1
|
Baqi A, Samiullah, Rehman W, Bibi I, Menaa F, Khan Y, Albalawi DA, Sattar A. Identification and Validation of Functional miRNAs and Their Main Targets in Sorghum bicolor. Mol Biotechnol 2025; 67:123-137. [PMID: 38155285 DOI: 10.1007/s12033-023-00988-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/10/2023] [Indexed: 12/30/2023]
Abstract
MicroRNAs (miRNAs) are typically non-coding RNAs of 18-26 nucleotides (nts) that are produced endogenously and regulated post-transcriptionally through degradation or translational repression. Since miRNAs are evolutionarily conserved, their preservation is essential for important regulatory functions in plant development, growth, and responses to environmental stress. Sorghum bicolor (sbi) is a valuable food and fodder crop which is grown worldwide. A range of sbi miRNAs were identified so far as being connected to plant development and stress responses. Herein, we employed a variety of bioinformatics tools for miRNA profiling in sbi and a PCR-based platform for the validation of these miRNAs. In total, 74 new conserved sbi miRNAs from 52 miRNA families have been predicted. Using the psRNA Target method, 10613 different protein targets of these predicted miRNAs have been attained. These targets include 54 GO-terms which have substantial targets in the biological, molecular, and cellular processes. We particularly found that the sbi-miR1861c and sbi-miR5050 are involved to regulate sulphur compound biosynthetic process, while the significant spliceosomal complex is regulated by sbi-miR815b and sbi-miR7768b. Also, we report that the pre-ribosome, electron transport chain, cell communication, cellular respiration, protein localization, and photosynthesis are controlled by sbi-miR2907b, sbi-miR530, sbi-miR7749, sbi-miR1858a, sbi-mi7729a, and sbi-miR417, respectively. The identification and validation of these novel sbi miRNAs shall contribute a lot in improving the crop yield and ensure sustainable agriculture.
Collapse
Affiliation(s)
- Abdul Baqi
- Department of Chemistry, University of Balochistan, Quetta, 87300, Pakistan
| | - Samiullah
- Department of Chemistry, University of Balochistan, Quetta, 87300, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University Mansehra, Mansehra, Pakistan.
| | - Iram Bibi
- Department of Chemistry, Hazara University Mansehra, Mansehra, Pakistan
| | - Farid Menaa
- Department of Biomedical and Environmental Engineering (BEE), California Innovations Corporation (CIC), San Diego, CA, 92037, USA.
| | - Yousaf Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Doha A Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Abdul Sattar
- Department of Chemistry, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| |
Collapse
|
2
|
Fu J, Tian C, Wan X, Hu R, Yu J, Zhang J, Wang S. Molecular mechanism of flower colour formation in Rhododendron simsii Planchon revealed by integration of microRNAome and RNAomics. AOB PLANTS 2024; 16:plae053. [PMID: 39430437 PMCID: PMC11489732 DOI: 10.1093/aobpla/plae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Systems-wide understanding of gene expression profile regulating flower colour formation in Rhododendron simsii Planchon is insufficient. In this research, integration analysis of ribonucleic acid (RNA)omics and microRNAome were performed to reveal the molecular mechanism of flower colour formation in three R. simsii varieties with red, pink and crimson flowers, respectively. Totally, 3129, 5755 and 5295 differentially expressed gene (DEG)s were identified through comparative transcriptome analysis between 'Red variety' and 'Pink variety' (1507 up-regulated and 1622 down-regulated), 'Red variety' and 'Crimson variety' (2148 up-regulated 3607 down-regulated), as well as 'Pink variety' and 'Crimson variety' (2089 up-regulated and 3206 down-regulated), which were involved in processes of 'catalytic activity', 'binding', 'metabolic process' and 'cellular process', as well as pathways of 'metabolic pathways', 'biosynthesis of secondary metabolites', 'plant-pathogen interaction' and 'phenylpropanoid biosynthesis'. A total of 215 miRNAs, containing 153 known miRNAs belonging to 57 families and 62 novel miRNA, were involved in flower colour formation. In particular, 55 miRNAs were significantly differently expressed. Based on miRNA-mRNA regulatory network, ath-miR5658 could affect the synthesis of pelargonidin, cyanidin and delphinidin through downregulating accumulation of anthocyanidin 3-O-glucosyltransferase; ath-miR868-3p could regulate isoflavonoid biosynthesis through downregulating expression of CYP81E1/E7; ath-miR156g regulated the expression of flavonoid 3',5'-hydroxylase; and ath-miR829-5p regulated flavonol synthasein flavonoid biosynthesis process. This research will provide important roles in breeding new varieties with rich flower colour.
Collapse
Affiliation(s)
- Jun Fu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei Province, 438000, China
| | - Chuanchuan Tian
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei Province, 438000, China
| | - Xuchun Wan
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei Province, 438000, China
| | - Ruibin Hu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei Province, 438000, China
| | - Jiaojun Yu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei Province, 438000, China
| | - Jialiang Zhang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei Province, 438000, China
| | - Shuzhen Wang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei Province, 438000, China
| |
Collapse
|
3
|
Ayubov MS, Mirzakhmedov MH, Sripathi VR, Buriev ZT, Ubaydullaeva KA, Usmonov DE, Norboboyeva RB, Emani C, Kumpatla SP, Abdurakhmonov IY. Role of MicroRNAs and small RNAs in regulation of developmental processes and agronomic traits in Gossypium species. Genomics 2019; 111:1018-1025. [PMID: 30026106 DOI: 10.1016/j.ygeno.2018.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 02/08/2023]
Abstract
Small RNAs (sRNAs) are short, non-coding, 17-24 nucleotides long RNA molecules that play vital roles in regulating gene expression in every known organism investigated to date including cotton (Gossypium ssp.). These tiny RNA molecules target diverse categories of genes from different bioliogical and metabolic processes and have been reported in the three domains of life. Small RNAs, including miRNAs, are involved in ovule and fiber development, biotic and abiotic stresses, fertility, and other biochemical processes in cotton species. Also, sRNAs are the critical components in RNA interference pathway. In this article, we have reviewed the research efforts related to the isolation and characterization of miRNAs using molecular and genomic approaches. The progress made in understanding the functional roles of miRNAs in regulation, alteration, and inactivation of fundamental plant processes and traits of importance in cotton are presented here.
Collapse
Affiliation(s)
- Mirzakamol S Ayubov
- Center of Genomics and bioinformatics, Academy of Sciences Republic of Uzbekistan, Uzbekistan
| | - Mukhammad H Mirzakhmedov
- Center of Genomics and bioinformatics, Academy of Sciences Republic of Uzbekistan, Uzbekistan; Faculty of Agricultural Science, University of Hohenheim, Germany
| | - Venkateswara R Sripathi
- Center for Molecular Biology, Department of Biological and Environmental Sciences, Alabama A and M University, AL, USA
| | - Zabardast T Buriev
- Center of Genomics and bioinformatics, Academy of Sciences Republic of Uzbekistan, Uzbekistan
| | | | - Dilshod E Usmonov
- Center of Genomics and bioinformatics, Academy of Sciences Republic of Uzbekistan, Uzbekistan
| | - Risolat B Norboboyeva
- Center of Genomics and bioinformatics, Academy of Sciences Republic of Uzbekistan, Uzbekistan
| | | | | | | |
Collapse
|
4
|
Wang M, Sun R, Wang Q, Zhang B. Overexpression of miRNA in Cotton via Agrobacterium-Mediated Transformation. Methods Mol Biol 2019; 1902:223-231. [PMID: 30543075 DOI: 10.1007/978-1-4939-8952-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
microRNAs (miRNAs) are an extensive class of newly identified endogenous small regulatory molecules. Many studies show that miRNAs play a critical role in almost all biological and metabolic progress through targeting protein-coding genes for mRNA cleavage or translation inhibition. Many miRNAs are also identified from cotton using computational and/or experimental approaches, including the next-generation deep sequencing technology. However, their functions are unclear. In this chapter, we describe a detailed method for overexpressing miRNA, miR156 as an example, in cotton using Agrobacterium-mediated genetic transformation. This provides an approach to investigate the function and regulatory mechanism of miRNAs in cotton.
