1
|
Li J, Wang F, Sayed MA, Shen X, Zhou L, Liu X, Sun X, Chen S, Wu Y, Lu L, Gong S, Iqbal A, Yang Y. Integrated transcriptomic and metabolomic data reveal the cold stress responses molecular mechanisms of two coconut varieties. FRONTIERS IN PLANT SCIENCE 2024; 15:1353352. [PMID: 38689842 PMCID: PMC11058665 DOI: 10.3389/fpls.2024.1353352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Among tropical fruit trees, coconut holds significant edible and economic importance. The natural growth of coconuts faces a challenge in the form of low temperatures, which is a crucial factor among adverse environmental stresses impacting their geographical distribution. Hence, it is essential to enhance our comprehension of the molecular mechanisms through which cold stress influences various coconut varieties. We employed analyses of leaf growth morphology and physiological traits to examine how coconuts respond to low temperatures over 2-hour, 8-hour, 2-day, and 7-day intervals. Additionally, we performed transcriptome and metabolome analyses to identify the molecular and physiological shifts in two coconut varieties displaying distinct sensitivities to the cold stress. As the length of cold stress extended, there was a prominent escalation within the soluble protein (SP), proline (Pro) concentrations, the activity of peroxidase (POD) and superoxide dismutase (SOD) in the leaves. Contrariwise, the activity of glutathione peroxidase (GSH) underwent a substantial reduction during this period. The widespread analysis of metabolome and transcriptome disclosed a nexus of genes and metabolites intricately cold stress were chiefly involved in pathways centered around amino acid, flavonoid, carbohydrate and lipid metabolism. We perceived several stress-responsive metabolites, such as flavonoids, carbohydrates, lipids, and amino acids, which unveiled considerably, lower in the genotype subtle to cold stress. Furthermore, we uncovered pivotal genes in the amino acid biosynthesis, antioxidant system and flavonoid biosynthesis pathway that presented down-regulation in coconut varieties sensitive to cold stress. This study broadly enriches our contemporary perception of the molecular machinery that contributes to altering levels of cold stress tolerance amid coconut genotypes. It also unlocks several unique prospects for exploration in the areas of breeding or engineering, aiming to identifying tolerant and/or sensitive coconut varieties encompassing multi-omics layers in response to cold stress conditions.
Collapse
Affiliation(s)
- Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Fangyuan Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Md. Abu Sayed
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - XiaoJun Shen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Xiaomei Liu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Shuangyan Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- School of Tropical Crops, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yi Wu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Lilan Lu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Shufang Gong
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China
| |
Collapse
|
2
|
Yue J, Dong Y, Gong S. The complete chloroplast genome of Osteospermum ecklonis (DC.) Norl. (Asteraceae: Asterodae: Calenduleae), an ornamental plant. Mitochondrial DNA B Resour 2022; 7:1377-1379. [PMID: 35923630 PMCID: PMC9341342 DOI: 10.1080/23802359.2022.2101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Osteospermum ecklonis (DC.) Norl. 1838 is a herbaceous and perennial plant native to South Africa. It is an ornamental plant that shows great commercial potential. In the present study, the complete chloroplast (cp) genome was 151,295 bp in total length, and 127 genes were identified, including 85 protein-coding, 34 tRNA, and eight rRNA genes. The cp genome includes a large single-copy (LSC) region of 83,293 bp, a small single-copy (SSC) region of 18,012 bp, and a pair of inverted repeats (IRs) regions of 24,995 bp. The phylogenetic relationship of O. ecklonis revealed by cp genome provides a foundation for future studies of the phylogeny in the Asteraceae.
Collapse
Affiliation(s)
- Jianhua Yue
- School of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, Henan, PR China
| | - Yan Dong
- School of Forestry, Xinyang Agriculture and Forestry University, Xinyang, Henan, PR China
| | - Shoufu Gong
- School of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, Henan, PR China
| |
Collapse
|
3
|
Desmet S, Dhooghe E, De Keyser E, Van Huylenbroeck J, Geelen D. Compact shoot architecture of Osteospermum fruticosum transformed with Rhizobium rhizogenes. PLANT CELL REPORTS 2021; 40:1665-1678. [PMID: 34052885 DOI: 10.1007/s00299-021-02719-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Improved compact shoot architecture of Osteospermum fruticosum Ri lines obtained through Rhizobium rhizogenes transformation reduces the need for chemical growth retardants. Compactness is for many ornamental crops an important commercial trait that is usually obtained through the application of growth retardants. Here, we have adopted a genetic strategy to introduce compactness in the perennial shrub Cape daisy (Osteospermum fruticosum Norl.). To this end, O. fruticosum was transformed using six different wild type Rhizobium rhizogenes strains. The most effective R. rhizogenes strains Arqua1 and ATCC15834 were used to create hairy root cultures from six Cape daisy genotypes. These root cultures were regenerated to produce transgenic Ri lines, which were analyzed for compactness. Ri lines displayed the characteristic Ri phenotype, i.e., reduced plant height, increased branching, shortened internodes, shortened peduncles, and smaller flowers. Evaluation of the Ri lines under commercial production conditions showed that similar compactness was obtained as the original Cape daisy genotypes treated with growth retardant. The results suggest that the use of chemical growth retardants may be omitted or reduced in commercial production systems of Cape daisy through implementation of Ri lines in future breeding programs.
