds. On the other hand, OsPXG9 catalyzed 15-epoxidation of 13(S)-hydroperoxyoctadecatrienoic acid generates a relatively stable epoxide product. Therefore, the regiospecific 12- or 15-epoxidation catalyzed by OsPXG9 strongly depends on activation of the 9- or 13- peroxygenase reaction pathways, with their respective preferred substrates. The relative abundance of products in the 9-PXG and 13-PXG pathways suggest that the 12-epoxidation involves intramolecular oxygen transfer while the 15-epoxidation can proceed via intramolecular or intermolecular oxygen transfer. Expression of OsPXG9 is up-regulated by abiotic stimuli such as drought and salt stress, but it is down-regulated by biotic stimuli such as flagellin 22 and salicylic acid. The results suggest that the primary function of OsPXG9 is to modulate the level of lipid peroxides to facilitate effective defense responses to abiotic and biotic stressors.
Collapse
Affiliation(s)
- Anh Duc Tran
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoungwon Cho
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Oksoo Han
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
5
|
Ma J, Morel JB, Riemann M, Nick P. Jasmonic acid contributes to rice resistance against Magnaporthe oryzae. BMC PLANT BIOLOGY 2022; 22:601. [PMID: 36539712 PMCID: PMC9764487 DOI: 10.1186/s12870-022-03948-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The annual yield losses caused by the Rice Blast Fungus, Magnaporthe oryzae, range to the equivalent for feeding 60 million people. To ward off infection by this fungus, rice has evolved a generic basal immunity (so called compatible interaction), which acts in concert with strain-specific defence (so-called incompatible interaction). The plant-defence hormone jasmonic acid (JA) promotes the resistance to M. oryzae, but the underlying mechanisms remain elusive. To get more insight into this open question, we employ the JA-deficient mutants, cpm2 and hebiba, and dissect the JA-dependent defence signalling in rice for both, compatible and incompatible interactions. RESULTS We observe that both JA-deficient mutants are more susceptible to M. oryzae as compared to their wild-type background, which holds true for both types of interactions as verified by cytological staining. Secondly, we observe that transcripts for JA biosynthesis (OsAOS2 and OsOPR7), JA signalling (OsJAZ8, OsJAZ9, OsJAZ11 and OsJAZ13), JA-dependent phytoalexin synthesis (OsNOMT), and JA-regulated defence-related genes, such as OsBBTI2 and OsPR1a, accumulate after fungal infection in a pattern that correlates with the amplitude of resistance. Thirdly, induction of defence transcripts is weaker during compatible interaction. CONCLUSION The study demonstrates the pivotal role of JA in basal immunity of rice in the resistance to M. oryzae in both, compatible and incompatible interactions.
Collapse
Affiliation(s)
- Junning Ma
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jean-Benoît Morel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Michael Riemann
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
6
|
Roylawar P, Khandagale K, Randive P, Shinde B, Murumkar C, Ade A, Singh M, Gawande S, Morelli M. Piriformospora indica Primes Onion Response against Stemphylium Leaf Blight Disease. Pathogens 2021; 10:1085. [PMID: 34578118 PMCID: PMC8472787 DOI: 10.3390/pathogens10091085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
The root-endophytic fungus Piriformospora indica (=Serendipita indica) has been revealed for its growth-promoting effects and its capacity to induce resistance in a broad spectrum of host plants. However, the bioefficacy of this fungus had not yet been tested against any pathogen affecting onion (Allium cepa). In this study, the biocontrol potency of P. indica against onion leaf blight, an impacting disease caused by the necrotrophic fungal pathogen Stemphylium vesicarium, was evaluated. First, it was proved that colonisation of onion roots by P. indica was beneficial for plant growth, as it increased leaf development and root biomass. Most relevantly, P. indica was also effective in reducing Stemphylium leaf blight (SLB) severity, as assessed under greenhouse conditions and confirmed in field trials in two consecutive years. These investigations could also provide some insight into the biochemical and molecular changes that treatment with P. indica induces in the main pathways associated with host defence response. It was possible to highlight the protective effect of P. indica colonisation against peroxidative damage, and its role in signalling oxidative stress, by assessing changes in malondialdehyde and H2O2 content. It was also showed that treatment with P. indica contributes to modulate the enzymatic activity of superoxide dismutase, catalase, phenylalanine ammonia-lyase and peroxidase, in the course of infection. qPCR-based expression analysis of defence-related genes AcLOX1, AcLOX2, AcPAL1, AcGST, AcCHI, AcWRKY1, and AcWRKY70 provided further indications on P. indica ability to induce onion systemic response. Based on the evidence gathered, this study aims to propose P. indica application as a sustainable tool for improving SLB control, which might not only enhance onion growth performance but also activate defence signalling mechanisms more effectively, involving different pathways.
Collapse
Affiliation(s)
- Praveen Roylawar
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
- Tuljaram Chaturchand College of Arts, Science and Commerce, Baramati, Pune 413102, India;
- Department of Botany, Sangamner Nagarpalika Arts, D. J. Malpani Commerce, B. N. Sarda Science College, Sangamner, Ahamadnagar 422605, India
| | - Kiran Khandagale
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (K.K.); (A.A.)
| | - Pragati Randive
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
| | - Bharat Shinde
- Vidya Pratishthan’s Arts, Science & Commerce College, Baramati, Pune 413133, India;
| | | | - Avinash Ade
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (K.K.); (A.A.)
