1
|
Ren J, Cai K, Song X, Yue W, Liu L, Ge F, Wang Q, Wang J. Genome-Wide Identification and Expression Profiling of ABA-Stress-Ripening ( ASR) Gene Family in Barley ( Hordeum vulgare L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:970. [PMID: 40265901 PMCID: PMC11944693 DOI: 10.3390/plants14060970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025]
Abstract
Abscisic acid (ABA)-stress-ripening, or ABA-, stress-, and ripening-induced (ASR) proteins play an important role in responses to environmental stimuli. A total of ten barley HvASRs were identified in this study, which were unevenly distributed on three chromosomes. ASRs from barley, wheat, Brachypodium distachyon, rice, maize, foxtail millet, and tomato were classified into two distinct clusters based on phylogenetic analysis. Notably, ASRs from Poaceae were evenly distributed between these two clusters. HvASRs contained a typical ABA/WDS domain, and exhibited similar motif arrangements. Two gene pairs of tandem duplicates (HvASR4/5/6/7 and HvASR8/9) were identified among HvASRs. Cis-acting elements involved in hormone and stress responses, including ABRE, MYB, ARE, and STRE, were consistently identified in the promoters of HvASRs. The expression of HvASRs was substantially influenced by salt, osmotic, and ABA treatments in the roots and leaves of barley seedlings. HvASR2 acts as a transcriptional repressor, whereas HvASR3 serves as a transcriptional activator. These results enhance our understanding of the HvASR family and provide a foundation for further functional characterization.
Collapse
Affiliation(s)
- Jie Ren
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.R.); (K.C.); (X.S.); (W.Y.); (L.L.); (F.G.); (Q.W.)
- Agricultural Technology Extension Center, Deqing Bureau of Agriculture and Rural Affairs, Deqing 313200, China
| | - Kangfeng Cai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.R.); (K.C.); (X.S.); (W.Y.); (L.L.); (F.G.); (Q.W.)
- National Barley Improvement Centre, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiujuan Song
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.R.); (K.C.); (X.S.); (W.Y.); (L.L.); (F.G.); (Q.W.)
- National Barley Improvement Centre, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenhao Yue
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.R.); (K.C.); (X.S.); (W.Y.); (L.L.); (F.G.); (Q.W.)
- National Barley Improvement Centre, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Liu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.R.); (K.C.); (X.S.); (W.Y.); (L.L.); (F.G.); (Q.W.)
- National Barley Improvement Centre, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fangying Ge
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.R.); (K.C.); (X.S.); (W.Y.); (L.L.); (F.G.); (Q.W.)
- National Barley Improvement Centre, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiuyu Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.R.); (K.C.); (X.S.); (W.Y.); (L.L.); (F.G.); (Q.W.)
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Junmei Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.R.); (K.C.); (X.S.); (W.Y.); (L.L.); (F.G.); (Q.W.)
- National Barley Improvement Centre, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
Zhang Y, Wang M, Kitashov AV, Yang L. Development History, Structure, and Function of ASR ( Abscisic Acid-Stress-Ripening) Transcription Factor. Int J Mol Sci 2024; 25:10283. [PMID: 39408615 PMCID: PMC11476915 DOI: 10.3390/ijms251910283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Abiotic and biotic stress factors seriously affect plant growth and development. The process of plant response to abiotic stress involves the synergistic action of multiple resistance genes. The ASR (Abscisic acid stress-ripening) gene is a plant-specific transcription factor that plays a central role in regulating plant senescence, fruit ripening, and response to abiotic stress. ASR family members are highly conserved in plant evolution and contain ABA/WBS domains. ASR was first identified and characterized in tomatoes (Solanum lycopersicum L.). Subsequently, the ASR gene has been reported in many plant species, extending from gymnosperms to monocots and dicots, but lacks orthologues in Arabidopsis (Arabidopsis thaliana). The promoter regions of ASR genes in most species contain light-responsive elements, phytohormone-responsive elements, and abiotic stress-responsive elements. In addition, ASR genes can respond to biotic stresses via regulating the expression of defense genes in various plants. This review comprehensively summarizes the evolutionary history, gene and protein structures, and functions of the ASR gene family members in plant responses to salt stress, low temperature stress, pathogen stress, drought stress, and metal ions, which will provide valuable references for breeding high-yielding and stress-resistant plant varieties.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (M.W.)
| | - Mengfan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (M.W.)
| | - Andery V. Kitashov
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China;
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ling Yang
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China;
- College of Forestry, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (M.W.)
| |
Collapse
|
3
|
Zheng P, Liu M, Pang L, Sun R, Yao M, Wang X, Kang Z, Liu J. Stripe rust effector Pst21674 compromises wheat resistance by targeting transcription factor TaASR3. PLANT PHYSIOLOGY 2023; 193:2806-2824. [PMID: 37706535 DOI: 10.1093/plphys/kiad497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
Pathogens compromise host defense responses by strategically secreting effector proteins. However, the molecular mechanisms by which effectors manipulate disease-resistance factors to evade host surveillance remain poorly understood. In this study, we characterized a Puccinia striiformis f. sp. tritici (Pst) effector Pst21674 with a signal peptide. Pst21674 was significantly upregulated during Pst infections in wheat (Triticum aestivum L.) and knocking down Pst21674 by host-induced gene silencing led to reduced Pst pathogenicity and restricted hyphal spread in wheat. Pst21674 interaction with the abscisic acid-, stress-, and ripening-induced protein TaASR3 was validated mainly in the nucleus. Size exclusion chromatography, bimolecular fluorescence complementation, and luciferase complementation imaging assays confirmed that TaASR3 could form a functional tetramer. Virus-induced gene silencing and overexpression demonstrated that TaASR3 contributes to wheat resistance to stripe rust by promoting accumulation of reactive oxygen species and cell death. Additionally, transcriptome analysis revealed that the expression of defense-related genes was regulated in transgenic wheat plants overexpressing TaASR3. Interaction between Pst21674 and TaASR3 interfered with the polymerization of TaASR3 and suppressed TaASR3-mediated transcriptional activation of defense-related genes. These results indicate that Pst21674 serves as an important virulence factor secreted into the host nucleus to impede wheat resistance to Pst, possibly by targeting and preventing polymerization of TaASR3.