Collapse
Affiliation(s)
- Siel Desmet
- Plant Sciences Unit, Flanders Research Institute for Agricultural, Fisheries and Food Research (ILVO), Caritasstraat 39, 9090, Melle, Belgium.
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Emmy Dhooghe
- Plant Sciences Unit, Flanders Research Institute for Agricultural, Fisheries and Food Research (ILVO), Caritasstraat 39, 9090, Melle, Belgium
| | - Ellen De Keyser
- Plant Sciences Unit, Flanders Research Institute for Agricultural, Fisheries and Food Research (ILVO), Caritasstraat 39, 9090, Melle, Belgium
| | - Johan Van Huylenbroeck
- Plant Sciences Unit, Flanders Research Institute for Agricultural, Fisheries and Food Research (ILVO), Caritasstraat 39, 9090, Melle, Belgium
| | - Danny Geelen
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
4
|
SERS activity of hybrid nano/microstructures Ag-Fe 3O 4 based on Dimorphotheca ecklonis pollen grains as bio-template. Sci Rep 2020; 10:16633. [PMID: 33024180 PMCID: PMC7538885 DOI: 10.1038/s41598-020-73615-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/28/2020] [Indexed: 11/08/2022] Open
Abstract
Nature provides remarkable examples of mass-produced microscale particles with structures and chemistries optimized by evolution for particular functions. Synthetic chemical tailoring of such sustainable biogenic particles may be used to generate new multifunctional materials. Herein, we report a facile method for the synthesis of hybrid nano/microstructures Ag-Fe3O4 based on Dimorphotheca ecklonis pollen grains as bio-template. Silver nanoparticles was biosynthesized using pollen grains as a reduction and stabilization agent as well as a bio-template promoting the adhesion of silver nanoparticles to pollen surface. Fe3O4 nanoparticles were synthesized by co-precipitation method from FeSO4. Hybrid nano/microstructures Ag-Fe3O4 based on Dimorphotheca ecklonis pollen grains as bio-template were obtained and characterized using Scanning Electron Microscopy and Transmission Electron Microscopy to study the morphology and structure; Energy-Dispersive X-ray Spectroscopy to determine the chemical composition distribution; and Confocal Fluorescence Microscopy to demonstrate the fluorescence properties of hybrid nano-microstructures. Furthermore, these hybrid nano-microstructures have been studied by Surface-Enhanced Raman Scattering (SERS), using methylene blue as a target molecule; the hybrid nano-microstructures have shown 14 times signal amplification.