Collapse
Affiliation(s)
- Min Wang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Runrun Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, Henan, China
| | - Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, Henan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
5
|
Marakli S. Identification and functional analyses of new sesame miRNAs (Sesamum indicum L.) and their targets. Mol Biol Rep 2018; 45:2145-2155. [PMID: 30209739 DOI: 10.1007/s11033-018-4373-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
Plant microRNAs (miRNAs) have been commonly investigated during many years. Hundreds of miRNAs have been identified in many different plant species but there is very little information about the function of sesame (Sesamum indicum L.) miRNAs. For this purpose, in silico prediction of novel sesame miRNAs based on BLAST searches of the expressed sequence tag database was performed, using stringent criterias for miRNA annotation. The secondary structures of their precursor sequences, potential target genes of conserved and novel miRNAs were predicted and subjected to Gene Ontology (GO) annotation. mir447 and mir8140 were reported for the first time in sesame. Enrichment analysis of the GO with biological processes, cellular component and molecular functions revealed that these target genes were potentially involved in different metabolic pathways such as transcription factors, metabolism, growth and development, stress-related and even plant hormones. Results are valuable for figure out the gene regulation mechanism in sesame, using in the medicinal aspect of this plant species. Furthermore, these miRNAs and their profiled targets could provide the improvement of regulation and management, and even development of desirable traits in this plant.
Collapse
Affiliation(s)
- Sevgi Marakli
- Faculty of Arts and Sciences, Department of Biology, Amasya University, Ipekkoy, 05100, Amasya, Turkey.
| |
Collapse
|
6
|
Achakzai HK, Barozai MYK, Din M, Baloch IA, Achakzai AKK. Identification and annotation of newly conserved microRNAs and their targets in wheat (Triticum aestivum L.). PLoS One 2018; 13:e0200033. [PMID: 29990369 PMCID: PMC6038988 DOI: 10.1371/journal.pone.0200033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/18/2018] [Indexed: 11/27/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding and regulatory RNAs produce by cell endogenously. They are 18-26 nucleotides in length and play important roles at the post-transcriptional stage of gene regulation. Evolutionarily, miRNAs are conserved and their conservation plays an important role in the prediction of new miRNAs in different plants. Wheat (Triticum aestivum L.) is an important diet and consumed as second major crop in the world. This significant cereal crop was focused here through comparative genomics-based approach to identify new conserved miRNAs and their targeted genes. This resulted into a total of 212 new conserved precursor miRNAs (pre-miRNAs) belonging to 185 miRNA families. These newly profiled wheat's miRNAs are also annotated for stem-loop secondary structures, length distribution, organ of expression, sense/antisense orientation and characterization from their expressed sequence tags (ESTs). Moreover, fifteen miRNAs along with housekeeping gene were randomly selected and subjected to RT-PCR expressional validation. A total of 32927 targets are also predicted and annotated for these newly profiled wheat miRNAs. These targets are found to involve in 50 gene ontology (GO) enrichment terms and significant processes. Some of the significant targets are RNA-dependent DNA replication (GO:0006278), RNA binding (GO:0003723), nucleic acid binding (GO:0003676), DNA-directed RNA polymerase activity (GO:0003899), magnesium ion transmembrane transporter activity (GO:0015095), antiporter activity (GO:0015297), solute:hydrogen antiporter activity (GO:0015299), protein kinase activity (GO:0004672), ATP binding (GO:0005524), regulation of Rab GTPase activity (GO:0032313) Rab GTPase activator activity (GO:0005097), regulation of signal transduction (GO:0009966) and phosphoprotein phosphatase inhibitor activity (GO:0004864). These findings will be helpful to manage this economically important grain plant for desirable traits through miRNAs regulation.
Collapse
Affiliation(s)
| | | | - Muhammad Din
- Department of Botany, University of Balochistan, Quetta, Balochistan, Pakistan
| | | | | |
Collapse
|
7
|
Gul Z, Barozai MYK, Din M. In-silico based identification and functional analyses of miRNAs and their targets in Cowpea ( Vigna unguiculata L.). AIMS GENETICS 2017; 4:138-165. [PMID: 31435506 PMCID: PMC6690248 DOI: 10.3934/genet.2017.2.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/15/2017] [Indexed: 11/18/2022]
Abstract
Cowpea (Vigna unguiculata L.) is an important leguminous plant and a good diet due to presence of carbohydrate and high protein contents. Currently, only few cowpea microRNAs (miRNAs) are reported. This study is intended to identify and functionally analyze new miRNAs and their targets in cowpea. An in-silico based homology search approach was applied and a total of 46 new miRNAs belonging to 45 families were identified and functionally annotated from the cowpea expressed sequence tags (ESTs). All these potential miRNAs are reported here for the first time in cowpea. The 46 new miRNAs were also observed with stable hairpin structures with minimum free energy, ranging from -10 to -132 kcal mol-1 with an average of -40 kcal mol-1. The length of new cowpea miRNAs are ranged from 18 to 26 nt with an average of 21 nt. The cowpea miRNA-vun-mir4414, is found as pre-miRNA cluster for the first time in cowpea. Furthermore, a set of 138 protein targets were also identified for these newly identified 46 cowpea miRNAs. These targets have significant role in various biological processes, like metabolism, transcription regulation as transcription factor, cell transport, signal transduction, growth & development and structural proteins. These findings are the significant basis to utilize and manage this important leguminous plant-cowpea for better nutritional properties and tolerance for biotic and abiotic stresses.
Collapse
Affiliation(s)
- Zareen Gul
- Department of Botany, University of Balochistan, Sariab Road, Quetta, Pakistan
| | | | - Muhammad Din
- Department of Botany, University of Balochistan, Sariab Road, Quetta, Pakistan
| |
Collapse
|
8
|
Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. Functional Roles of microRNAs in Agronomically Important Plants-Potential as Targets for Crop Improvement and Protection. FRONTIERS IN PLANT SCIENCE 2017; 8:378. [PMID: 28382044 PMCID: PMC5360763 DOI: 10.3389/fpls.2017.00378] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression, mainly through cleavage and/or translation inhibition of the target mRNAs during or after transcription. miRNAs play important roles by regulating a multitude of biological processes in plants which include maintenance of genome integrity, development, metabolism, and adaptive responses toward environmental stresses. The increasing population of the world and their food demands requires focused efforts for the improvement of crop plants to ensure sustainable food production. Manipulation of mRNA transcript abundance via miRNA control provides a unique strategy for modulating differential plant gene expression and miRNAs are thus emerging as the next generation targets for genetic engineering for improvement of the agronomic properties of crops. However, a deeper understanding of its potential and the mechanisms involved will facilitate the design of suitable strategies to obtain the desirable traits with minimum trade-offs in the modified crops. In this regard, this review highlights the diverse roles of conserved and newly identified miRNAs in various food and industrial crops and recent advances made in the uses of miRNAs to improve plants of agronomically importance so as to significantly enhance crop yields and increase tolerance to various environmental stress agents of biotic-or abiotic origin.