Collapse
Affiliation(s)
- Peijing Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengxue Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lijing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruyi Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mohan Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Cao YH, Ren W, Gao HJ, Lü XP, Zhao Q, Zhang H, Rensing C, Zhang JL. HaASR2 from Haloxylon ammodendron confers drought and salt tolerance in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111572. [PMID: 36563942 DOI: 10.1016/j.plantsci.2022.111572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Abscisic acid (ABA), stress, and ripening-induced proteins (ASR), which belong to the ABA/WDS domain superfamily, are involved in the plant response to abiotic stresses. Haloxylon ammodendron is a succulent xerohalophyte species that exhibits strong resistance to abiotic stress. In this study, we isolated HaASR2 from H. ammodendron and demonstrated its detailed molecular function for drought and salt stress tolerance. HaASR2 interacted with the HaNHX1 protein, and its expression was significantly up-regulated under osmotic stress. Overexpression of HaASR2 improved drought and salt tolerance by enhancing water use efficiency and photosynthetic capacity in Arabidopsis thaliana. Overexpression of HaASR2 maintained the homeostasis of reactive oxygen species (ROS) and decreased sensitivity to exogenous ABA and endogenous ABA levels by down-regulating ABA biosynthesis genes under drought stress. Furthermore, a transcriptomic comparison between wild-type and HaASR2 transgenic Arabidopsis plants indicated that HaASR2 significantly induced the expression of 896 genes in roots and 406 genes in shoots under osmotic stress. Gene ontology (GO) enrichment analysis showed that those DEGs were mainly involved in ROS scavenging, metal ion homeostasis, response to hormone stimulus, etc. The results demonstrated that HaASR2 from the desert shrub, H. ammodendron, plays a critical role in plant adaptation to drought and salt stress and could be a promising gene for the genetic improvement of crop abiotic stress tolerance.
Collapse
Affiliation(s)
- Yan-Hua Cao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wei Ren
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hui-Juan Gao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xin-Pei Lü
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qi Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Christopher Rensing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China; Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China.
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
5
|
Srivastava D, Verma G, Chawda K, Chauhan AS, Pande V, Chakrabarty D. Overexpression of Asr6, abscisic acid stress-ripening protein, enhances drought tolerance and modulates gene expression in rice (Oryza sativa L.). ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2022; 202:105005. [DOI: 10.1016/j.envexpbot.2022.105005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
6
|
Parrilla J, Medici A, Gaillard C, Verbeke J, Gibon Y, Rolin D, Laloi M, Finkelstein RR, Atanassova R. Grape ASR Regulates Glucose Transport, Metabolism and Signaling. Int J Mol Sci 2022; 23:ijms23116194. [PMID: 35682874 PMCID: PMC9181829 DOI: 10.3390/ijms23116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
To decipher the mediator role of the grape Abscisic acid, Stress, Ripening (ASR) protein, VvMSA, in the pathways of glucose signaling through the regulation of its target, the promoter of hexose transporter VvHT1, we overexpressed and repressed VvMSA in embryogenic and non-embryogenic grapevine cells. The embryogenic cells with organized cell proliferation were chosen as an appropriate model for high sensitivity to the glucose signal, due to their very low intracellular glucose content and low glycolysis flux. In contrast, the non-embryogenic cells displaying anarchic cell proliferation, supported by high glycolysis flux and a partial switch to fermentation, appeared particularly sensitive to inhibitors of glucose metabolism. By using different glucose analogs to discriminate between distinct pathways of glucose signal transduction, we revealed VvMSA positioning as a transcriptional regulator of the glucose transporter gene VvHT1 in glycolysis-dependent glucose signaling. The effects of both the overexpression and repression of VvMSA on glucose transport and metabolism via glycolysis were analyzed, and the results demonstrated its role as a mediator in the interplay of glucose metabolism, transport and signaling. The overexpression of VvMSA in the Arabidopsis mutant abi8 provided evidence for its partial functional complementation by improving glucose absorption activity.
Collapse
Affiliation(s)
- Jonathan Parrilla
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Anna Medici
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- Institut des Sciences des Plantes de Montpellier (IPSiM), UMR CNRS/INRAE/Institut Agro/Université de Montpellier, 2 Place Pierre Viala, 34000 Montpellier, France
| | - Cécile Gaillard
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Jérémy Verbeke
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- GReD-UMR CNRS 6293/INSERM U1103, CRBC, Faculté de Médecine, Université Clermont-Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie (BFP), INRA, Université de Bordeaux, 33882 Bordeaux, France; (Y.G.); (D.R.)
| | - Dominique Rolin
- UMR 1332 Biologie du Fruit et Pathologie (BFP), INRA, Université de Bordeaux, 33882 Bordeaux, France; (Y.G.); (D.R.)