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
| | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
| | - Massimiliano Morelli
- CNR-IPSP Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70124 Bari, Italy;
| |
Collapse
|
7
|
Książkiewicz M, Rychel-Bielska S, Plewiński P, Nuc M, Irzykowski W, Jędryczka M, Krajewski P. The Resistance of Narrow-Leafed Lupin to Diaporthe toxica Is Based on the Rapid Activation of Defense Response Genes. Int J Mol Sci 2021; 22:ijms22020574. [PMID: 33430123 PMCID: PMC7827158 DOI: 10.3390/ijms22020574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 01/10/2023] Open
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) is a grain legume crop that is advantageous in animal nutrition due to its high protein content; however, livestock grazing on stubble may develop a lupinosis disease that is related to toxins produced by a pathogenic fungus, Diaporthe toxica. Two major unlinked alleles, Phr1 and PhtjR, confer L. angustifolius resistance to this fungus. Besides the introduction of these alleles into modern cultivars, the molecular mechanisms underlying resistance remained unsolved. In this study, resistant and susceptible lines were subjected to differential gene expression profiling in response to D. toxica inoculation, spanning the progress of the infection from the early to latent phases. High-throughput sequencing of stem transcriptome and PCR quantification of selected genes were performed. Gene Ontology term analysis revealed that an early (24 h) response in the resistant germplasm encompassed activation of genes controlling reactive oxygen species and oxylipin biosynthesis, whereas in the susceptible germplasm, it comprised induction of xyloglucan endotransglucosylases/hydrolases. During the first five days of the infection, the number of genes with significantly altered expressions was about 2.6 times higher in resistant lines than in the susceptible line. Global transcriptome reprogramming involving the activation of defense response genes occurred in lines conferring Phr1 and PhtjR resistance alleles about 4–8 days earlier than in the susceptible germplasm.
Collapse
Affiliation(s)
- Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (S.R.-B.); (P.P.)
- Correspondence: ; Tel.: +48-616-550-268
| | - Sandra Rychel-Bielska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (S.R.-B.); (P.P.)
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, 50-363 Wrocław, Poland
| | - Piotr Plewiński
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (S.R.-B.); (P.P.)
| | - Maria Nuc
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.N.); (P.K.)
| | - Witold Irzykowski
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (W.I.); (M.J.)
| | - Małgorzata Jędryczka
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (W.I.); (M.J.)
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.N.); (P.K.)
| |
Collapse
|
8
|
Li X, Liu N, Sun Y, Wang P, Ge X, Pei Y, Liu D, Ma X, Li F, Hou Y. The cotton GhWIN2 gene activates the cuticle biosynthesis pathway and influences the salicylic and jasmonic acid biosynthesis pathways. BMC PLANT BIOLOGY 2019; 19:379. [PMID: 31455203 PMCID: PMC6712776 DOI: 10.1186/s12870-019-1888-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Metabolic pathways are interconnected and yet relatively independent. Genes involved in metabolic modules are required for the modules to run. Study of the relationships between genes and metabolic modules improves the understanding of metabolic pathways in plants. The WIN transcription factor activates the cuticle biosynthesis pathway and promotes cuticle biosynthesis. The relationship between the WIN transcription factor and other metabolic pathways is unknown. Our aim was to determine the relationships between the main genes involved in cuticle biosynthesis and those involved in other metabolic pathways. We did this by cloning a cotton WIN gene, GhWIN2, and studying its influence on other pathways. RESULTS As with other WIN genes, GhWIN2 regulated expression of cuticle biosynthesis-related genes, and promoted cuticle formation. Silencing of GhWIN2 resulted in enhanced resistance to Verticillium dahliae, caused by increased content of salicylic acid (SA). Moreover, silencing of GhWIN2 suppressed expression of jasmonic acid (JA) biosynthesis-related genes and content. GhWIN2 positively regulated the fatty acid biosynthesis pathway upstream of the JA biosynthesis pathway. Silencing of GhWIN2 reduced the content of stearic acid, a JA biosynthesis precursor. CONCLUSIONS GhWIN2 not only regulated the cuticle biosynthesis pathway, but also positively influenced JA biosynthesis and negatively influenced SA biosynthesis.
Collapse
Affiliation(s)
- Xiancai Li
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Nana Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Yun Sun
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Ping Wang
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Yakun Pei
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Di Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Xiaowen Ma
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Yuxia Hou
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| |
Collapse
|
9
|
Development of expressed sequenced tags (EST) to identify some pathogen resistance genes expressed in Gossypium arboreum. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Shaban M, Ahmed MM, Sun H, Ullah A, Zhu L. Genome-wide identification of lipoxygenase gene family in cotton and functional characterization in response to abiotic stresses. BMC Genomics 2018; 19:599. [PMID: 30092779 PMCID: PMC6085620 DOI: 10.1186/s12864-018-4985-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/31/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Plant lipoxygenase (LOX) genes are members of the non-haeme iron-containing dioxygenase family that catalyze the oxidation of polyunsaturated fatty acids into functionally diverse oxylipins. The LOX family genes have been extensively studied under biotic and abiotic stresses, both in model and non-model plant species; however, information on their roles in cotton is still limited. RESULTS A total of 64 putative LOX genes were identified in four cotton species (Gossypium (G. hirsutum, G. barbadense, G. arboreum, and G. raimondii)). In the phylogenetic tree, these genes were clustered into three categories (9-LOX, 13-LOX type I, and 13-LOX type II). Segmental duplication of putative LOX genes was observed between homologues from A2 to At and D5 to Dt hinting at allopolyploidy in cultivated tetraploid species (G. hirsutum and G. barbadense). The structure and motif composition of GhLOX genes appears to be relatively conserved among the subfamilies. Moreover, many cis-acting elements related to growth, stresses, and phytohormone signaling were found in the promoter regions of GhLOX genes. Gene expression analysis revealed that all GhLOX genes were induced in at least two tissues and the majority of GhLOX genes were up-regulated in response to heat and salinity stress. Specific expressions of some genes in response to exogenous phytohormones suggest their potential roles in regulating growth and stress responses. In addition, functional characterization of two candidate genes (GhLOX12 and GhLOX13) using virus induced gene silencing (VIGS) approach revealed their increased sensitivity to salinity stress in target gene-silenced cotton. Compared with controls, target gene-silenced plants showed significantly higher chlorophyll degradation, higher H2O2, malondialdehyde (MDA) and proline accumulation but significantly reduced superoxide dismutase (SOD) activity, suggesting their reduced ability to effectively degrade accumulated reactive oxygen species (ROS). CONCLUSION This genome-wide study provides a systematic analysis of the cotton LOX gene family using bioinformatics tools. Differential expression patterns of cotton LOX genes in different tissues and under various abiotic stress conditions provide insights towards understanding the potential functions of candidate genes. Beyond the findings reported here, our study provides a basis for further uncovering the biological roles of LOX genes in cotton development and adaptation to stress conditions.