Collapse
Affiliation(s)
- Arnaud T. Djami-Tchatchou
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg (Auckland Park Kingsway Campus)Johannesburg, South Africa
| |
Collapse
|
9
|
Sun R, Li C, Zhang J, Li F, Ma L, Tan Y, Wang Q, Zhang B. Differential expression of microRNAs during fiber development between fuzzless-lintless mutant and its wild-type allotetraploid cotton. Sci Rep 2017; 7:3. [PMID: 28127052 PMCID: PMC5428375 DOI: 10.1038/s41598-017-00038-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/07/2016] [Indexed: 11/30/2022] Open
Abstract
Cotton is one of the most important textile crops but little is known how microRNAs regulate cotton fiber development. Using a well-studied cotton fiberless mutant Xu-142-fl, we compared 54 miRNAs for their expression between fiberless mutant and its wildtype. In wildtype Xu-142, 26 miRNAs are involved in cotton fiber initiation and 48 miRNAs are related to primary wall synthesis and secondary wall thickening. Thirty three miRNAs showed different expression in fiber initiation between Xu-142 and Xu-142-fl. These miRNAs potentially target 723 protein-coding genes, including transcription factors, such as MYB, ARF, and LRR. ARF18 was newly predicted targets of miR160a, and miR160a was expressed at higher level in −2DPA of Xu-142-fl compared with Xu-142. Furthermore, the result of Gene Ontology-based term classification (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis shows that miRNA targets were classified to 222 biological processes, 64 cellular component and 42 molecular functions, enriched in 22 KOG groups, and classified into 28 pathways. Together, our study provides evidence for better understanding of miRNA regulatory roles in the process of fiber development, which is helpful to increase fiber yield and improve fiber quality.
Collapse
Affiliation(s)
- Runrun Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | - Chengqi Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | - Jinbao Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | - Fei Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | - Liang Ma
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | - Yangguang Tan
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | - Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, Henan, 453003, People's Republic of China.
| | - Baohong Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, Henan, 453003, People's Republic of China. .,Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
10
|
Din M, Barozai MYK, Baloch IA. Profiling and annotation of microRNAs and their putative target genes in chilli ( Capsicum annuum L.) using ESTs. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Singh N, Srivastava S, Shasany AK, Sharma A. Identification of miRNAs and their targets involved in the secondary metabolic pathways of Mentha spp. Comput Biol Chem 2016; 64:154-162. [DOI: 10.1016/j.compbiolchem.2016.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 04/07/2016] [Accepted: 06/15/2016] [Indexed: 11/28/2022]
|
12
|
Singh N, Srivastava S, Sharma A. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene 2016; 575:570-576. [PMID: 26392033 DOI: 10.1016/j.gene.2015.09.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/20/2015] [Accepted: 09/16/2015] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are a large family of endogenous small RNAs derived from the non-protein coding genes. miRNA regulates the gene expression at the post-transcriptional level and plays an important role in plant development. Zingiber officinale is an important medicinal plant having numerous therapeutic properties. Its bioactive compound gingerol and essential oil posses important pharmacological and physiological activities. In this study, we used a homology search based computational approach for identifying miRNAs in Z. officinale. A total of 16 potential miRNA families (miR167, miR407, miR414, miR5015, miR5021, miR5644, miR5645, miR5656, miR5658, miR5664, miR827, miR838, miR847, miR854, miR862 and miR864) were predicted in ginger. Phylogenetic and conserved analyses were performed for predicted miRNAs. Thirteen miRNA families were found to regulate 300 target transcripts and play an important role in cell signaling, reproduction, metabolic process and stress. To understand the miRNA mediated gene regulatory control and to validate miRNA target predictions, a biological network was also constructed. Gene ontology and pathway analyses were also done. miR5015 was observed to regulate the biosynthesis of gingerol by inhibiting phenyl ammonia lyase (PAL), a precursor enzyme in the biosynthesis of gingerol. Our results revealed that most of the predicted miRNAs were involved in the regulation of rhizome development. miR5021, miR854 and miR838 were identified to regulate the rhizome development and the essential oil biosynthesis in ginger.
Collapse
Affiliation(s)
- Noopur Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 UP, India
| | - Swati Srivastava
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 UP, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 UP, India.
| |
Collapse
|
13
|
Wang Q, Zhang B. MicroRNAs in cotton: an open world needs more exploration. PLANTA 2015; 241:1303-12. [PMID: 25841643 DOI: 10.1007/s00425-015-2282-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/13/2015] [Indexed: 05/28/2023]
Abstract
This paper reviews the progress and current problems in the field of cotton microRNAs. Cotton is not only one of the most important crops in terms of fiber usage and economic value, but also a model species for investigating cell wall and cellulose biosynthesis as well plant polyploidization. Compared with model plant species, such as Arabidopsis and rice, the research on cotton microRNAs (miRNAs) is lagging, although great progress has been made in the past decade. Since the first reports on identifying miRNAs in cotton in 2007, hundreds of miRNAs have been identified using an in silico comparative genome-based approach and direct cloning. Next-generation deep sequencing has opened the door for cotton miRNA research. In cotton, miRNAs are associated with many biological and metabolic processes, including fiber initiation and development, floral development, embryogenesis, and response to biotic and abiotic stresses. However, the majority of current research is focused on miRNA identification. Although several targets have been predicted using computational approaches and degradome sequencing, more functional studies should be performed in the next couple of years to elucidate the roles of miRNAs in cotton fiber development and response to different environmental stresses using transgenic technology. This paper reviews the history, identification, and function of cotton miRNAs as well as future directions for this research.
Collapse
Affiliation(s)
- Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | | |
Collapse
|
14
|
He X, Sun Q, Jiang H, Zhu X, Mo J, Long L, Xiang L, Xie Y, Shi Y, Yuan Y, Cai Y. Identification of novel microRNAs in the Verticillium wilt-resistant upland cotton variety KV-1 by high-throughput sequencing. SPRINGERPLUS 2014; 3:564. [PMID: 25332864 PMCID: PMC4190182 DOI: 10.1186/2193-1801-3-564] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022]
Abstract
Plant microRNAs (miRNAs) play essential roles in the post-transcriptional regulation of gene expression during development, flowering, plant growth, metabolism, and stress responses. Verticillium wilt is one of the vascular disease in plants, which is caused by the Verticillium dahlia and leads to yellowing, wilting, lodging, damage to the vascular tissue, and death in cotton plants. Upland cotton varieties KV-1 have shown resistance to Verticillium wilt in multiple levels. However, the knowledge regarding the post-transcriptional regulation of the resistance is limited. Here two novel small RNA (sRNA) libraries were constructed from the seedlings of upland cotton variety KV-1, which is highly resistant to Verticillium wilts and inoculated with the V991 and D07038 Verticillium dahliae (V. dahliae) of different virulence strains. Thirty-seven novel miRNAs were identified after sequencing these two libraries by the Illumina Solexa system. According to sequence homology analysis, potential target genes of these miRNAs were predicted. With no more than three sequence mismatches between the novel miRNAs and the potential target mRNAs, we predicted 49 target mRNAs for 24 of the novel miRNAs. These target mRNAs corresponded to genes were found to be involved in plant-pathogen interactions, endocytosis, the mitogen-activated protein kinase (MAPK) signaling pathway, and the biosynthesis of isoquinoline alkaloid, terpenoid backbone, primary bile acid and secondary metabolites. Our results showed that some of these miRNAs and their relative gene are involved in resistance to Verticillium wilts. The identification and characterization of miRNAs from upland cotton could help further studies on the miRNA regulatory mechanisms of resistance to Verticillium wilt.