| | - Maryse Laloi
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Ruth R. Finkelstein
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA;
| | - Rossitza Atanassova
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- Correspondence:
| |
Collapse
|
7
|
Grape ASR-Silencing Sways Nuclear Proteome, Histone Marks and Interplay of Intrinsically Disordered Proteins. Int J Mol Sci 2022; 23:ijms23031537. [PMID: 35163458 PMCID: PMC8835812 DOI: 10.3390/ijms23031537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
In order to unravel the functions of ASR (Abscisic acid, Stress, Ripening-induced) proteins in the nucleus, we created a new model of genetically transformed grape embryogenic cells by RNAi-knockdown of grape ASR (VvMSA). Nuclear proteomes of wild-type and VvMSA-RNAi grape cell lines were analyzed by quantitative isobaric tagging (iTRAQ 8-plex). The most significantly up- or down-regulated nuclear proteins were involved in epigenetic regulation, DNA replication/repair, transcription, mRNA splicing/stability/editing, rRNA processing/biogenesis, metabolism, cell division/differentiation and stress responses. The spectacular up-regulation in VvMSA-silenced cells was that of the stress response protein VvLEA D-29 (Late Embryogenesis Abundant). Both VvMSA and VvLEA D-29 genes displayed strong and contrasted responsiveness to auxin depletion, repression of VvMSA and induction of VvLEA D-29. In silico analysis of VvMSA and VvLEA D-29 proteins highlighted their intrinsically disordered nature and possible compensatory relationship. Semi-quantitative evaluation by medium-throughput immunoblotting of eighteen post-translational modifications of histones H3 and H4 in VvMSA-knockdown cells showed significant enrichment/depletion of the histone marks H3K4me1, H3K4me3, H3K9me1, H3K9me2, H3K36me2, H3K36me3 and H4K16ac. We demonstrate that grape ASR repression differentially affects members of complex nucleoprotein structures and may not only act as molecular chaperone/transcription factor, but also participates in plant responses to developmental and environmental cues through epigenetic mechanisms.
Collapse
|
8
|
Zhao B, Yi X, Qiao X, Tang Y, Xu Z, Liu S, Zhang S. Genome-Wide Identification and Comparative Analysis of the ASR Gene Family in the Rosaceae and Expression Analysis of PbrASRs During Fruit Development. Front Genet 2022; 12:792250. [PMID: 35003225 PMCID: PMC8727533 DOI: 10.3389/fgene.2021.792250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
The members of the Abscisic Acid (ABA) Stress and Ripening gene family (ASR) encode a class of plant-specific proteins with ABA/WDS domains that play important roles in fruit ripening, abiotic stress tolerance and biotic stress resistance in plants. The ASR gene family has been widely investigated in the monocotyledons and dicotyledons. Although the genome sequence is already available for eight fruit species of the Rosaceae, there is far less information about the evolutionary characteristics and the function of the ASR genes in the Rosaceae than in other plant families. Twenty-seven ASR genes were identified from species in the Rosaceae and divided into four subfamilies (I, II, III, and IV) on the basis of structural characteristics and phylogenetic analysis. Purifying selection was the primary force for ASR family gene evolution in eight Rosaceae species. qPCR experiments showed that the expression pattern of PbrASR genes from Pyrus bretschneideri was organ-specific, being mainly expressed in flower, fruit, leaf, and root. During fruit development, the mRNA abundance levels of different PbrASR genes were either down- or up-regulated, and were also induced by exogenous ABA. Furthermore, subcellular localization results showed that PbrASR proteins were mainly located in the nucleus and cytoplasm. These results provide a theoretical foundation for investigation of the evolution, expression, and functions of the ASR gene family in commercial fruit species of the Rosaceae family.
Collapse
Affiliation(s)
- Biying Zhao
- Guangxi Academy of Specialty Crops, Guilin, China
| | - Xianrong Yi
- Guangxi Academy of Specialty Crops, Guilin, China
| | - Xin Qiao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yan Tang
- Guangxi Academy of Specialty Crops, Guilin, China
| | - Zhimei Xu
- Guangxi Academy of Specialty Crops, Guilin, China
| | - Shanting Liu
- Guangxi Academy of Specialty Crops, Guilin, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Yacoubi I, Hamdi K, Fourquet P, Bignon C, Longhi S. Structural and Functional Characterization of the ABA-Water Deficit Stress Domain from Wheat and Barley: An Intrinsically Disordered Domain behind the Versatile Functions of the Plant Abscissic Acid, Stress and Ripening Protein Family. Int J Mol Sci 2021; 22:ijms22052314. [PMID: 33652546 PMCID: PMC7956565 DOI: 10.3390/ijms22052314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
The ASR protein family has been discovered thirty years ago in many plant species and is involved in the tolerance of various abiotic stresses such as dehydration, salinity and heat. Despite its importance, nothing is known about the conserved ABA-Water Deficit Stress Domain (ABA-WDS) of the ASR gene family. In this study, we characterized two ABA-WDS domains, isolated from durum wheat (TtABA-WDS) and barley (HvABA-WDS). Bioinformatics analysis shows that they are both consistently predicted to be intrinsically disordered. Hydrodynamic and circular dichroism analysis indicate that both domains are largely disordered but belong to different structural classes, with HvABA-WDS and TtABA-WDS adopting a PreMolten Globule-like (PMG-like) and a Random Coil-like (RC-like) conformation, respectively. In the presence of the secondary structure stabilizer trifluoroethanol (TFE) or of increasing glycerol concentrations, which mimics dehydration, the two domains acquire an α-helical structure. Interestingly, both domains are able to prevent heat- and dehydration-induced inactivation of the enzyme lactate dehydrogenase (LDH). Furthermore, heterologous expression of TtABA-WDS and HvABA-WDS in the yeast Saccharomyces cerevisiae improves its tolerance to salt, heat and cold stresses. Taken together our results converge to show that the ABA-WDS domain is an intrinsically disordered functional domain whose conformational plasticity could be instrumental to support the versatile functions attributed to the ASR family, including its role in abiotic stress tolerance. Finally, and after validation in the plant system, this domain could be used to improve crop tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Ines Yacoubi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Street Sidi Mansour Km 6, Sfax 3018, Tunisia;
- Correspondence: (I.Y.); (S.L.)