Collapse
|
5
|
Hou D, Cheng Z, Xie L, Li X, Li J, Mu S, Gao J. The R2R3MYB Gene Family in Phyllostachys edulis: Genome-Wide Analysis and Identification of Stress or Development-Related R2R3MYBs. FRONTIERS IN PLANT SCIENCE 2018; 9:738. [PMID: 30042769 PMCID: PMC6048295 DOI: 10.3389/fpls.2018.00738] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/15/2018] [Indexed: 05/04/2023]
Abstract
The MYB transcription factor (TF) is one of the largest gene families in plants and involved to multiple biological processes. However, little is known about the MYB family and its functional role in the genome of moso bamboo. In the present study, a total of 114 R2R3MYB genes were first identified from moso bamboo genome and full-length non-chimeric (FLNC) reads. Phylogenetic analysis coupled with gene structure analysis and motif determination resulted in the division of these PheR2R3MYBs into 17 subgroups. The position of eight proteins along an external branch in the phylogenetic tree suggested their relatively ancient origin. The genes in this group were all substituted by (Met, M)/(Arg, R) at conservative W residues in both R2 and R3 repeats, and half were found to possess no transcriptional activation activity. The analysis of evolutionary patterns and divergence suggests that the expansion of PheMYBs was mainly attributable to whole genome duplication (WGD) under different selection pressures. Expressional analysis based on microarray and qRT-PCR data performed diverse expression patterns of R2R3MYBs in response to both various abiotic stimuli and flower development. Furthermore, the co-expression analysis of R2R3MYBs suggested an intricate interplay of growth- and stress-related responses. Finally, we found a hub gene, PheMYB4, was involved in a complex proteins interaction network. Further functional analysis indicated that ectopic overexpression of its homologous gene, PheMYB4-1, could increase tolerance to cold treatment and sensitivity to drought and salt treatment of transgenic Arabidopsis seedlings. These findings provide comprehensive insights into the MYB family members in moso bamboo and offer candidate MYB genes for further studies on their roles in stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Gao
- Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, International Center for Bamboo and Rattan, Beijing, China
| |
Collapse
|
6
|
Shen X, Guo X, Guo X, Zhao D, Zhao W, Chen J, Li T. PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:302-311. [PMID: 28126679 DOI: 10.1016/j.plaphy.2017.01.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 05/15/2023]
Abstract
Plant R2R3-MYB transcription factors play crucial roles in stress responses. We previously isolated a R2R3-MYB homolog from sweet cherry cv. Hong Deng, designated PacMYBA (GenBank accession No. KF974774). To explore the role of PacMYBA in the plant stress response, we heterologously expressed PacMYBA in transgenic Arabidopsis thaliana plants. In a previous study, we demonstrated that PacMYBA is mainly localized to the nucleus and could be induced by abscisic acid (ABA). Analysis of the promoter sequence of PacMYBA revealed that it contains several stress-related cis-elements. QPCR results showed that PacMYBA is induced by salt, salicylic (SA), and jasmonic acid (JA) in sweet cherry leaves. Transgenic Arabidopsis plants heterologously expressing PacMYBA exhibited enhanced salt-tolerance and increased resistance to Pseudomonas syringe pv. tomato (Pst) DC3000 infection. Overexpression of PacMYBA decreased the osmotic potential (OP), increased the free proline content, and increased the peroxidase content in transgenic Arabidopsis plants. Furthermore, overexpression of PacMYBA also affected the expression levels of salt stress- and pathogen defense-related genes in the transgenic plants. These results indicate that PacMYBA is a positive regulator of salt stress tolerance and pathogen resistance.
Collapse
Affiliation(s)
- Xinjie Shen
- Department of Fruit Science, College of Horticulture, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, People's Republic of China
| | - Xinwei Guo
- Department of Fruit Science, College of Horticulture, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Xiao Guo
- Department of Fruit Science, College of Horticulture, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Di Zhao
- Department of Fruit Science, College of Horticulture, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Wei Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oilcrops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, People's Republic of China
| | - Jingsheng Chen
- Daqing Branch, Heilongjiang Academy of Agricultural Sciences, Daqing 163316, Heilongjiang, People's Republic of China
| | - Tianhong Li
- Department of Fruit Science, College of Horticulture, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China; Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing 102206, People's Republic of China.
| |
Collapse
|
7
|
Huang A, Sang Y, Sun W, Fu Y, Yang Z. Transcriptomic Analysis of Responses to Imbalanced Carbon: Nitrogen Availabilities in Rice Seedlings. PLoS One 2016; 11:e0165732. [PMID: 27820840 PMCID: PMC5098742 DOI: 10.1371/journal.pone.0165732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/17/2016] [Indexed: 11/19/2022] Open
Abstract
The internal C:N balance must be tightly controlled for the normal growth and development of plants. However, the underlying mechanisms, by which plants sense and balance the intracellular C:N status correspondingly to exogenous C:N availabilities remain elusive. In this study, we use comparative gene expression analysis to identify genes that are responsive to imbalanced C:N treatments in the aerial parts of rice seedlings. Transcripts of rice seedlings treated with four C:N availabilities (1:1, 1:60, 60:1 and 60:60) were compared and two groups of genes were classified: high C:low N responsive genes and low C:high N responsive genes. Our analysis identified several functional correlated genes including chalcone synthase (CHS), chlorophyll a-b binding protein (CAB) and other genes that are implicated in C:N balancing mechanism, such as alternative oxidase 1B (OsAOX1B), malate dehydrogenase (OsMDH) and lysine and histidine specific transporter 1 (OsLHT1). Additionally, six jasmonate synthetic genes and key regulatory genes involved in abiotic and biotic stresses, such as OsMYB4, autoinhibited calcium ATPase 3 (OsACA3) and pleiotropic drug resistance 9 (OsPDR9), were differentially expressed under high C:low N treatment. Gene ontology analysis showed that high C:low N up-regulated genes were primarily enriched in fatty acid biosynthesis and defense responses. Coexpression network analysis of these genes identified eight jasmonate ZIM domain protein (OsJAZ) genes and several defense response related regulators, suggesting that high C:low N status may act as a stress condition, which induces defense responses mediated by jasmonate signaling pathway. Our transcriptome analysis shed new light on the C:N balancing mechanisms and revealed several important regulators of C:N status in rice seedlings.