Collapse
Affiliation(s)
- Xiaohong He
- />College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Quan Sun
- />College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Huaizhong Jiang
- />College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Xiaoyan Zhu
- />College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Jianchuan Mo
- />State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Lu Long
- />State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Liuxin Xiang
- />College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Yongfang Xie
- />College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Yuzhen Shi
- />State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan 455000 China
| | - Youlu Yuan
- />State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan 455000 China
| | - Yingfan Cai
- />State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, 475004 China
- />College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| |
Collapse
|
15
|
Sun R, Wang Q, Ma J, He Q, Zhang B. Differentiated expression of microRNAs may regulate genotype-dependent traits in cotton. Gene 2014; 547:233-8. [PMID: 24971502 DOI: 10.1016/j.gene.2014.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/03/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
miRNA is an exogenous non-coding RNA with 21-24nt in length, which plays a crucial role in almost all biological processes. In plants, miRNAs regulate organ development, phase change, signal transduction and response to different biotic and abiotic stresses at the post-transcriptional levels. Although there are many studies on plant miRNAs, no studies have been focused on the genotype dependence. Genotype-dependent traits may be controlled by the differential expression of certain miRNAs. To test this hypothesis, we investigated the expression profile patterns of 11 selected miRNAs in 5 different organs in 5 different cotton cultivars and their implication on plant development. Our results demonstrate that miRNAs have different expression patterns in different plant organs in different genotypes, which implicate their different traits, including early flowering. miR172 is a miRNA controlling floral development and phase change; our results show that miR172 has a higher expression level in the flower bud than in any other organ, our results also show that Baimian cultivars have a higher expression of miR172 than TM-1. This suggests that Baimian cultivars have an earlier transition from vegetable growth to reproductive growth, which is confirmed by our development data on floral branch development. Our result also shows that several miRNAs, including miR159 and miR162, were highly expressed in Baimian cultivars. The results obtained in this study would provide new insight for improving cotton using miRNA-based biotechnology.
Collapse
Affiliation(s)
- Runrun Sun
- Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Qinglian Wang
- Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, China
| | - Jun Ma
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Qiuling He
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Baohong Zhang
- Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
16
|
Din M, Barozai MYK. Profiling microRNAs and their targets in an important fleshy fruit: tomato (Solanum lycopersicum). Gene 2013; 535:198-203. [PMID: 24315821 DOI: 10.1016/j.gene.2013.11.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 12/11/2022]
Abstract
Tomato (Solanum lycopersicum) is an important and the most useful plant based diet. It is widely used for its antioxidant property. Presently, only two digits, tomato microRNAs (miRNAs) are reported in miRBase: a miRNA database. This study is aimed to profile and characterize more miRNAs and their targets in tomato. A comprehensive comparative genomic approach is applied and a total of 109 new miRNAs belonging to 106 families are identified and characterized from the tomato expressed sequence tags (ESTs). All these potential miRNAs are profiled for the first time in tomato. The profiled miRNAs are also observed with stable stem-loop structures (Precursor-miRNAs), whose length ranges from 45 to 329 nucleotides (nt) with an average of 125 nt. The mature miRNAs are found in the stem of pre-miRNAs and their length ranges from 19 to 24 nt with an average of 21 nt. Furthermore, twelve miRNAs are randomly selected and experimentally validated through RT-PCR. A total of 406 putative targets are also predicted for the newly 109 tomato miRNAs. These targets are involved in structural protein, metabolism, transcription factor, growth & development, stress related, signaling pathways, storage proteins and other vital processes. Some important proteins like; 9-cisepoxycarotenoid dioxygenase (NCED), transcription factor MYB, ATP-binding cassette transporters, terpen synthase, 14-3-3 and TIR-NBS proteins are also predicted as putative targets for tomato miRNAs. These findings improve a baseline data of miRNAs and their targets in tomato. This baseline data can be utilized to fine tune this important fleshy fruit for nutritional & antioxidant properties and also under biotic & abiotic stresses.
Collapse
Affiliation(s)
- Muhammad Din
- Department of Botany, University of Balochistan, Sariab Road Quetta, Pakistan
| | | |
Collapse
|
17
|
Chen X, Gao W, Zhang J, Zhang X, Lin Z. Linkage mapping and expression analysis of miRNAs and their target genes during fiber development in cotton. BMC Genomics 2013; 14:706. [PMID: 24131852 PMCID: PMC4007520 DOI: 10.1186/1471-2164-14-706] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/08/2013] [Indexed: 02/21/2023] Open
Abstract
Background MicroRNAs (miRNAs) are small, endogenously expressed, non-coding RNA molecules involved in gene transcription and expression that combine with specific mRNA site of target genes to inhibit protein synthesis or degrade mRNA. Since the first plant miRNA was reported in 2002, numerous new miRNAs and their targets have been discovered via high-throughput sequencing and computational approaches. However, the genetic variation of miRNA genes is poorly understood due to the lack of miRNA-specific DNA markers. Results To study the genetic variation and map miRNAs and their putative target genes in cotton, we designed specific primers based on pre-miRNAs and published putative target genes. A total of 83 pre-miRNA primers and 1,255 putative target gene primers were surveyed, and 9 pre-miRNA polymorphic loci were mapped on 7 of the 26 tetraploid cotton chromosomes. Furthermore, 156 polymorphic loci of the target genes were mapped on the cotton genome. To map more miRNA loci, miRNA-based SRAP (sequence-related amplified polymorphism) markers were used to map an additional 54 polymorphic loci on the cotton genome with the exception of Chr01, Chr22, and Chr24. Finally, a network between miRNAs and their targets was constructed. All pre-miRNAs and 98 putative target genes were selected for RT-PCR analysis, revealing unique expression patterns across different fiber development stages between the mapping parents. Conclusions Our data provide an overview of miRNAs, their putative targets, and their network in cotton as well as comparative expression analyses between Gossypium hirsutum and G. barbadense. These data provide a foundation for understanding miRNA regulation during cotton fiber development.
Collapse
Affiliation(s)
| | | | | | | | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement & National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, Hubei, China.
| |
Collapse
|
18
|
Barozai MYK, Din M, Baloch IA. Structural and functional based identification of the bean (Phaseolus) microRNAs and their targets from expressed sequence tags. ACTA ACUST UNITED AC 2013; 14:11-8. [PMID: 23605779 DOI: 10.1007/s10969-013-9152-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/01/2013] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small, 18-26 nucleotides long, non-coding RNAs that play role in post-transcriptional gene regulation. Many of these are evolutionarily conserved. This suggests a powerful approach to predict new miRNAs in other species. In this research, structural and functional approaches were combined to make computational prediction of potential miRNAs and their targets in Bean (Phaseolus). Total 55 novel miRNAs were detected from 38 miRNAs families in Bean (Phaseolus). These families are; miR156, 160, 164, 168, 170, 171, 172, 319, 393, 396, 397, 398, 408, 414, 438, 444, 535, 1310, 1424, 1426, 1848, 1860, 1863, 2055, 2091, 2093, 2094, 2102, 2103, 2105, 2864, 2866, 2925, 2926, 4221, 4245, 4246 and 4250. In the 55 putative miRNAs; 28 miRNAs belong to Phaseolus acutifolius, 23 to Phaseolus vulgaris, 4 to Phaseolus coccineus. All the mature miRNAs reside in the stem portion of the hairpin structures. Total 146 potential protein targets were predicted for these miRNAs.
Collapse
|
19
|
Zhang B, Wang M, Zhang X, Li C, Wang Q. Overexpression of miR 156 in cotton via Agrobacterium-mediated transformation. Methods Mol Biol 2013; 958:189-197. [PMID: 23143494 DOI: 10.1007/978-1-62703-212-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
microRNAs (miRNAs) are an extensive class of newly identified endogenous small regulatory molecules. Many studies show that miRNAs play a critical role in almost all biological and metabolic progresses through targeting protein-coding genes for mRNA cleavage or translation inhibition. Many miRNAs are also identified from cotton using computational and/or experimental approaches, including the next generation deep sequencing technology. However, the function of the majority of miRNAs are unclear. In this chapter, we describe a detailed method for overexpressing miR 156 in cotton using Agrobacterium-mediated genetic transformation. This provides an approach to investigate the function and regulatory mechanism of miRNAs in cotton.