| | - Karama Hamdi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Street Sidi Mansour Km 6, Sfax 3018, Tunisia;
| | - Patrick Fourquet
- INSERM, Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Marseille Protéomique, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bvd Leï Roure, CS 30059, 13273 Marseille CEDEX 09, France;
| | - Christophe Bignon
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille CEDEX 09, France;
| | - Sonia Longhi
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille CEDEX 09, France;
- Correspondence: (I.Y.); (S.L.)
| |
Collapse
|
10
|
Meena RP, Vishwakarma H, Ghosh G, Gaikwad K, Chellapilla TS, Singh MP, Padaria JC. Novel ASR isolated from drought stress responsive SSH library in pearl millet confers multiple abiotic stress tolerance in PgASR3 transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:7-19. [PMID: 32891968 DOI: 10.1016/j.plaphy.2020.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 05/09/2023]
Abstract
A genomic resource of drought stress responsive genes/ESTs was generated using Suppression Subtractive Hybridization (SSH) approach in a drought stress tolerant Pennisetum glaucum genotype 841B. Fifty five days old plants were subjected to drought stress after withholding water for different time intervals (10 days, 15 days, 20 days and 25 days). A forward subtractive cDNA library was prepared from isolated RNA of leaf tissue. Differential gene expression under drought stress was validated for selected nine contigs by RT-qPCR. A transcript homologous to Setaria italica ASR3 upregulated under drought stress was isolated from genotype 841B and characterized. Heterologous expression of PgASR3 was validated in Arabidopsis and confirmed under multiple abiotic stress conditions. A total of four independent transgenic lines overexpressing gene PgASR3 were analyzed by Southern blot at T1 stage. For drought stress tolerance, three independent lines (T2 stage) were analyzed by biochemical and physiological assays at seedling stage. The growth rate (shoot and root length) of transgenic seedlings improved as compared to WT seedling under differenct abiotic stress conditions. The three transgenic lines were also validated for drought stress tolerance and RT-qPCR analysis, at maturity stage. Under drought stress conditions, the mature transgenic lines showed higher levels of RWC, chlorophyll and proline but lower levels of MDA as compared to WT plants. PgASR3 gene isolated and validated in this study can be utilized for developing abiotic stress tolerant crops.
Collapse
Affiliation(s)
| | | | - Gourab Ghosh
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Kishor Gaikwad
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Tara Satyavathi Chellapilla
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India; Division of Genetics, IARI, Pusa Campus, New Delhi, India
| | - Madan Pal Singh
- Division of Plant Physiology, IARI Pusa Campus, New Delhi, India
| | | |
Collapse
|
11
|
Wu M, Liu R, Gao Y, Xiong R, Shi Y, Xiang Y. PheASR2, a novel stress-responsive transcription factor from moso bamboo (Phyllostachys edulis), enhances drought tolerance in transgenic rice via increased sensitivity to abscisic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:184-194. [PMID: 32563042 DOI: 10.1016/j.plaphy.2020.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Abscisic acid, stress and ripening (ASR) transcription factors comprise a small family of proteins that play a key role in stress responses in plants. ASR genes involved in drought tolerance in moso bamboo (Phyllostachys edulis) are largely unknown. In our study, an ASR gene, PheASR2, was isolated and characterized. The expression of PheASR2 was up-regulated under various abiotic stresses, including drought, salt and abscisic acid (ABA). PheASR2 was localized in the nucleus in tobacco cells, and displayed transactivation activity in yeast. Ectopic expression of PheASR2 in rice conferred enhanced tolerance to drought stress, as determined through physiological analyses of germination rate, plant height, water loss and survival rate. The PheASR2-overexpressing transgenic plants showed an increase in reactive oxygen species (ROS), electrolyte leakage and malondialdehyde levels, reduced enzyme (CAT and SOD) activities, and higher expression of genes encoding ROS-scavenging enzymes. Consequently, the transgenic plants exhibited increased tolerance to oxidative stress compared with wild-type plants. Moreover, following ABA treatment, the seed germination rate and plant height of the PheASR2-overexpressing lines were inhibited, and stomatal closure was reduced. The expression of marker genes, including, OsAREB, OsP5CS1, OsLEA, and OsNCED2, was up-regulated in the PheASR2-overexpressing lines when subjected to drought treatment. Together, these results indicate that PheASR2 functions in drought stress tolerance through ABA signaling.
Collapse
Affiliation(s)
- Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Rui Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yameng Gao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Rui Xiong
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yanan Shi
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
12
|
Thayale Purayil F, Rajashekar B, S. Kurup S, Cheruth AJ, Subramaniam S, Hassan Tawfik N, M.A. Amiri K. Transcriptome Profiling of Haloxylon persicum (Bunge ex Boiss and Buhse) an Endangered Plant Species under PEG-Induced Drought Stress. Genes (Basel) 2020; 11:genes11060640. [PMID: 32531994 PMCID: PMC7349776 DOI: 10.3390/genes11060640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/06/2023] Open
Abstract
Haloxylon persicum is an endangered western Asiatic desert plant species, which survives under extreme environmental conditions. In this study, we focused on transcriptome analysis of H. persicum to understand the molecular mechanisms associated with drought tolerance. Two different periods of polyethylene glycol (PEG)-induced drought stress (48 h and 72 h) were imposed on H. persicum under in vitro conditions, which resulted in 18 million reads, subsequently assembled by de novo method with more than 8000 transcripts in each treatment. The N50 values were 1437, 1467, and 1524 for the control sample, 48 h samples, and 72 h samples, respectively. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis resulted in enrichment of mitogen-activated protein kinase (MAPK) and plant hormone signal transduction pathways under PEG-induced drought conditions. The differential gene expression analysis (DGEs) revealed significant changes in the expression pattern between the control and the treated samples. The KEGG analysis resulted in mapping transcripts with 138 different pathways reported in plants. The differential expression of drought-responsive transcription factors depicts the possible signaling cascades involved in drought tolerance. The present study provides greater insight into the fundamental transcriptome reprogramming of desert plants under drought.