Collapse
Affiliation(s)
- Aobo Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuying Sang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenfeng Sun
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhenbiao Yang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
8
|
Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. MASS SPECTROMETRY REVIEWS 2016; 35:620-49. [PMID: 25589422 DOI: 10.1002/mas.21449] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 05/08/2023]
Abstract
Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016.
Collapse
Affiliation(s)
- Tiago F Jorge
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier-Universidade Nova de Lisboa (ITQB-UNL), Avenida República, 2780-157, Oeiras, Portugal
| | - João A Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Camila Caldana
- Max-Planck-partner group at the Brazilian Bioethanol Science and Technology Laboratory/CNPEM, 13083-970, Campinas-SP, Brazil
| | - Romy Schmidt
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Joost T van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Jane Thomas-Oates
- Jane Thomas-Oates, Centre of Excellence in Mass Spectrometry, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier-Universidade Nova de Lisboa (ITQB-UNL), Avenida República, 2780-157, Oeiras, Portugal
| |
Collapse
|
9
|
Page AF, Cseke LJ, Minocha R, Turlapati SA, Podila GK, Ulanov A, Li Z, Minocha SC. Genetic manipulation of putrescine biosynthesis reprograms the cellular transcriptome and the metabolome. BMC PLANT BIOLOGY 2016; 16:113. [PMID: 27188293 PMCID: PMC4870780 DOI: 10.1186/s12870-016-0796-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/29/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND With the increasing interest in metabolic engineering of plants using genetic manipulation and gene editing technologies to enhance growth, nutritional value and environmental adaptation, a major concern is the potential of undesirable broad and distant effects of manipulating the target gene or metabolic step in the resulting plant. A comprehensive transcriptomic and metabolomic analysis of the product may shed some useful light in this regard. The present study used these two techniques with plant cell cultures to analyze the effects of genetic manipulation of a single step in the biosynthesis of polyamines because of their well-known roles in plant growth, development and stress responses. RESULTS The transcriptomes and metabolomes of a control and a high putrescine (HP) producing cell line of poplar (Populus nigra x maximowiczii) were compared using microarrays and GC/MS. The HP cells expressed an ornithine decarboxylase transgene and accumulated several-fold higher concentrations of putrescine, with only small changes in spermidine and spermine. The results show that up-regulation of a single step in the polyamine biosynthetic pathway (i.e. ornithine → putrescine) altered the expression of a broad spectrum of genes; many of which were involved in transcription, translation, membrane transport, osmoregulation, shock/stress/wounding, and cell wall metabolism. More than half of the 200 detected metabolites were significantly altered (p ≤ 0.05) in the HP cells irrespective of sampling date. The most noteworthy differences were in organic acids, carbohydrates and nitrogen-containing metabolites. CONCLUSIONS The results provide valuable information about the role of polyamines in regulating nitrogen and carbon use pathways in cell cultures of high putrescine producing transgenic cells of poplar vs. their low putrescine counterparts. The results underscore the complexity of cellular responses to genetic perturbation of a single metabolic step related to nitrogen metabolism in plants. Combined with recent studies from our lab, where we showed that higher putrescine production caused an increased flux of glutamate into ornithine concurrent with enhancement in glutamate production via additional nitrogen and carbon assimilation, the results from this study provide guidance in designing transgenic plants with increased nitrogen use efficiency, especially in plants intended for non-food/feed applications (e.g. increased biomass production for biofuels).
Collapse
Affiliation(s)
- Andrew F Page
- Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Leland J Cseke
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Rakesh Minocha
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Swathi A Turlapati
- Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Gopi K Podila
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Alexander Ulanov
- Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Zhong Li
- Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Subhash C Minocha
- Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
10
|
Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms. Int J Mol Sci 2015; 16:15811-51. [PMID: 26184177 PMCID: PMC4519927 DOI: 10.3390/ijms160715811] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/18/2015] [Accepted: 06/25/2015] [Indexed: 11/17/2022] Open
Abstract
Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed.