Collapse
Affiliation(s)
- Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, USA.
| | | | | | | | | |
Collapse
|
20
|
Romanel E, Silva TF, Corrêa RL, Farinelli L, Hawkins JS, Schrago CEG, Vaslin MFS. Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during Cotton leafroll dwarf polerovirus (CLRDV) infection. PLANT MOLECULAR BIOLOGY 2012; 80:443-60. [PMID: 22987114 DOI: 10.1007/s11103-012-9959-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 05/13/2023]
Abstract
Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.
Collapse
Affiliation(s)
- Elisson Romanel
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
21
|
Li T, Chen J, Qiu S, Zhang Y, Wang P, Yang L, Lu Y, Shi J. Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar. PLoS One 2012; 7:e43451. [PMID: 22952685 PMCID: PMC3430688 DOI: 10.1371/journal.pone.0043451] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 07/20/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To date, several studies have indicated a major role for microRNAs (miRNAs) in regulating plant development, but miRNA-mediated regulation of the developing somatic embryo is poorly understood, especially during early stages of somatic embryogenesis in hardwood plants. In this study, Solexa sequencing and miRNA microfluidic chips were used to discover conserved and species-specific miRNAs during somatic embryogenesis of hybrid yellow poplar (Liriodendron tulipifera×L. chinense). METHODOLOGY/PRINCIPAL FINDINGS A total of 17,214,153 reads representing 7,421,623 distinct sequences were obtained from a short RNA library generated from small RNAs extracted from all stages of somatic embryos. Through a combination of deep sequencing and bioinformatic analyses, we discovered 83 sequences with perfect matches to known miRNAs from 33 conserved miRNA families and 273 species-specific candidate miRNAs. MicroRNA microarray results demonstrated that many conserved and species-specific miRNAs were expressed in hybrid yellow poplar embryos. In addition, the microarray also detected another 149 potential miRNAs, belonging to 29 conserved families, which were not discovered by deep sequencing analysis. The biological processes and molecular functions of the targets of these miRNAs were predicted by carrying out BLAST search against Arabidopsis thaliana GenBank sequences and then analyzing the results with Gene Ontology. CONCLUSIONS Solexa sequencing and microarray hybridization were used to discover 232 candidate conserved miRNAs from 61 miRNA families and 273 candidate species-specific miRNAs in hybrid yellow poplar. In these predicted miRNAs, 64 conserved miRNAs and 177 species-specific miRNAs were detected by both sequencing and microarray hybridization. Our results suggest that miRNAs have wide-ranging characteristics and important roles during all stages of somatic embryogenesis in this economically important species.
Collapse
Affiliation(s)
- Tingting Li
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Shuai Qiu
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Yanjuan Zhang
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Pengkai Wang
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Liwei Yang
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Ye Lu
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Jisen Shi
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
- * E-mail:
| |
Collapse
|
22
|
The novel 172 sheep (Ovis aries) microRNAs and their targets. Mol Biol Rep 2012; 39:6259-66. [PMID: 22302387 DOI: 10.1007/s11033-012-1446-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding and regulatory RNAs about ≈22 nucleotides in length. The comparative genomics approach due to their conserved nature is a good source for the novel miRNAs discovery. In this study, total 172 novel miRNAs from 140 precursor sequences belonging to 114 families were identified in sheep (Ovis aries), the most important livestock animal. All the miRNA families (oar-mir-95, 129, 130, 186, 214, 219, 223, 324, 339, 423, 450, 499, 544, 562, 568, 584, 669, 671, 763, 935, 1281, 1282, 1306, 1552, 1584, 1587, 1603, 1607, 1706, 1711, 1718, 1732, 1738, 1761, 1771, 1777, 1778, 1780, 1807, 1843, 1895, 1930, 2127, 2139, 2182, 2284, 2287, 2295, 2296, 2310, 2311, 2314, 2315, 2316, 2320, 2359, 2378, 2381, 2382, 2395, 2400, 2404, 2410, 2412, 2423, 2426, 2435, 2470, 2477, 2482, 2487, 2881, 2883, 2885, 2888, 2889, 2896, 2901, 2904, 2917, 2964, 3063, 3064, 3074, 3080, 3432, 3529, 3533, 3613, 3649, 3654, 3658, 3661, 3662, 3940, 3960, 4273, 4426, 4447, 4459, 4468, 4493, 4507, 4647, 4680, 4785, 4788, 4800, 5102, 5105, 5109, 5115, 5125 and 5132) are found for the first time in Sheep. All 140 miRNA precursors form stable minimum free energy stem loop and the mature miRNAs reside in the stem portion of the stem loop structure. Their putative targets are involved in transcription factors (26%), signaling (19%), metabolism (18%), transportation (10%), immunity (9%), cancer and tumor related (5%), growth and development (5%), stress related (4%), and structural proteins (3%).
Collapse
|
23
|
Wang ZM, Xue W, Dong CJ, Jin LG, Bian SM, Wang C, Wu XY, Liu JY. A comparative miRNAome analysis reveals seven fiber initiation-related and 36 novel miRNAs in developing cotton ovules. MOLECULAR PLANT 2012; 5:889-900. [PMID: 22138860 DOI: 10.1093/mp/ssr094] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An increasing number of microRNAs (miRNAs) have been shown to play crucial regulatory roles in the process of plant development. Here, we used high-throughput sequencing combined with computational analysis to characterize miRNAomes from the ovules of wild-type upland cotton and a fiberless mutant during fiber initiation. Comparative miRNAome analysis combined with northern blotting and RACE-PCR revealed seven fiber initiation-related miRNAs expressed in cotton ovules and experimentally validated targets of these miRNAs are involved in different cellular responses and metabolic processes, including transcriptional regulation, auxin and gibberellin signal transduction, actin bundles, and lignin biosynthesis. This paper describes a complex regulatory network consisting of these miRNAs expressed in cotton ovules to coordinate fiber initiation responses. In addition, 36 novel miRNAs and two conserved miRNAs were newly identified, nearly doubling the number of known cotton miRNA families to a total of 78. Furthermore, a chromatin remodeling complex subunit and a pre-mRNA splicing factor are shown for the first time to be miRNA targets. To our knowledge, this study is the first systematic investigation of fiber initiation-related miRNAs and their targets in the developing cotton ovule, deepening our understanding of the important regulatory functions of miRNAs in cotton fiber initiation.
Collapse
Affiliation(s)
- Zheng-Ming Wang
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Barozai MYK. The MicroRNAs and their targets in the channel catfish (Ictalurus punctatus). Mol Biol Rep 2012; 39:8867-72. [PMID: 22729904 DOI: 10.1007/s11033-012-1753-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding and negative regulatory RNAs about 22 nucleotides. They are mostly conserved among the organisms and this conservation makes them a good source for the identification of novel miRNAs by computational genomic homology. The miRNA repertoire of the major aquaculture species, channel catfish (Ictalurus punctatus), is unknown. This study is focused on computational search for novel miRNA homologs and their targets along with their characterization in channel catfish. Total 60 novel precursor miRNAs having 73 mature sequences belong to 45 families in channel catfish were identified and characterized. They belong to the miRNA families; ipu-let-7, miR-7, 10, 16, 24, 29, 32, 93, 99, 101, 105, 126, 127, 133, 135, 141, 142, 143, 144 145, 148, 150, 152, 153, 203, 210, 214, 221, 223, 293, 429, 430, 466, 682, 731, 737, 1388, 1594, 1642, 1701, 1782, 1814, 2145, 2182 and 3074 are reported for the first time in channel catfish. All the 73 mature miRNAs are observed in the stem portion of the stable minimum free energy stem-loop structures. Total 341 proteins targeted by the novel channel catfish miRNAs were also identified. They are involved in immune-related (32 %), signaling (15 %), transcription factors (15 %), metabolism (12 %), transportation (8 %), growth & development (5 %), structural (5 %) and others (8 %) proteins.