Collapse
Affiliation(s)
- Fayas Thayale Purayil
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, P.O. Box. Al-Ain 15551, UAE; (F.T.P.); (A.J.C.); (N.H.T.)
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box. Al Ain 15551, UAE
| | - Balaji Rajashekar
- Institute of Computer Science, University of Tartu, 50409 Tartu, Estonia;
- Celixa, Bangalore, Karnataka 560020, India
| | - Shyam S. Kurup
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, P.O. Box. Al-Ain 15551, UAE; (F.T.P.); (A.J.C.); (N.H.T.)
- Correspondence: (S.S.K.); (K.M.A.)
| | - Abdul Jaleel Cheruth
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, P.O. Box. Al-Ain 15551, UAE; (F.T.P.); (A.J.C.); (N.H.T.)
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), Minden Heights, Georgetown, Penang 11800, Malaysia;
| | - Nadia Hassan Tawfik
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, P.O. Box. Al-Ain 15551, UAE; (F.T.P.); (A.J.C.); (N.H.T.)
| | - Khaled M.A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box. Al Ain 15551, UAE
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box. Al Ain 15551, UAE
- Correspondence: (S.S.K.); (K.M.A.)
| |
Collapse
|
13
|
Li H, Guan H, Zhuo Q, Wang Z, Li S, Si J, Zhang B, Feng B, Kong LA, Wang F, Wang Z, Zhang L. Genome-wide characterization of the abscisic acid-, stress- and ripening-induced (ASR) gene family in wheat (Triticum aestivum L.). Biol Res 2020; 53:23. [PMID: 32448297 PMCID: PMC7247183 DOI: 10.1186/s40659-020-00291-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Abscisic acid-, stress-, and ripening-induced (ASR) genes are a class of plant specific transcription factors (TFs), which play important roles in plant development, growth and abiotic stress responses. The wheat ASRs have not been described in genome-wide yet. METHODS We predicted the transmembrane regions and subcellular localization using the TMHMM server, and Plant-mPLoc server and CELLO v2.5, respectively. Then the phylogeny tree was built by MEGA7. The exon-intron structures, conserved motifs and TFs binding sites were analyzed by GSDS, MEME program and PlantRegMap, respectively. RESULTS In wheat, 33ASR genes were identified through a genome-wide survey and classified into six groups. Phylogenetic analyses revealed that the TaASR proteins in the same group tightly clustered together, compared with those from other species. Duplication analysis indicated that the TaASR gene family has expanded mainly through tandem and segmental duplication events. Similar gene structures and conserved protein motifs of TaASRs in wheat were identified in the same groups. ASR genes contained various TF binding cites associated with the stress responses in the promoter region. Gene expression was generally associated with the expected group-specific expression pattern in five tissues, including grain, leaf, root, spike and stem, indicating the broad conservation of ASR genes function during wheat evolution. The qRT-PCR analysis revealed that several ASRs were up-regulated in response to NaCl and PEG stress. CONCLUSION We identified ASR genes in wheat and found that gene duplication events are the main driving force for ASR gene evolution in wheat. The expression of wheat ASR genes was modulated in responses to multiple abiotic stresses, including drought/osmotic and salt stress. The results provided important information for further identifications of the functions of wheat ASR genes and candidate genes for high abiotic stress tolerant wheat breeding.
Collapse
Affiliation(s)
- Huawei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Haiying Guan
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Jinan, 250100 Shandong China
| | - Qicui Zhuo
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Zongshuai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Shengdong Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Jisheng Si
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Bin Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Bo Feng
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Ling-an Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Fahong Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Zheng Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100 China
| | - Lishun Zhang
- Jinan Yongfeng Seed Industry Co., Ltd, 3620 Pingannan Road, Jinan, 250100 China
| |
Collapse
|
14
|
Genome-wide identification and abiotic stress response patterns of abscisic acid stress ripening protein family members in Triticum aestivum L. Genomics 2020; 112:3794-3802. [PMID: 32304713 DOI: 10.1016/j.ygeno.2020.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
ASR (ABA-stress-ripening) genes play important roles in regulating plant growth and stress responses. This study identified 29 ASR genes in wheat. 23 pairs of tandem duplication genes and six pairs of segmental duplication genes were found in wheat ASR (TaASR) gene family, respectively. It is speculated that gene duplication event is the main driving force of TaASR genes evolution. Using published RNA-seq data and the qRT-PCR results of 12 TaASR genes, we analyzed the expression profiles for TaASR genes under abiotic stresses. It found that most of the genes mainly responded to salt and low temperature stress. Finally, subcellular localization and self-activation experiments showed that the proteins encoded by 12 TaASR genes were all located in the nucleus and cell membrane, and the full-length proteins had self-activation activity, which supported their role as transcription factors. This study provides a scientific basis for a comprehensive understanding of the TaASR gene family.
Collapse
|
15
|
Abscisic Acid, Stress, and Ripening ( TtASR1) Gene as a Functional Marker for Salt Tolerance in Durum Wheat. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7876357. [PMID: 32076614 PMCID: PMC7013306 DOI: 10.1155/2020/7876357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/08/2023]
Abstract
In semiarid Mediterranean agroecosystems, drought and salinity are the main abiotic stresses hampering wheat productivity and yield instability. Abscisic acid, stress, and ripening (ASR) are small plant proteins and play important roles in different biological processes. In the present study, the TtASR1 gene was isolated and characterized for the first time from durum wheat (Tritucum turgidum L. subsp. durum). TtASR1 is a small gene, about 684 bp long, located on chromosome 4AL, encoding a protein of 136 amino acid residues consisting of a histidine-rich N terminus and C-terminal conserved ABA-WDS domain (Pfam PF02496). Our results showed that TtASR1 protein could function as a chaperone-like protein and improve the viability of E. coli under heat and cold stress and increase the Saccharomyces cerevisiae tolerance under salt and osmotic stress. Transcript expression patterns of TtASR1 revealed that ASRs play important roles in abiotic stress responses in diverse organs. Indeed, TtASR1 was upregulated in leaves by different developmental (ABA) and environmental signals (PEG, salt). In cv. Mahmoudi (salt-tolerant Tunisian durum landraces) roots, TtASR1 was upregulated by salt stress, while it was downregulated in cv. Azizi (salt-sensitive Tunisian durum landraces), supporting the implication of this gene in the salt tolerance mechanism. Taken together and after validation in the plant system, the TtASR1 gene may provide a potential functional marker for marker-assisted selection in a durum wheat breeding program for salt tolerance.