Collapse
Affiliation(s)
- Muhammad Shaban
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Muhammad Mahmood Ahmed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Heng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Abid Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
11
|
Ju LJ, Zhang C, Liao JJ, Li YP, Qi HY. An oriental melon 9-lipoxygenase gene CmLOX09 response to stresses, hormones, and signal substances. J Zhejiang Univ Sci B 2018; 19:596-609. [PMID: 30070083 DOI: 10.1631/jzus.b1700388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In plants, lipoxygenases (LOXs) play a crucial role in biotic and abiotic stresses. In our previous study, five 13-LOX genes of oriental melon were regulated by abiotic stress but it is unclear whether the 9-LOX is involved in biotic and abiotic stresses. The promoter analysis revealed that CmLOX09 (type of 9-LOX) has hormone elements, signal substances, and stress elements. We analyzed the expression of CmLOX09 and its downstream genes-CmHPL and CmAOS-in the leaves of four-leaf stage seedlings of the oriental melon cultivar "Yumeiren" under wound, hormone, and signal substances. CmLOX09, CmHPL, and CmAOS were all induced by wounding. CmLOX09 was induced by auxin (indole acetic acid, IAA) and gibberellins (GA3); however, CmHPL and CmAOS showed differential responses to IAA and GA3. CmLOX09, CmHPL, and CmAOS were all induced by hydrogen peroxide (H2O2) and methyl jasmonate (MeJA), while being inhibited by abscisic acid (ABA) and salicylic acid (SA). CmLOX09, CmHPL, and CmAOS were all induced by the powdery mildew pathogen Podosphaera xanthii. The content of 2-hexynol and 2-hexenal in leaves after MeJA treatment was significantly higher than that in the control. After infection with P. xanthii, the diseased leaves of the oriental melon were divided into four levels-levels 1, 2, 3, and 4. The content of jasmonic acid (JA) in the leaves of levels 1 and 3 was significantly higher than that in the level 0 leaves. In summary, the results suggested that CmLOX09 might play a positive role in the response to MeJA through the hydroperoxide lyase (HPL) pathway to produce C6 alcohols and aldehydes, and in the response to P. xanthii through the allene oxide synthase (AOS) pathway to form JA.
Collapse
Affiliation(s)
- Li-Jun Ju
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Chong Zhang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing-Jing Liao
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue-Peng Li
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hong-Yan Qi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
12
|
Ling J, Li R, Nwafor CC, Cheng J, Li M, Xu Q, Wu J, Gan L, Yang Q, Liu C, Chen M, Zhou Y, Cahoon EB, Zhang C. Development of iFOX-hunting as a functional genomic tool and demonstration of its use to identify early senescence-related genes in the polyploid Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:591-602. [PMID: 28718508 PMCID: PMC5787830 DOI: 10.1111/pbi.12799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 05/20/2023]
Abstract
Functional genomic studies of many polyploid crops, including rapeseed (Brassica napus), are constrained by limited tool sets. Here we report development of a gain-of-function platform, termed 'iFOX (inducible Full-length cDNA OvereXpressor gene)-Hunting', for inducible expression of B. napus seed cDNAs in Arabidopsis. A Gateway-compatible plant gene expression vector containing a methoxyfenozide-inducible constitutive promoter for transgene expression was developed. This vector was used for cloning of random cDNAs from developing B. napus seeds and subsequent Agrobacterium-mediated transformation of Arabidopsis. The inducible promoter of this vector enabled identification of genes upon induction that are otherwise lethal when constitutively overexpressed and to control developmental timing of transgene expression. Evaluation of a subset of the resulting ~6000 Arabidopsis transformants revealed a high percentage of lines with full-length B. napus transgene insertions. Upon induction, numerous iFOX lines with visible phenotypes were identified, including one that displayed early leaf senescence. Phenotypic analysis of this line (rsl-1327) after methoxyfenozide induction indicated high degree of leaf chlorosis. The integrated B. napuscDNA was identified as a homolog of an Arabidopsis acyl-CoA binding protein (ACBP) gene designated BnACBP1-like. The early senescence phenotype conferred by BnACBP1-like was confirmed by constitutive expression of this gene in Arabidopsis and B. napus. Use of the inducible promoter in the iFOX line coupled with RNA-Seq analyses allowed mechanistic clues and a working model for the phenotype associated with BnACBP1-like expression. Our results demonstrate the utility of iFOX-Hunting as a tool for gene discovery and functional characterization of Brassica napus genome.