Collapse
|
25
|
Barozai MYK. Identification and characterization of the microRNAs and their targets in Salmo salar. Gene 2012; 499:163-8. [PMID: 22425976 DOI: 10.1016/j.gene.2012.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/04/2012] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding and regulatory RNAs about 18 to 26 nucleotides long. Their conserved nature among the various organisms makes them a good source of new miRNAs discovery by comparative genomics approach. The study resulted in novel 75 precursor miRNAs containing 102 mature sequences belonging to 46 families in an important aquatic environmental monitoring fish (Salmo salar). All the miRNA families (let-7, mir-1, 7, 9, 21, 22, 92, 96, 122, 126, 128, 129, 132, 133, 142, 144, 147, 148, 196, 202, 212, 223, 375, 429, 430, 449, 451, 457, 466, 682, 700, 1388, 1594, 1600, 1607, 1616, 1642, 1681, 1701, 1720, 1772, 1782, 1787, 1814, 2189 and 3540) are found for the first time in S. salar. All 75 miRNA precursors form stable minimum free energy stem loop and the mature miRNAs reside in the stem portion of the stem loop structure. Their target proteins are involved in transcription factors (28%), metabolism (23%), signaling (18%), transportation (9%), immunity (8%), stress related activity (5%), cancer and tumor related activity (5%), growth and development (3%), and cell division (1%).
Collapse
|
26
|
Studholme DJ. Deep sequencing of small RNAs in plants: applied bioinformatics. Brief Funct Genomics 2011; 11:71-85. [PMID: 22184332 DOI: 10.1093/bfgp/elr039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small RNAs, including microRNA and short-interfering RNAs, play important roles in plants. In recent years, developments in sequencing technology have enabled the large-scale discovery of sRNAs in various cells, tissues and developmental stages and in response to various stresses. This review describes the bioinformatics challenges to analysing these large datasets of short-RNA sequences and some of the solutions to those challenges.
Collapse
|
27
|
Yin Z, Li Y, Yu J, Liu Y, Li C, Han X, Shen F. Difference in miRNA expression profiles between two cotton cultivars with distinct salt sensitivity. Mol Biol Rep 2011; 39:4961-70. [PMID: 22160515 DOI: 10.1007/s11033-011-1292-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 11/30/2011] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that play important roles in many developmental processes and stress responses in plants and animals. Cotton (Gossypium hirsutum L.) is considered a relatively salt-tolerant non-halophytic plant species. To study the role of miRNAs in salt adaptation, a salt-tolerant cotton cultivar SN-011 and a salt-sensitive cultivar LM-6 were used to detect differentially expressed miRNAs. Using miRNA microarray analysis and a computational approach, 17 cotton miRNAs belonging to eight families were identified. Although they are conserved, 12 of them showed a genotype-specific expression model in both the cultivars. Under salt stress treatment, miR156a/d/e, miR169, miR535a/b and miR827b were dramatically down-regulated in SN-011, while miR167a, miR397a/b and miR399a were up-regulated. Only miR159 was found to be down-regulated in LM-6 under salt stress. To gain insight into their functional significance, 26 target genes were predicted and their functional similarity was further analyzed. Quantitative real-time PCR showed that the expression of seven target genes showed a significant inverse correlation with corresponding miRNAs. These differentially expressed miRNAs can help in further study into the role of transcriptome homeostasis in the adaptation responses of cotton to salt.
Collapse
Affiliation(s)
- Zujun Yin
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Barozai MYK, Baloch IA, Din M. Identification of MicroRNAs and their targets in Helianthus. Mol Biol Rep 2011; 39:2523-32. [PMID: 21670966 DOI: 10.1007/s11033-011-1004-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/01/2011] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs about 20-24 nucleotides long, playing regulatory role. The conserved nature among the various organisms makes them a good source of new miRNAs discovery by comparative genomics approach using bioinformatic tools. A systematic search approach was used for inter-species homologs of miRNA precursors (pre-miRNAs), from known Helianthus expressed sequence tags (ESTs). The study resulted in 61 novel miRNAs belonging to 34 families from Helianthus ESTs. The 28 miRNA families; mir 159,160, 164, 170, 390, 393, 413, 415, 419, 426, 446, 530, 822, 842, 846, 1310, 1888, 2086, 2657, 2667, 2678, 2659, 2911, 2938, 3440, 3521, 3623, and 3630 are reporting for the first time in Helianthus. In the 61 new miRNAs, 20 are from H. tuberosus, 17 miRNAs belong to H. annus, 8 are from H. ciliaris, 5 to H. exilis, 4 is from H. argophyllous, H. petiolaris each and 3 are from H. paradoxus. All the pre-miRNAs form stable minimum free energy (mfe) stem-loop structure as their orthologues form and the mature miRNAs reside in the stem portion of the stem-loop structures. Their targets consist of growth and development related, transcription factors, signalling pathway kinases, stress resistant proteins and transport related proteins.
Collapse
|
29
|
Pang M, Xing C, Adams N, Rodriguez-Uribe L, Hughs SE, Hanson SF, Zhang J. Comparative expression of miRNA genes and miRNA-based AFLP marker analysis in cultivated tetraploid cottons. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:824-830. [PMID: 21134704 DOI: 10.1016/j.jplph.2010.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 10/19/2010] [Accepted: 10/30/2010] [Indexed: 05/30/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that down-regulate gene expression in a sequence specific manner to control plant growth and development. The identification and characterization of miRNAs are critical steps in finding their target genes and elucidating their functions. The objective of the present study was to assess the genetic variation of miRNA genes through expression comparisons and miRNA-based AFLP marker analysis. Seven miRNAs were first selected for RT-PCR and four for quantitative RT-PCR analysis that showed considerably high or differential expression levels in early stages of boll development. Except for miR160a, differential gene expression of miR171, 390a, and 396a was detected in early developing bolls at one or more timepoints between two cultivated cotton cultivars, Pima Phy 76 (Gossypium barbadense) and Acala 1517-99 (Gossypium hirsutum). Our further work demonstrated that genetic diversity of miRNA genes can be assessed by miRNA-AFLP analysis using primers designed from 22 conserved miRNA genes in combination with AFLP primers. Homologous miRNA genes can be also identified and isolated for sequencing and confirmation using this homology-based genotyping approach. This strategy offers an alternative to isolating a full length of miRNA genes and their up-stream and down-stream sequences. The significance of the expression and sequence differences of miRNAs between cotton species or genotypes needs further studies.