Collapse
|
16
|
Ye Y, Lin R, Su H, Chen H, Luo M, Yang L, Zhang M. The functional identification of glycine-rich TtASR from Tetragonia tetragonoides (Pall.) Kuntze involving in plant abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:212-223. [PMID: 31518852 DOI: 10.1016/j.plaphy.2019.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
In this study, we reported on an ASR gene (TtASR) related to salt/drought tolerance from the edible halophyte Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae). A phylogenetic analysis revealed that TtASR was evolutionarily close to other two halophytic glycine-rich ASR members, SbASR-1 (from Salicornia brachiate) and SlASR (from Suaeda liaotungensis), with a typical abscisic acid (ABA)/water-deficit stress (WDS) domain at C-terminal. Quantitative RT-PCR analyses showed that TtASR was expressed in all tested different organs of the T. tetragonoides plant and that expression levels were apparently induced after salt, osmotic stress, and ABA treatments in T. tetragonoides seedlings. An induction of TtASR improved the growth performance of yeast and bacteria more than the control under high salinity, osmotic stress, and oxidative stress. TtASR was not a nuclear-specific protein in plant, and the transcriptional activation assay also demonstrated that TtASR could not activate reporter gene's expression in yeast. TtASR overexpressed Arabidopsis plants exhibited higher tolerance for salt/drought and oxidative stresses and lower ROS accumulation than wild type (WT) plants, accompanied by increased CAT, SOD activities, higher proline content, and lower MDA content in vivo. The results indicated that the TtASR was involved in plant responses to salt and drought, probably by mediating water homeostasis or by acting as ROS scavengers, and that it decreased the membrane damage and improved cellular osmotic adjustment that respond to abiotic stresses in microorganisms and plants.
Collapse
Affiliation(s)
- Yuyan Ye
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China.
| | - Ruoyi Lin
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Huaxiang Su
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Hongfeng Chen
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China.
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China.
| | - Lixiang Yang
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China.
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China.
| |
Collapse
|
17
|
Pérez-Díaz J, Pérez-Díaz JR, Medeiros DB, Zuther E, Hong CY, Nunes-Nesi A, Hincha DK, Ruiz-Lara S, Casaretto JA. Transcriptome analysis reveals potential roles of a barley ASR gene that confers stress tolerance in transgenic rice. JOURNAL OF PLANT PHYSIOLOGY 2019; 238:29-39. [PMID: 31129469 DOI: 10.1016/j.jplph.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 05/29/2023]
Abstract
Control of gene expression and induction of cellular protection mechanisms are two important processes that plants employ to protect themselves against abiotic stresses. ABA-, stress, and ripening-induced (ASR) proteins have been identified to participate in such responses. Previous studies have proposed that these proteins can act as transcription factors and as molecular chaperones protecting transgenic plants against stresses; however a gene network regulated by ASRs has not been explored. To expand our knowledge on the function of these proteins in cereals, we present the functional characterization of a barley ASR gene. Expression of HvASR5 was almost ubiquitous in different organs and responded to ABA and to different stress treatments. When expressed ectopically, HvASR5 was able to confer drought and salt stress tolerance to Arabidopsis thaliana and to improve growth performance of rice plants under stress conditions. A transcriptomic analysis with two transgenic rice lines overexpressing HvASR5 helped to identify potential downstream targets and understand ASR-regulated cellular processes. HvASR5 up-regulated the expression of a distinct set of genes associated with stress responses, metabolic processes (particularly carbohydrate metabolism), as well as reproduction and development. These data, together with the confirmed nuclear and cytoplasmic localization of HvASR5, further support the hypothesis that HvASR5 can also carry out roles as molecular protector and transcriptional regulator.
Collapse
Affiliation(s)
- Jorge Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | - David B Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Chwan-Yang Hong
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Simón Ruiz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - José A Casaretto
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile; Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
18
|
Comprehensive Analysis of the Cadmium Tolerance of Abscisic Acid-, Stress- and Ripening-Induced Proteins (ASRs) in Maize. Int J Mol Sci 2019; 20:ijms20010133. [PMID: 30609672 PMCID: PMC6337223 DOI: 10.3390/ijms20010133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 01/07/2023] Open
Abstract
In plants, abscisic acid-, stress-, and ripening-induced (ASR) proteins have been shown to impart tolerance to multiple abiotic stresses such as drought and salinity. However, their roles in metal stress tolerance are poorly understood. To screen plant Cd-tolerance genes, the yeast-based gene hunting method which aimed to screen Cd-tolerance colonies from maize leaf cDNA library hosted in yeast was carried out. Here, maize ZmASR1 was identified to be putative Cd-tolerant through this survival screening strategy. In silico analysis of the functional domain organization, phylogenetic classification and tissue-specific expression patterns revealed that maize ASR1 to ASR5 are typical ASRs with considerable expression in leaves. Further, four of them were cloned for testifying Cd tolerance using yeast complementation assay. The results indicated that they all confer Cd tolerance in Cd-sensitive yeast. Then they were transiently expressed in tobacco leaves for subcellular localization analysis and for Cd-challenged lesion assay, continuously. The results demonstrated that all 4 maize ASRs tested are localized to the cell nucleus and cytoplasm in tobacco leaves. Moreover, they were confirmed to be Cd-tolerance genes in planta through lesion analysis in Cd-infiltrated leaves transiently expressing them. Taken together, our results demonstrate that maize ASRs play important roles in Cd tolerance, and they could be used as promising candidate genes for further functional studies toward improving the Cd tolerance in plants.