Collapse
|
11
|
Homotypic clustering of OsMYB4 binding site motifs in promoters of the rice genome and cellular-level implications on sheath blight disease resistance. Gene 2015; 561:209-18. [DOI: 10.1016/j.gene.2015.02.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/08/2015] [Accepted: 02/12/2015] [Indexed: 11/18/2022]
|
12
|
Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B. Overexpression of a Calcium-Dependent Protein Kinase Confers Salt and Drought Tolerance in Rice by Preventing Membrane Lipid Peroxidation. PLANT PHYSIOLOGY 2014; 165:688-704. [PMID: 24784760 PMCID: PMC4044838 DOI: 10.1104/pp.113.230268] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 05/01/2014] [Indexed: 05/18/2023]
Abstract
The OsCPK4 gene is a member of the complex gene family of calcium-dependent protein kinases in rice (Oryza sativa). Here, we report that OsCPK4 expression is induced by high salinity, drought, and the phytohormone abscisic acid. Moreover, a plasma membrane localization of OsCPK4 was observed by transient expression assays of green fluorescent protein-tagged OsCPK4 in onion (Allium cepa) epidermal cells. Overexpression of OsCPK4 in rice plants significantly enhances tolerance to salt and drought stress. Knockdown rice plants, however, are severely impaired in growth and development. Compared with control plants, OsCPK4 overexpressor plants exhibit stronger water-holding capability and reduced levels of membrane lipid peroxidation and electrolyte leakage under drought or salt stress conditions. Also, salt-treated OsCPK4 seedlings accumulate less Na+ in their roots. We carried out microarray analysis of transgenic rice overexpressing OsCPK4 and found that overexpression of OsCPK4 has a low impact on the rice transcriptome. Moreover, no genes were found to be commonly regulated by OsCPK4 in roots and leaves of rice plants. A significant number of genes involved in lipid metabolism and protection against oxidative stress appear to be up-regulated by OsCPK4 in roots of overexpressor plants. Meanwhile, OsCPK4 overexpression has no effect on the expression of well-characterized abiotic stress-associated transcriptional regulatory networks (i.e. ORYZA SATIVA DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN1 and ORYZA SATIVA No Apical Meristem, Arabidopsis Transcription Activation Factor1-2, Cup-Shaped Cotyledon6 genes) and LATE EMBRYOGENESIS ABUNDANT genes in their roots. Taken together, our data show that OsCPK4 functions as a positive regulator of the salt and drought stress responses in rice via the protection of cellular membranes from stress-induced oxidative damage.
Collapse
Affiliation(s)
- Sonia Campo
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - Patricia Baldrich
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - Joaquima Messeguer
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - Eric Lalanne
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - María Coca
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| |
Collapse
|
13
|
Al-Attala MN, Wang X, Abou-Attia MA, Duan X, Kang Z. A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses. PLANT MOLECULAR BIOLOGY 2014; 84:589-603. [PMID: 24293360 DOI: 10.1007/s11103-013-0156-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/13/2013] [Indexed: 06/02/2023]
Abstract
MYB transcription factors are a large family of proteins involved in the regulation of secondary metabolism and cell shape, the enhancement of disease resistance and the response to different stresses. In this study, the role of TaMYB4 in wheat against biotic and abiotic stresses was investigated. TaMYB4 was cloned from wheat cv. Suwan11 [the leaves were infected with Puccinia striiformis f.sp. tritici (Pst)]; the TaMYB4 protein is 243 amino acids in length. In addition, TaMYB4 exhibited high similarity with BdMYB4 from Brachypodium distachyon, which was also identified as a member of the R2R3-MYB family of genes. Furthermore, transient expression analysis showed that the deduced TaMYB4 protein was localised in the nucleus of onion epidermal cells. Additionally, a yeast one-hybrid assay revealed that TaMYB4 exhibits transcriptional activity and the C-terminus is necessary for the activation of transcription. The transcript levels of TaMYB4 were observed directly and were found to be significantly upregulated in the early stage and 48 h after inoculation with the incompatible Pst. The transcripts of TaMYB4 were detected in the wheat roots, culms and leaves. Moreover, the transcription of TaMYB4 was induced by salicylic acid, ethylene, abscisic acid and methyl jasmonate hormones. The same results were obtained with cold and wound treatments. Furthermore, the knockdown of TaMYB4 expression using virus-induced gene silencing enhanced the susceptibility of wheat cultivar Suwon11 to the incompatible race of Pst. These results demonstrate that TaMYB4 plays a role in the wheat response to biotic stress.