Collapse
Affiliation(s)
- Mingxiong Pang
- Department of Plant and Environmental Sciences, New Mexico State University, MSC 3Q, Las Cruces, NM 88003, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Identification of biotic and abiotic stress up-regulated ESTs in Gossypium arboreum. Mol Biol Rep 2011; 39:1011-8. [PMID: 21556756 DOI: 10.1007/s11033-011-0826-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 05/03/2011] [Indexed: 12/25/2022]
Abstract
Asiatic desi cotton (Gossypium arboreum) shows great potential against biotic and abiotic stresses. The stress resistant nature makes it a best source for the identification of biotic and abiotic stress resistant genes. As in many plants same set of genes show responding behavior against the various abiotic and biotic stresses. Thus in the present study the ESTs from the G. arboreum drought stressed leaves were subjected to find the up-regulated ESTs in abiotic and biotic stresses through homology and in-silico analysis. A cDNA library has been constructed from the drought stressed G. arboreum plant. 778 clones were randomly picked and sequenced. All these sequences were subjected to in-silico identification of biotic and abiotic up-regulated ESTs. Total 39 abiotic and biotic up-regulated ESTs were identified. The results were further validated by real-time PCR; by randomly selection of ten ESTs. These findings will help to develop stress resistant crop varieties for better yield and growth performance under stresses.
Collapse
|
31
|
Barozai MYK, Din M, Baloch IA. Identification of microRNAs in ecological model plant <i>Mimulus</i>. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jbpc.2011.23037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Identification of homologous microRNAs in 56 animal genomes. Genomics 2010; 96:1-9. [PMID: 20347954 DOI: 10.1016/j.ygeno.2010.03.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/07/2010] [Accepted: 03/17/2010] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are endogenous non-protein-coding RNAs of approximately 22 nucleotides. Thousands of miRNA genes have been identified (computationally and/or experimentally) in a variety of organisms, which suggests that miRNA genes have been widely shared and distributed among species. Here, we used unique miRNA sequence patterns to scan the genome sequences of 56 bilaterian animal species for locating candidate miRNAs first. The regions centered surrounding these candidate miRNAs were then extracted for folding and calculating the features of their secondary structure. Using a support vector machine (SVM) as a classifier combined with these features, we identified an additional 13,091 orthologous or paralogous candidate pre-miRNAs, as well as their corresponding candidate mature miRNAs. Stem-loop RT-PCR and deep sequencing methods were used to experimentally validate the prediction results in human, medaka and rabbit. Our prediction pipeline allows the rapid and effective discovery of homologous miRNAs in a large number of genomes.
Collapse
|
33
|
Cloning and validation of novel miRNA from basmati rice indicates cross talk between abiotic and biotic stresses. Mol Genet Genomics 2010; 282:463-74. [PMID: 20131478 DOI: 10.1007/s00438-009-0478-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Most of the physiological processes are controlled by the small RNAs in several organisms including plants. A huge database exists on one type of small RNA, i.e., microRNAs (miRs) identified from diverse species. However, the processes of data-mining of miRs in most of the species are still incomplete. Rice feeds the hungry trillions and hence understanding its developmental processes as well as its stress biology, which might be largely controlled by the small RNA pathways, is certainly a worthwhile task. Here, we report the cloning and identification of approximately 40 new putative miRs from local basmati rice variety in accordance to the annotation suggested by Meyers et al. (Plant Cell 20:3186-3190, 2008). About 23 sequences were derived from rice exposed to salt stress while 18 were derived from rice infected with tungro virus. A few of these putative miRs were common to both. Our data showed that at least two of these miRs were up-regulated in response to both abiotic and biotic stresses. The miR target predictions indicate that most of the putative miRs target specific metabolic processes. The up-regulation of similar miRs in response to two entirely different types of stresses suggests a converging functional role of miRs in managing various stresses. Our findings suggest that more rice miRs need to be identified and a thorough understanding of the function of such miRs will help unravel the mysteries of rice stress biology.
Collapse
|
34
|
Pang M, Woodward AW, Agarwal V, Guan X, Ha M, Ramachandran V, Chen X, Triplett BA, Stelly DM, Chen ZJ. Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.). Genome Biol 2009. [PMID: 19889219 DOI: 10.1186/gb‐2009‐10‐11‐r122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cotton fiber development undergoes rapid and dynamic changes in a single cell type, from fiber initiation, elongation, primary and secondary wall biosynthesis, to fiber maturation. Previous studies showed that cotton genes encoding putative MYB transcription factors and phytohormone responsive factors were induced during early stages of ovule and fiber development. Many of these factors are targets of microRNAs (miRNAs) that mediate target gene regulation by mRNA degradation or translational repression. RESULTS Here we sequenced and analyzed over 4 million small RNAs derived from fiber and non-fiber tissues in cotton. The 24-nucleotide small interfering RNAs (siRNAs) were more abundant and highly enriched in ovules and fiber-bearing ovules relative to leaves. A total of 31 miRNA families, including 27 conserved, 4 novel miRNA families and a candidate-novel miRNA, were identified in at least one of the cotton tissues examined. Among 32 miRNA precursors representing 19 unique miRNA families identified, 7 were previously reported, and 25 new miRNA precursors were found in this study. Sequencing, miRNA microarray, and small RNA blot analyses showed a trend of repression of miRNAs, including novel miRNAs, during ovule and fiber development, which correlated with upregulation of several target genes tested. Moreover, 223 targets of cotton miRNAs were predicted from the expressed sequence tags derived from cotton tissues, including ovules and fibers. The cotton miRNAs examined triggered cleavage in the predicted sites of the putative cotton targets in ovules and fibers. CONCLUSIONS Enrichment of siRNAs in ovules and fibers suggests active small RNA metabolism and chromatin modifications during fiber development, whereas general repression of miRNAs in fibers correlates with upregulation of a dozen validated miRNA targets encoding transcription and phytohormone response factors, including the genes found to be highly expressed in cotton fibers. Rapid and dynamic changes in siRNAs and miRNAs may contribute to ovule and fiber development in allotetraploid cotton.
Collapse
Affiliation(s)
- Mingxiong Pang
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, One University Station, A-4800, Austin, TX 78712, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pang M, Woodward AW, Agarwal V, Guan X, Ha M, Ramachandran V, Chen X, Triplett BA, Stelly DM, Chen ZJ. Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.). Genome Biol 2009; 10:R122. [PMID: 19889219 PMCID: PMC3091316 DOI: 10.1186/gb-2009-10-11-r122] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/19/2009] [Accepted: 11/04/2009] [Indexed: 11/10/2022] Open
Abstract
Rapid and dynamic changes in the expression of small RNAs are seen during ovule and fiber development in allotetraploid cotton. Background Cotton fiber development undergoes rapid and dynamic changes in a single cell type, from fiber initiation, elongation, primary and secondary wall biosynthesis, to fiber maturation. Previous studies showed that cotton genes encoding putative MYB transcription factors and phytohormone responsive factors were induced during early stages of ovule and fiber development. Many of these factors are targets of microRNAs (miRNAs) that mediate target gene regulation by mRNA degradation or translational repression. Results Here we sequenced and analyzed over 4 million small RNAs derived from fiber and non-fiber tissues in cotton. The 24-nucleotide small interfering RNAs (siRNAs) were more abundant and highly enriched in ovules and fiber-bearing ovules relative to leaves. A total of 31 miRNA families, including 27 conserved, 4 novel miRNA families and a candidate-novel miRNA, were identified in at least one of the cotton tissues examined. Among 32 miRNA precursors representing 19 unique miRNA families identified, 7 were previously reported, and 25 new miRNA precursors were found in this study. Sequencing, miRNA microarray, and small RNA blot analyses showed a trend of repression of miRNAs, including novel miRNAs, during ovule and fiber development, which correlated with upregulation of several target genes tested. Moreover, 223 targets of cotton miRNAs were predicted from the expressed sequence tags derived from cotton tissues, including ovules and fibers. The cotton miRNAs examined triggered cleavage in the predicted sites of the putative cotton targets in ovules and fibers. Conclusions Enrichment of siRNAs in ovules and fibers suggests active small RNA metabolism and chromatin modifications during fiber development, whereas general repression of miRNAs in fibers correlates with upregulation of a dozen validated miRNA targets encoding transcription and phytohormone response factors, including the genes found to be highly expressed in cotton fibers. Rapid and dynamic changes in siRNAs and miRNAs may contribute to ovule and fiber development in allotetraploid cotton.