Collapse
|
19
|
Li J, Li Y, Yin Z, Jiang J, Zhang M, Guo X, Ye Z, Zhao Y, Xiong H, Zhang Z, Shao Y, Jiang C, Zhang H, An G, Paek N, Ali J, Li Z. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H 2 O 2 signalling in rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:183-196. [PMID: 27420922 PMCID: PMC5258865 DOI: 10.1111/pbi.12601] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 05/18/2023]
Abstract
Drought is one of the major abiotic stresses that directly implicate plant growth and crop productivity. Although many genes in response to drought stress have been identified, genetic improvement to drought resistance especially in food crops is showing relatively slow progress worldwide. Here, we reported the isolation of abscisic acid, stress and ripening (ASR) genes from upland rice variety, IRAT109 (Oryza sativa L. ssp. japonica), and demonstrated that overexpression of OsASR5 enhanced osmotic tolerance in Escherichia coli and drought tolerance in Arabidopsis and rice by regulating leaf water status under drought stress conditions. Moreover, overexpression of OsASR5 in rice increased endogenous ABA level and showed hypersensitive to exogenous ABA treatment at both germination and postgermination stages. The production of H2 O2 , a second messenger for the induction of stomatal closure in response to ABA, was activated in overexpression plants under drought stress conditions, consequently, increased stomatal closure and decreased stomatal conductance. In contrast, the loss-of-function mutant, osasr5, showed sensitivity to drought stress with lower relative water content under drought stress conditions. Further studies demonstrated that OsASR5 functioned as chaperone-like protein and interacted with stress-related HSP40 and 2OG-Fe (II) oxygenase domain containing proteins in yeast and plants. Taken together, we suggest that OsASR5 plays multiple roles in response to drought stress by regulating ABA biosynthesis, promoting stomatal closure, as well as acting as chaperone-like protein that possibly prevents drought stress-related proteins from inactivation.
Collapse
Affiliation(s)
- Jinjie Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Yang Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Zhigang Yin
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Jihong Jiang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Minghui Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Xiao Guo
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Zhujia Ye
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Yan Zhao
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Haiyan Xiong
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Zhanying Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Yujie Shao
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Conghui Jiang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Hongliang Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Gynheung An
- Department of Plant Systems Biotech and Crop Biotech InstituteKyung Hee UniversityYonginKorea
| | - Nam‐Chon Paek
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute for Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Jauhar Ali
- International Rice Research InstituteMetro ManilaPhilippines
| | - Zichao Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| |
Collapse
|
20
|
Hsiao YC, Hsu YF, Chen YC, Chang YL, Wang CS. A WD40 protein, AtGHS40, negatively modulates abscisic acid degrading and signaling genes during seedling growth under high glucose conditions. JOURNAL OF PLANT RESEARCH 2016; 129:1127-1140. [PMID: 27443795 DOI: 10.1007/s10265-016-0849-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/18/2016] [Indexed: 06/06/2023]
Abstract
The Arabidopsis thaliana T-DNA insertion mutant glucose hypersensitive (ghs) 40-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The ghs40-1 mutant displayed severely impaired cotyledon greening and expansion and showed enhanced reduction in hypocotyl elongation of dark-grown seedlings when grown in Glc concentrations higher than 3 %. The Glc-hypersensitivity of ghs40-1 was correlated with the hyposensitive phenotype of 35S::AtGHS40 seedlings. The phenotypes of ghs40-1 were recovered by complementation with 35S::AtGHS40. The AtGHS40 (At5g11240) gene encodes a WD40 protein localized primarily in the nucleus and nucleolus using transient expression of AtGHS40-mRFP in onion cells and of AtGHS40-EGFP and EGFP-AtGHS40 in Arabidopsis protoplasts. The ABA biosynthesis inhibitor fluridone extensively rescued Glc-mediated growth arrest. Quantitative real time-PCR analysis showed that AtGHS40 was involved in the control of Glc-responsive genes. AtGHS40 acts downstream of HXK1 and is activated by ABI4 while ABI4 expression is negatively modulated by AtGHS40 in the Glc signaling network. However, AtGHS40 may not affect ABI1 and SnRK2.6 gene expression. Given that AtGHS40 inhibited ABA degrading and signaling gene expression levels under high Glc conditions, a new circuit of fine-tuning modulation by which ABA and ABA signaling gene expression are modulated in balance, occurred in plants. Thus, AtGHS40 may play a role in ABA-mediated Glc signaling during early seedling development. The biochemical function of AtGHS40 is also discussed.
Collapse
Affiliation(s)
- Yu-Chun Hsiao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, NCHU, Taichung, 40227, Taiwan
- Agricultural Biotechnology Center, NCHU, Taichung, 40227, Taiwan
| | - Yi-Feng Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, NCHU, Taichung, 40227, Taiwan
- Agricultural Biotechnology Center, NCHU, Taichung, 40227, Taiwan
- School of Life Sciences, Southwest University, Chongqing, China
| | - Yun-Chu Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, NCHU, Taichung, 40227, Taiwan
- Agricultural Biotechnology Center, NCHU, Taichung, 40227, Taiwan
| | - Yi-Lin Chang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Co-Shine Wang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan.
- NCHU-UCD Plant and Food Biotechnology Center, NCHU, Taichung, 40227, Taiwan.