Collapse
Affiliation(s)
- Juan Ling
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Renjie Li
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chinedu Charles Nwafor
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Department of Crop ScienceBenson Idahosa UniversityBenin CityNigeria
| | - Junluo Cheng
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Qing Xu
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jian Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Lu Gan
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Qingyong Yang
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chao Liu
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ming Chen
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Yongming Zhou
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Edgar B. Cahoon
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Chunyu Zhang
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
13
|
Cacas J, Pré M, Pizot M, Cissoko M, Diedhiou I, Jalloul A, Doumas P, Nicole M, Champion A. GhERF-IIb3 regulates the accumulation of jasmonate and leads to enhanced cotton resistance to blight disease. MOLECULAR PLANT PATHOLOGY 2017; 18:825-836. [PMID: 27291786 PMCID: PMC6638235 DOI: 10.1111/mpp.12445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 05/29/2023]
Abstract
The phytohormone jasmonic acid (JA) and its derivatives, collectively referred to as jasmonates, regulate many developmental processes, but are also involved in the response to numerous abiotic/biotic stresses. Thus far, powerful reverse genetic strategies employing perception, signalling or biosynthesis mutants have broadly contributed to our understanding of the role of JA in the plant stress response and development, as has the chemical gain-of-function approach based on exogenous application of the hormone. However, there is currently no method that allows for tightly controlled JA production in planta. By investigating the control of the JA synthesis pathway in bacteria-infected cotton (Gossypium hirsutum L.) plants, we identified a transcription factor (TF), named GhERF-IIb3, which acts as a positive regulator of the JA pathway. Expression of this well-conserved TF in cotton leaves was sufficient to produce in situ JA accumulation at physiological concentrations associated with an enhanced cotton defence response to bacterial infection.
Collapse
Affiliation(s)
- Jean‐Luc Cacas
- Institut Jean‐Pierre Bourgin, UMR1318 INRA‐AgroParisTech Centre INRA de Versailles‐GrignonRoute de St. Cyr78026Versailles CedexFrance
| | - Martial Pré
- Institut de Recherche pour le Développement (IRD), Unités Mixte de Recherche DIADE (DIversité Adaptation et DEveloppement des plantes) et IPME (Interactions Plantes‐Microorganismes‐Environnement)911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5France
| | - Maxime Pizot
- Institut de Recherche pour le Développement (IRD), Unités Mixte de Recherche DIADE (DIversité Adaptation et DEveloppement des plantes) et IPME (Interactions Plantes‐Microorganismes‐Environnement)911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5France
| | - Maimouna Cissoko
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Laboratoire Commun de Microbiologie (LCM)Centre de Recherche de Bel Air, BP 1386Dakar18524Senegal
| | - Issa Diedhiou
- Institut de Recherche pour le Développement (IRD), Unités Mixte de Recherche DIADE (DIversité Adaptation et DEveloppement des plantes) et IPME (Interactions Plantes‐Microorganismes‐Environnement)911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Laboratoire Commun de Microbiologie (LCM)Centre de Recherche de Bel Air, BP 1386Dakar18524Senegal
| | - Aida Jalloul
- Department of Plant Protection, Faculty of AgronomyUniversity of DamascusDamascusBox 113Syria
| | - Patrick Doumas
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche Biochimie et Physiologie Moléculaire des PlantesMontpellier34060France
| | - Michel Nicole
- Institut de Recherche pour le Développement (IRD), Unités Mixte de Recherche DIADE (DIversité Adaptation et DEveloppement des plantes) et IPME (Interactions Plantes‐Microorganismes‐Environnement)911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5France
| | - Antony Champion
- Institut de Recherche pour le Développement (IRD), Unités Mixte de Recherche DIADE (DIversité Adaptation et DEveloppement des plantes) et IPME (Interactions Plantes‐Microorganismes‐Environnement)911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Laboratoire Commun de Microbiologie (LCM)Centre de Recherche de Bel Air, BP 1386Dakar18524Senegal
| |
Collapse
|
14
|
Qi J, Li J, Han X, Li R, Wu J, Yu H, Hu L, Xiao Y, Lu J, Lou Y. Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:564-76. [PMID: 26466818 DOI: 10.1111/jipb.12436] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/12/2015] [Indexed: 05/03/2023]
Abstract
Jasmonic acid (JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase (JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate (MeJA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene, OsJMT1, whose encoding protein was localized in the cytosol, we found that the recombinant OsJMT1 protein catalyzed JA to MeJA. OsJMT1 is up-regulated in response to infestation with the brown planthopper (BPH; Nilaparvata lugens). Plants in which OsJMT1 had been overexpressed (oe-JMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased MeJA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine (JA-Ile). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs, probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H2 O2 and MeJA in oe-JMT plants. These results indicate that OsJMT1, by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice.
Collapse
Affiliation(s)
- Jinfeng Qi
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiancai Li
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xiu Han
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Ran Li
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Jianqiang Wu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Haixin Yu
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Lingfei Hu
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yutao Xiao
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Jing Lu
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Nalam VJ, Alam S, Keereetaweep J, Venables B, Burdan D, Lee H, Trick HN, Sarowar S, Makandar R, Shah J. Facilitation of Fusarium graminearum Infection by 9-Lipoxygenases in Arabidopsis and Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1142-52. [PMID: 26075826 DOI: 10.1094/mpmi-04-15-0096-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fusarium graminearum causes Fusarium head blight, an important disease of wheat. F. graminearum can also cause disease in Arabidopsis thaliana. Here, we show that the Arabidopsis LOX1 and LOX5 genes, which encode 9-lipoxygenases (9-LOXs), are targeted during this interaction to facilitate infection. LOX1 and LOX5 expression were upregulated in F. graminearum-inoculated plants and loss of LOX1 or LOX5 function resulted in enhanced disease resistance in the corresponding mutant plants. The enhanced resistance to F. graminearum infection in the lox1 and lox5 mutants was accompanied by more robust induction of salicylic acid (SA) accumulation and signaling and attenuation of jasmonic acid (JA) signaling in response to infection. The lox1- and lox5-conferred resistance was diminished in plants expressing the SA-degrading salicylate hydroxylase or by the application of methyl-JA. Results presented here suggest that plant 9-LOXs are engaged during infection to control the balance between SA and JA signaling to facilitate infection. Furthermore, since silencing of TaLpx-1 encoding a 9-LOX with homology to LOX1 and LOX5, resulted in enhanced resistance against F. graminearum in wheat, we suggest that 9-LOXs have a conserved role as susceptibility factors in disease caused by this important fungus in Arabidopsis and wheat.