Collapse
Affiliation(s)
- M Nashaat Al-Attala
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
Consonni R, Cagliani LR, Docimo T, Romane A, Ferrazzi P. Perilla frutescens(L.) Britton: honeybee forage and preliminary results on the metabolic profiling by NMR spectroscopy†. Nat Prod Res 2013; 27:1743-8. [DOI: 10.1080/14786419.2012.751598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic Arabidopsis. Gene 2012; 505:100-7. [PMID: 22634104 DOI: 10.1016/j.gene.2012.05.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/13/2012] [Accepted: 05/15/2012] [Indexed: 11/23/2022]
Abstract
The MYB proteins play central roles in the stress response in plants. Our previous works identified a cold stress-related gene, TaMYB56, which encodes a MYB protein in wheat. In this study, we isolated the sequences of TaMYB56 genes, and mapped them to the wheat chromosomes 3B and 3D. The expression levels of TaMYB56-B and TaMYB56-D were strongly induced by cold stress, but slightly induced by salt stress in wheat. The detailed characterization of the Arabidopsis transgenic plants that overexpress TaMYB56-B revealed that TaMYB56-B is possibly involved in the responses of plant to freezing and salt stresses. The expression of some cold stress-responsive genes, such as DREB1A/CBF3 and COR15a, were found to be elevated in the TaMYB56-B-overexpressing Arabidopsis plants compared to wild-type. These results indicate that TaMYB56-B may act as a regulator in plant stress response.
Collapse
|
16
|
The rice Osmyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants. J Appl Genet 2012; 53:133-43. [PMID: 22246661 DOI: 10.1007/s13353-011-0081-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 10/14/2022]
Abstract
The Osmyb4 rice gene, coding for a transcription factor, proved to be efficient against different abiotic stresses as a trans(cis)gene in several plant species, although the effectiveness was dependent on the host genomic background. Eight barley transgenic lines carrying the rice Osmyb4 gene under the control of the Arabidopsis cold inducible promoter cor15a were produced to test the efficiency of this gene in barley. After a preliminary test, the best performing lines were subjected to freezing at -11°C and -12°C. Frost tolerance was assessed measured the F(v)/F(m) parameter widely used to indicate the maximum quantum yield of photosystem II photochemistry in the dark adapted state. Three transgenic lines showed significantly increased tolerance. These selected lines were further studied under a complex stress applying cold and hypoxia at germinating stage. In these conditions the three selected transgenic lines outperformed the wild type barley in terms of germination vigour. The transgenic plants also showed a significant modification of their metabolism under cold/hypoxia conditions as demonstrated through the assessment of the activity of key enzymes involved in anoxic stress response. None of the transgenic lines showed dwarfism, just a slight retarded growth. These results provide evidence that the cold dependent expression of Osmyb4 can efficiently improved frost tolerance and germination vigour at low temperature without deleterious effect on plant growth.
Collapse
|
17
|
Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K. Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. RICE (NEW YORK, N.Y.) 2012; 5:6. [PMID: 24764506 PMCID: PMC3834508 DOI: 10.1186/1939-8433-5-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/08/2012] [Indexed: 05/18/2023]
Abstract
Abiotic stress causes loss of crop production. Under abiotic stress conditions, expression of many genes is induced, and their products have important roles in stress responses and tolerance. Progress has been made in understanding the biological roles of regulons in abiotic stress responses in rice. A number of transcription factors (TFs) regulate stress-responsive gene expression. OsDREB1s and OsDREB2s were identified as abiotic-stress responsive TFs that belong to the AP2/ERF family. Similar to Arabidopsis, these DREB regulons were most likely not involved in the abscisic acid (ABA) pathway. OsAREBs such as OsAREB1 were identified as key components in ABA-dependent transcriptional networks in rice. OsNAC/SNACs including OsNAC6 were characterized as factors that regulate expression of genes important for abiotic stress responses in rice. Here, we review on the rice abiotic-stress responses mediated by transcriptional networks, with the main focus on TFs that function in abiotic stress responses and confer stress tolerance in rice.
Collapse
Affiliation(s)
- Daisuke Todaka
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Kazuo Nakashima
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Kazuo Shinozaki
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|