Collapse
Affiliation(s)
- Mingxiong Pang
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, One University Station, A-4800, Austin, TX 78712, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z. PMRD: plant microRNA database. Nucleic Acids Res 2009; 38:D806-13. [PMID: 19808935 PMCID: PMC2808885 DOI: 10.1093/nar/gkp818] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MicroRNAs (miRNA) are approximately 21 nucleotide-long non-coding small RNAs, which function as post-transcriptional regulators in eukaryotes. miRNAs play essential roles in regulating plant growth and development. In recent years, research into the mechanism and consequences of miRNA action has made great progress. With whole genome sequence available in such plants as Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Glycine max, etc., it is desirable to develop a plant miRNA database through the integration of large amounts of information about publicly deposited miRNA data. The plant miRNA database (PMRD) integrates available plant miRNA data deposited in public databases, gleaned from the recent literature, and data generated in-house. This database contains sequence information, secondary structure, target genes, expression profiles and a genome browser. In total, there are 8433 miRNAs collected from 121 plant species in PMRD, including model plants and major crops such as Arabidopsis, rice, wheat, soybean, maize, sorghum, barley, etc. For Arabidopsis, rice, poplar, soybean, cotton, medicago and maize, we included the possible target genes for each miRNA with a predicted interaction site in the database. Furthermore, we provided miRNA expression profiles in the PMRD, including our local rice oxidative stress related microarray data (LC Sciences miRPlants_10.1) and the recently published microarray data for poplar, Arabidopsis, tomato, maize and rice. The PMRD database was constructed by open source technology utilizing a user-friendly web interface, and multiple search tools. The PMRD is freely available at http://bioinformatics.cau.edu.cn/PMRD. We expect PMRD to be a useful tool for scientists in the miRNA field in order to study the function of miRNAs and their target genes, especially in model plants and major crops.
Collapse
Affiliation(s)
- Zhenhai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry and State Key Laboratory for Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kwak PB, Wang QQ, Chen XS, Qiu CX, Yang ZM. Enrichment of a set of microRNAs during the cotton fiber development. BMC Genomics 2009; 10:457. [PMID: 19788742 PMCID: PMC2760587 DOI: 10.1186/1471-2164-10-457] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 09/29/2009] [Indexed: 01/18/2023] Open
Abstract
Background Cotton (Gossypium hirsutum) is one of the most important economic crops and provides excellent fibers for textile manufacture. In addition to its industrial and agricultural importance, the fiber cell (plant trichome) also is a biological model system for exploring gene expression and regulation. Small RNAs regulate many aspects of plant growth and development. However, whether small RNAs are involved in regulation of fiber cell development is unknown. Results We adopted a deep sequencing approach developed by Solexa (Illumina Inc.) to investigate global expression and complexity of small RNAs during cotton fiber initiation and development. We constructed two small RNA libraries prepared from wild type (WT) and fuzz/lintless (fl Mutant in the WT background) cotton ovules, respectively. Each library was sequenced individually and generated more than 6-7 million short sequences, resulting in a total of over 13 million sequence reads. At least 22 conserved candidate miRNA families including 111 members were identified. Seven families make up the vast majority of expressed miRNAs in developing cotton ovules. In total 120 unique target genes were predicted for most of conserved miRNAs. In addition, we identified 2 cell-type-specific novel miRNA candidates in cotton ovules. Our study has demonstrated significant differences in expression abundance of miRNAs between the wild-type and mutant, and suggests that these differentially expressed miRNAs potentially regulate transcripts distinctly involved in cotton fiber development. Conclusion The present study is the first to deep sequence the small RNA population of G. hirsutum ovules where cotton fibers initiate and develop. Millions of unique miRNA sequences ranging from 18~28 nt in length were detected. Our results support the importance of miRNAs in regulating the development of different cell types and indicate that identification of a comprehensive set of miRNAs in cotton fiber cells would facilitate our understanding of the regulatory mechanisms for fiber cell initiation and elongation.
Collapse
Affiliation(s)
- Pieter Bas Kwak
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, PR China.
| | | | | | | | | |
Collapse
|
38
|
Ruan MB, Zhao YT, Meng ZH, Wang XJ, Yang WC. Conserved miRNA analysis in Gossypium hirsutum through small RNA sequencing. Genomics 2009; 94:263-8. [PMID: 19628031 DOI: 10.1016/j.ygeno.2009.07.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/09/2009] [Accepted: 07/12/2009] [Indexed: 12/20/2022]
Abstract
Several miRNA family and their targets in cotton had been identified by computational methods based on the conserved characterization of miRNAs. So far, there are no experiments to validate the existence of miRNAs in cotton. In this study, to analyze the miRNAs in cotton, a small RNA library of sequences from 18 to 26 nt of Gossypium hirsutum seedling has been built by high-throughput sequencing. In this library, 34 conserved miRNA families were identified by homology search and the miRNA sequences of them were also found in the library. Furthermore, potential targets of these conserved miRNA families were predicted in cotton TC library. However, based on the mature miRNAs and their miR sequences, only 8 conserved miRNA encoding loci (miR156, miR157a, miR157b, miR162, miR164, miR393, miR399, miR827) were identified from cotton EST sequences. Multiple encoding loci of some miRNAs were identified by comparing the cloned miRNA and miR sequences.
Collapse
Affiliation(s)
- Meng-Bin Ruan
- Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | |
Collapse
|
39
|
Devor EJ, Huang L, Abdukarimov A, Abdurakhmonov IY. Methodologies for in vitro cloning of small RNAs and application for plant genome(s). INTERNATIONAL JOURNAL OF PLANT GENOMICS 2009; 2009:915061. [PMID: 19551152 PMCID: PMC2699438 DOI: 10.1155/2009/915061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/30/2009] [Indexed: 02/05/2023]
Abstract
The "RNA revolution" that started at the end of the 20th century with the discovery of post-transcriptional gene silencing and its mechanism via RNA interference (RNAi) placed tiny 21-24 nucleotide long noncoding RNAs (ncRNAs) in the forefront of biology as one of the most important regulatory elements in a host of physiologic processes. The discovery of new classes of ncRNAs including endogenous small interfering RNAs, microRNAs, and PIWI-interacting RNAs is a hallmark in the understanding of RNA-dependent gene regulation. New generation high-throughput sequencing technologies further accelerated the studies of this "tiny world" and provided their global characterization and validation in many biological systems with sequenced genomes. Nevertheless, for the many "yet-unsequenced" plant genomes, the discovery of small RNA world requires in vitro cloning from purified cellular RNAs. Thus, reproducible methods for in vitro small RNA cloning are of paramount importance and will remain so into the foreseeable future. In this paper, we present a description of existing small RNA cloning methods as well as next-generation sequencing methods that have accelerated this research along with a description of the application of one in vitro cloning method in an initial small RNA survey in the "still unsequenced" allotetraploid cotton genome.
Collapse
Affiliation(s)
- Eric J. Devor
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, 3234 MERF, Iowa City, IA 52242, USA
| | - Lingyan Huang
- Molecular Genetics, Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Abdusattor Abdukarimov
- Center of Genomic Technologies, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan, Yuqori Yuz, Qibray region Tashkent district, Tashkent 111226, Uzbekistan
| | - Ibrokhim Y. Abdurakhmonov
- Center of Genomic Technologies, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan, Yuqori Yuz, Qibray region Tashkent district, Tashkent 111226, Uzbekistan
| |
Collapse
|