Collapse
Affiliation(s)
- Vamsi J Nalam
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
- 2 Department of Biology, Indiana University-Purdue University, Fort Wayne, IN 46805, U.S.A
| | - Syeda Alam
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Jantana Keereetaweep
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Barney Venables
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Dehlia Burdan
- 3 Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Hyeonju Lee
- 3 Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Harold N Trick
- 3 Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Sujon Sarowar
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Ragiba Makandar
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
- 4 Department of Plant Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Jyoti Shah
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| |
Collapse
|
16
|
ul Hassan MN, Zainal Z, Ismail I. Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:727-39. [PMID: 25865366 DOI: 10.1111/pbi.12368] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 05/25/2023]
Abstract
Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence-related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their 'green note' odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology.
Collapse
Affiliation(s)
- Muhammad Naeem ul Hassan
- Faculty of Science and Technology, School of Bioscience and Biotechnology, University Kebangsaan Malaysia, Bangi, Malaysia
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Zamri Zainal
- Faculty of Science and Technology, School of Bioscience and Biotechnology, University Kebangsaan Malaysia, Bangi, Malaysia
- Institute of Systems Biology (INBIOSIS), University Kebangsaan Malaysia, Bangi, Malaysia
| | - Ismanizan Ismail
- Faculty of Science and Technology, School of Bioscience and Biotechnology, University Kebangsaan Malaysia, Bangi, Malaysia
- Institute of Systems Biology (INBIOSIS), University Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
17
|
Lim CW, Han SW, Hwang IS, Kim DS, Hwang BK, Lee SC. The Pepper Lipoxygenase CaLOX1 Plays a Role in Osmotic, Drought and High Salinity Stress Response. PLANT & CELL PHYSIOLOGY 2015; 56:930-42. [PMID: 25657344 DOI: 10.1093/pcp/pcv020] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/02/2015] [Indexed: 05/04/2023]
Abstract
In plants, lipoxygenases (LOXs) are involved in various physiological processes, including defense responses to biotic and abiotic stresses. Our previous study had shown that the pepper 9-LOX gene, CaLOX1, plays a crucial role in cell death due to pathogen infection. Here, the function of CaLOX1 in response to osmotic, drought and high salinity stress was examined using CaLOX1-overexpressing (CaLOX1-OX) Arabidopsis plants. Changes in the temporal expression pattern of the CaLOX1 gene were observed when pepper leaves were treated with drought and high salinity, but not when treated with ABA, the primary hormone in response to drought stress. During seed germination and seedling development, CaLOX1-OX plants were more tolerant to ABA, mannitol and high salinity than wild-type plants. In contrast, expression of the ABA-responsive marker genes RAB18 and RD29B was higher in CaLOX1-OX Arabidopsis plants than in wild-type plants. In response to high salinity, CaLOX1-OX plants exhibited enhanced tolerance, compared with the wild type, which was accompanied by decreased accumulation of H2O2 and high levels of RD20, RD29A, RD29B and P5CS gene expression. Similarly, CaLOX1-OX plants were also more tolerant than wild-type plants to severe drought stress. H2O2 production and the relative increase in lipid peroxidation were lower, and the expression of COR15A, DREB2A, RD20, RD29A and RD29B was higher in CaLOX1-OX plants, relative to wild-type plants. Taken together, our results indicate that CaLOX1 plays a crucial role in plant stress responses by modulating the expression of ABA- and stress-responsive marker genes, lipid peroxidation and H2O2 production.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Republic of Korea These author contributed equally to this work
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong 456-756, Republic of Korea These author contributed equally to this work
| | - In Sun Hwang
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea Present address: Department of Agricultural Biotechnology, National Academy of Agricultural Science & Technology, Rural Development Administration, Jeonju 560-500, Republic of Korea
| | - Dae Sung Kim
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea Present address: The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
18
|
|
19
|
Sun L, Zhu L, Xu L, Yuan D, Min L, Zhang X. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nat Commun 2014; 5:5372. [PMID: 25371113 PMCID: PMC4241986 DOI: 10.1038/ncomms6372] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/25/2014] [Indexed: 11/09/2022] Open
Abstract
Plant oxylipins are derived from unsaturated fatty acids and play roles in plant growth and development as well as defence. Although recent studies have revealed that fatty acid metabolism is involved in systemic acquired resistance, the precise function of oxylipins in plant defence remains unknown. Here we report a cotton P450 gene SILENCE-INDUCED STEM NECROSIS (SSN), RNAi suppression of which causes a lesion mimic phenotype. SSN is also involved in jasmonate metabolism and the response to wounding. Fatty acid and oxylipin metabolite analysis showed that SSN overexpression causes hyperaccumulation of hydroxide and ketodiene fatty acids and reduced levels of 18:2 fatty acids, whereas silencing causes an imbalance in LOX (lipoxygenase) expression and excessive hydroperoxide fatty acid accumulation. We also show that an unknown oxylipin-derived factor is a putative mobile signal required for systemic cell death and hypothesize that SSN acts as a valve to regulate HR on pathogen infection. Oxylipin signalling is known to play important roles in plant growth, development and defence against pathogens. Here Sun et al. identify a novel cytochrome P450 in cotton and show that its suppression leads to activation of plant defence responses and alteration of oxylipin metabolism.
Collapse
Affiliation(s)
- Longqing Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
20
|
García-Marcos A, Pacheco R, Manzano A, Aguilar E, Tenllado F. Oxylipin biosynthesis genes positively regulate programmed cell death during compatible infections with the synergistic pair potato virus X-potato virus Y and Tomato spotted wilt virus. J Virol 2013; 87:5769-83. [PMID: 23487466 PMCID: PMC3648178 DOI: 10.1128/jvi.03573-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/04/2013] [Indexed: 11/20/2022] Open
Abstract
One of the most severe symptoms caused by compatible plant-virus interactions is systemic necrosis, which shares common attributes with the hypersensitive response to incompatible pathogens. Although several studies have identified viral symptom determinants responsible for systemic necrosis, mechanistic models of how they contribute to necrosis in infected plants remain scarce. Here, we examined the involvement of different branches of the oxylipin biosynthesis pathway in the systemic necrosis response caused either by the synergistic interaction of Potato virus X with Potato virus Y (PVX-PVY) or by Tomato spotted wilt virus (TSWV) in Nicotiana benthamiana. Silencing either 9-lipoxygenase (LOX), 13-LOX, or α-dioxygenase-1 (α-DOX-1) attenuated the programmed cell death (PCD)-associated symptoms caused by infection with either PVX-PVY or TSWV. In contrast, silencing of the jasmonic acid perception gene, COI1 (Coronatine insensitive 1), expedited cell death during infection with compatible viruses. This correlated with an enhanced expression of oxylipin biosynthesis genes and dioxygenase activity in PVX-PVY-infected plants. Moreover, the Arabidopsis thaliana double lox1 α-dox-1 mutant became less susceptible to TSWV infection. We conclude that oxylipin metabolism is a critical component that positively regulates the process of PCD during compatible plant-virus interactions but does not play a role in restraining virus accumulation in planta.
Collapse
Affiliation(s)
- Alberto García-Marcos
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Shibu MA, Lin HS, Yang HH, Peng KC. Trichoderma harzianum ETS 323-mediated resistance in Brassica oleracea var. capitata to Rhizoctonia solani involves the novel expression of a glutathione S-transferase and a deoxycytidine deaminase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10723-10732. [PMID: 23046447 DOI: 10.1021/jf3025634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant interactions with microbial biocontrol agents are used as experimental models to understand resistance-related molecular adaptations of plants. In a hydroponic three-way interaction study, a novel Trichoderma harzianum ETS 323 mediated mechanism was found to induce resistance to Rhizoctonia solani infection in Brassica oleracea var. capitata plantlets. The R. solani challenge on leaves initiate an increase in lipoxygenase activity and associated hypersensitive tissue damage with characteristic "programmed cell death" that facilitate the infection. However, B. oleracea plantlets whose roots were briefly (6 h) colonized by T. harzianum ETS 323 developed resistance to R. solani infection through a significant reduction of the host hypersensitive tissue damage. The resistance developed in the distal leaf tissue was associated with the expression of a H(2)O(2)-inducible glutathione S-transferase (BoGST), which scavenges cytotoxic reactive electrophiles, and of a deoxycytidine deaminase (BoDCD), which modulates the host molecular expression and potentially neutralizes the DNA adducts and maintains DNA integrity. The cDNAs of BoGST and BoDCD were cloned and sequenced; their expressions were verified by reverse-transcription polymerase chain reaction analysis and were found to be transcriptionally activated during the three-way interaction.
Collapse
Affiliation(s)
- Marthandam Asokan Shibu
- Department of Life Science and the Institute of Biotechnology, National Dong Hwa University, Hualien, 97401, Taiwan (ROC)
| | | | | | | |
Collapse
|
22
|
Kumar V, Parkhi V, Joshi SG, Christensen S, Jayaprakasha GK, Patil BS, Kolomiets MV, Rathore KS. A novel, conditional, lesion mimic phenotype in cotton cotyledons due to the expression of an endochitinase gene from Trichoderma virens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:86-95. [PMID: 22195581 DOI: 10.1016/j.plantsci.2011.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/02/2011] [Accepted: 11/06/2011] [Indexed: 05/31/2023]
Abstract
We have observed a novel, lesion mimic phenotype (LMP) in the cotyledons of cotton seedlings expressing an endochitinase gene from Trichoderma virens. This phenotype, however, is conditional and is elicited only when the transgenic seedlings are germinating on a medium that is devoid of mineral nutrients. The LMP manifests itself around the 5th day in the form of scattered, dry necrotic lesions on the cotyledons. The severity of the LMP is correlated with the level of transgene activity. Production of reactive oxygen species and activities of certain defense related enzymes and genes were substantially higher in the cotyledons of seedlings that were growing under mineral nutrient stress. Molecular and biochemical analyses indicated significantly higher-level activities of certain defense-related genes/enzymes at the onset of the phenotype. Treatment with methyl jasmonate can induce LMP in the cotyledons of wild-type (WT) seedlings similar to that observed in the endochitinase-expressing seedlings grown on nutrient-free medium. On the other hand, salicylic acid (SA), its functional analog, benzo(1,2,3) thiadiazole-7-carbothioic acid (BTH), and ibuprofen can rescue the LMP induced by the seedling-growth on nutrient-deficient medium. Nutrient deficiency-induced activation of a defense response appears to be the contributing factor in the development of LMP in endochitinase-expressing cotton seedlings.
Collapse
Affiliation(s)
- Vinod Kumar
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843-2123, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang P, Zhu X, Huang F, Liu Y, Zhang J, Lu Y, Ruan Y. Suppression of jasmonic acid-dependent defense in cotton plant by the mealybug Phenacoccus solenopsis. PLoS One 2011; 6:e22378. [PMID: 21818315 PMCID: PMC3144893 DOI: 10.1371/journal.pone.0022378] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 06/27/2011] [Indexed: 11/29/2022] Open
Abstract
The solenopsis mealybug, Phenacoccus solenopsis, has been recently recognized as an aggressively invasive pest in China, and is now becoming a serious threat to the cotton industry in the country. Thus, it is necessary to investigate the molecular mechanisms employed by cotton for defending against P. solenopsis before the pest populations reach epidemic levels. Here, we examined the effects of exogenous jasmonic acid (JA), salicylic acid (SA), and herbivory treatments on feeding behavior and on development of female P. solenopsis. Further, we compared the volatile emissions of cotton plants upon JA, SA, and herbivory treatments, as well as the time-related changes in gossypol production and defense-related genes. Female adult P. solenopsis were repelled by leaves from JA-treated plant, but were not repelled by leaves from SA-treated plants. In contrast, females were attracted by leaves from plants pre-infested by P. solenopsis. The diverse feeding responses by P. solenopsis were due to the difference in volatile emission of plants from different treatments. Furthermore, we show that JA-treated plants slowed P. solenopsis development, but plants pre-infested by P. solenopsis accelerated its development. We also show that P. solenopsis feeding inhibited the JA-regulated gossypol production, and prevented the induction of JA-related genes. We conclude that P. solenopsis is able to prevent the activation of JA-dependent defenses associated with basal resistance to mealybugs.
Collapse
Affiliation(s)
- Pengjun Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoyun Zhu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Nanjing Agriculture University, Nanjing, China
| | - Fang Huang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yong Liu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinming Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaobin Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yongming Ruan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
24
|
Eschen-Lippold L, Altmann S, Rosahl S. DL-beta-aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:585-92. [PMID: 20367467 DOI: 10.1094/mpmi-23-5-0585] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Inducing systemic resistance responses in crop plants is a promising alternative way of disease management. To understand the underlying signaling events leading to induced resistance, functional analyses of plants defective in defined signaling pathway steps are required. We used potato, one of the economically most-important crop plants worldwide, to examine systemic resistance against the devastating late blight pathogen Phytophthora infestans, induced by treatment with dl-beta-aminobutyric acid (BABA). Transgenic plants impaired in either the 9-lipoxygenase pathway, which produces defense-related compounds, or the 13-lipoxygenase pathway, which generates jasmonic acid-derived signals, expressed wild-type levels of BABA-induced resistance. Plants incapable of accumulating salicylic acid (SA), on the other hand, failed to mount this type of induced resistance. Consistently, treatment of these plants with the SA analog 2,6-dichloroisonicotinic acid restored BABA-induced resistance. Together, these results demonstrate the indispensability of a functional SA pathway for systemic resistance in potato induced by BABA.
Collapse
|
25
|
Hwang IS, Hwang BK. The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. PLANT PHYSIOLOGY 2010; 152:948-67. [PMID: 19939946 PMCID: PMC2815858 DOI: 10.1104/pp.109.147827] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 11/24/2009] [Indexed: 05/20/2023]
Abstract
Lipoxygenases (LOXs) are crucial for lipid peroxidation processes during plant defense responses to pathogen infection. A pepper (Capsicum annuum) 9-LOX gene, CaLOX1, which encodes a 9-specific lipoxygenase, was isolated from pepper leaves. Recombinant CaLOX1 protein expressed in Escherichia coli catalyzed the hydroperoxidation of linoleic acid, with a K(m) value of 113. 9 mum. Expression of CaLOX1 was differentially induced in pepper leaves not only during Xanthomonas campestris pv vesicatoria (Xcv) infection but also after exposure to abiotic elicitors. Transient expression of CaLOX1 in pepper leaves induced the cell death phenotype and defense responses. CaLOX1-silenced pepper plants were more susceptible to Xcv and Colletotrichum coccodes infection, which was accompanied by reduced expression of defense-related genes, lowered lipid peroxidation, as well as decreased reactive oxygen species and lowered salicylic acid accumulation. Infection with Xcv, especially in an incompatible interaction, rapidly stimulated LOX activity in unsilenced, but not CaLOX1-silenced, pepper leaves. Furthermore, overexpression of CaLOX1 in Arabidopsis (Arabidopsis thaliana) conferred enhanced resistance to Pseudomonas syringae pv tomato, Hyaloperonospora arabidopsidis, and Alternaria brassicicola. In contrast, mutation of the Arabidopsis CaLOX1 ortholog AtLOX1 significantly increased susceptibility to these three pathogens. Together, these results suggest that CaLOX1 and AtLOX1 positively regulate defense and cell death responses to microbial pathogens.
Collapse
Affiliation(s)
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Seoul 136–713, Republic of Korea
| |
Collapse
|
26
|
Champion A, Hebrard E, Parra B, Bournaud C, Marmey P, Tranchant C, Nicole M. Molecular diversity and gene expression of cotton ERF transcription factors reveal that group IXa members are responsive to jasmonate, ethylene and Xanthomonas. MOLECULAR PLANT PATHOLOGY 2009; 10:471-85. [PMID: 19523101 PMCID: PMC6640365 DOI: 10.1111/j.1364-3703.2009.00549.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Several ethylene-response factor (ERF) transcription factors are believed to play a crucial role in the activation of plant defence responses, but little is known about the relationships between the diversity of this family and the functions of groups or individual ERFs in this process. In this study, 200 ERF genes from the unigene cotton database were identified. Conserved amino acid residues and phylogeny reconstruction using the AP2 conserved domain suggest that the classification into 10 major groups used for Arabidopsis and rice is applicable to the cotton ERF family. Based on in silico studies, we predict that group IX ERF genes in cotton are involved in jasmonate (JA), ethylene (ET) and pathogen responses. To test this hypothesis, we analysed the transcript profiles of the group IXa subfamily in the regulation of specific resistance to Xanthomonas campestris pathovar malvacearum. The expression of four members of group IXa was induced on challenge with X. campestris pv. malvacearum. Furthermore, the expression of several ERF genes of group IXa was induced synergistically by JA in combination with ET, suggesting that the encoded ERF proteins may play key roles in the integration of both signals to activate JA- and ET-dependent responses.
Collapse
Affiliation(s)
- Antony Champion
- IRD, Université Mixte de Recherche RPB 'Résistance des Plantes aux Bioagresseurs' CIRAD, Université Montpellier II, France.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kumar V, Parkhi V, Kenerley CM, Rathore KS. Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. PLANTA 2009; 230:277-91. [PMID: 19444464 DOI: 10.1007/s00425-009-0937-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 04/19/2009] [Indexed: 05/24/2023]
Abstract
There are many reports on obtaining disease-resistance trait in plants by overexpressing genes from diverse organisms that encode chitinolytic enzymes. Current study represents an attempt to dissect the mechanism underlying the resistance to Rhizoctonia solani in cotton plants expressing an endochitinase gene from Trichoderma virens. Several assays were developed that provided a powerful demonstration of the disease protection obtained in the transgenic cotton plants. Transgene-dependent endochitinase activity was confirmed in various tissues and in the medium surrounding the roots of transformants. Biochemical and molecular analyses conducted on the transgenic plants showed rapid/greater induction of ROS, expression of several defense-related genes, and activation of some PR enzymes and the terpenoid pathway. Interestingly, even in the absence of a challenge from the pathogen, the basal activities of some of the defense-related genes and enzymes were higher in the endochitinase-expressing cotton plants. This elevated defensive state of the transformants may act synergistically with the potent, transgene-encoded endochitinase activity to confer a strong resistance to R. solani infection.
Collapse
Affiliation(s)
- Vinod Kumar
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843-2123, USA
| | | | | | | |
Collapse
|
28
|
Cacas JL, Marmey P, Montillet JL, Sayegh-Alhamdia M, Jalloul A, Rojas-Mendoza A, Clérivet A, Nicole M. A novel patatin-like protein from cotton plant, GhPat1, is co-expressed with GhLox1 during Xanthomonas campestris-mediated hypersensitive cell death. PLANT CELL REPORTS 2009; 28:155-164. [PMID: 18850102 DOI: 10.1007/s00299-008-0622-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/12/2008] [Accepted: 09/22/2008] [Indexed: 05/26/2023]
Abstract
In cotton plant, Xanthomonas-induced hypersensitive response (HR) is accompanied by a lipid peroxidation process involving a 9-lipoxygenase (LOX), GhLox1. Initiation of this oxidative metabolism implies the release of the LOX substrates, or polyunsaturated fatty acids. Since patatin-like proteins (PLPs) are likely candidates for mediating the latter step, we searched for genes encoding such enzymes, identified and cloned one of them that we named GhPat1. Biochemical and molecular studies showed that GhPat1 expression was up-regulated during the incompatible interaction, prior to the onset of the corresponding galactolipase activity and cell death symptoms in tissues. Protein sequence analysis and modelling also revealed that GhPat1 catalytic amino acids and fold were conserved across plant PLPs. Based on these results and our previous work (Jalloul et al. in Plant J 32:1-12, 2002), a role for GhPat1, in synergy with GhLox1, during HR-specific lipid peroxidation is discussed.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Résistance des Plantes aux Bioagresseurs, Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hano C, Addi M, Fliniaux O, Bensaddek L, Duverger E, Mesnard F, Lamblin F, Lainé E. Molecular characterization of cell death induced by a compatible interaction between Fusarium oxysporum f. sp. linii and flax (Linum usitatissimum) cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:590-600. [PMID: 18396055 DOI: 10.1016/j.plaphy.2008.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Indexed: 05/19/2023]
Abstract
The cellular and molecular events associated with cell death during compatible interaction between Fusarium oxysporum sp. linii and a susceptible flax (Linum usitatissimum) cell suspension are reported here. In order to determine the physiological and molecular sequence of cell death of inoculated cells, reactive oxygen species (ROS) production, mitochondrial potential, lipoxygenase, DNase, protease and caspase-3-like activities, lipid peroxidation and secondary metabolite production were monitored. We also used microscopy, in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) and DNA fragmentation assay. Cell death was associated with specific morphological and biochemical changes that are generally noticed in hypersensitive (incompatible) reaction. An oxidative burst as well as a loss of mitochondrial potential of inoculated cells, an activation of lipoxygenase and lipid peroxidation were noted. Enzyme-mediated nuclear DNA degradation was detectable but oligonucleosomal fragmentation was not observed. Caspase-3-like activity was dramatically increased in inoculated cells. Phenylpropanoid metabolism was also affected as demonstrated by activation of PAL and PCBER gene expressions and reduced soluble lignan and neolignan contents. These results obtained in flax suggest that compatible interaction triggers a cell death sequence sharing a number of common features with the hypersensitive response observed in incompatible interaction and in animal apoptosis.
Collapse
Affiliation(s)
- Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, UPRES EA 1207, Antenne Scientifique Universitaire de Chartres, 21 rue de Loigny la Bataille, 28000 Chartres, France.
| | | | | | | | | | | | | | | |
Collapse
|