- Agricultural Biotechnology Center, NCHU, Taichung, 40227, Taiwan.
| |
Collapse
|
21
|
Wang L, Hu W, Feng J, Yang X, Huang Q, Xiao J, Liu Y, Yang G, He G. Identification of the ASR gene family from Brachypodium distachyon and functional characterization of BdASR1 in response to drought stress. PLANT CELL REPORTS 2016; 35:1221-34. [PMID: 26905726 DOI: 10.1007/s00299-016-1954-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/09/2016] [Indexed: 05/06/2023]
Abstract
A genome-wide investigation identified five B. distachyon ASR genes. BdASR1 may be a transcription factor that confers drought resistance by activating antioxidant systems involving ROS-scavenging enzymes and non-enzymatic antioxidants. Abscisic acid-, stress-, and ripening-induced (ASR) proteins belong to a family of plant-specific, small, and hydrophilic proteins with important roles in responses to abiotic stresses. Although several ASR genes involved in drought tolerance have been characterized in various plant species, the mechanisms regulating ASR activities are still uncharacterized. Additionally, no research on Brachypodium distachyon ASR proteins have been completed. In this study, five B. distachyon BdASR genes were identified through genome-wide analyses. Phylogenetic analyses revealed that BdASR genes originated from tandem and whole genome duplications. Expression analyses revealed the BdASR genes responded to various abiotic stresses, including cold, drought, and salinity, as well as signaling molecules such as abscisic acid, ethylene, and H2O2. BdASR1, which localizes to the nucleus and is transcriptionally active, was functionally characterized. BdASR1 overexpression considerably enhanced drought tolerance in transgenic tobacco plants, which was accompanied by increased superoxide dismutase, catalase, and peroxidase activities, as well as an increased abundance of antioxidants such as ascorbate, tocopherols, and glutathione. BdASR1 may function as a transcription factor that provides drought stress resistance by inducing the production of reactive oxygen species-scavenging enzymes and non-enzymatic antioxidants.
Collapse
Affiliation(s)
- Lianzhe Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jialu Feng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoyue Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quanjun Huang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiajing Xiao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yang Liu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
22
|
Arenhart RA, Schunemann M, Neto LB, Margis R, Wang ZY, Margis-Pinheiro M. Rice ASR1 and ASR5 are complementary transcription factors regulating aluminium responsive genes. PLANT, CELL & ENVIRONMENT 2016; 39:645-51. [PMID: 26476017 PMCID: PMC7256019 DOI: 10.1111/pce.12655] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 05/18/2023]
Abstract
Rice is the most tolerant staple crop to aluminium (Al) toxicity, which is a limiting stress for grain production worldwide. This Al tolerance is the result of combined mechanisms that are triggered in part by the transcription factor ASR5. ASRs are dual target proteins that participate as chaperones in the cytoplasm and as transcription factors in the nucleus. Moreover, these proteins respond to biotic and abiotic stresses, including salt, drought and Al. Rice plants with silenced ASR genes are highly sensitive to Al. ASR5, a well-characterized protein, binds to specific cis elements in Al responsive genes and regulates their expression. Because the Al sensitive phenotype found in silenced rice plants could be due to the mutual silencing of ASR1 and ASR5, we investigated the effect of the specific silencing of ASR5. Plants with artificial microRNA silencing of ASR5 present a non-transformed phenotype in response to Al because of the induction of ASR1. ASR1 has the same subcellular localization as ASR5, binds to ASR5 cis-regulatory elements, regulates ASR5 regulated genes in a non-preferential manner and might replace ASR5 under certain conditions. Our results indicate that ASR1 and ASR5 act in concert and complementarily to regulate gene expression in response to Al.
Collapse
Affiliation(s)
- Rafael Augusto Arenhart
- Programa de Pós-Graduação em Genética e Biologia Molecular – Departamento de Genética-Universidade Federal do Rio Grande do Sul
| | - Mariana Schunemann
- Programa de Pós-Graduação em Genética e Biologia Molecular – Departamento de Genética-Universidade Federal do Rio Grande do Sul
| | - Lauro Bucker Neto
- Programa de Pós-Graduação em Genética e Biologia Molecular – Departamento de Genética-Universidade Federal do Rio Grande do Sul
| | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular – Departamento de Genética-Universidade Federal do Rio Grande do Sul
- Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul
| | - Zhi-Yong Wang
- Department of Plant Biology-Carnegie Institution for Science, Stanford, CA 94305
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular – Departamento de Genética-Universidade Federal do Rio Grande do Sul
- Corresponding address: Dr. Marcia Margis-Pinheiro, Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brasil. Phone: 55 (51) 3308-9814.
| |
Collapse
|
23
|
Feng ZJ, Xu ZS, Sun J, Li LC, Chen M, Yang GX, He GY, Ma YZ. Investigation of the ASR family in foxtail millet and the role of ASR1 in drought/oxidative stress tolerance. PLANT CELL REPORTS 2016; 35:115-28. [PMID: 26441057 DOI: 10.1007/s00299-015-1873-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE Six foxtail millet ASR genes were regulated by various stress-related signals. Overexpression of ASR1 increased drought and oxidative tolerance by controlling ROS homeostasis and regulating oxidation-related genes in tobacco plants. Abscisic acid stress ripening (ASR) proteins with ABA/WDS domains constituted a class of plant-specific transcription factors, playing important roles in plant development, growth and abiotic stress responses. However, only a few ASRs genes have been characterized in crop plants and none was reported so far in foxtail millet (Setaria italic), an important drought-tolerant crop and model bioenergy grain crop. In the present study, we identified six foxtail millet ASR genes. Gene structure, protein alignments and phylogenetic relationships were analyzed. Transcript expression patterns of ASR genes revealed that ASRs might play important roles in stress-related signaling and abiotic stress responses in diverse tissues in foxtail millet. Subcellular localization assays showed that SiASR1 localized in the nucleus. Overexpression of SiASR1 in tobacco remarkably increased tolerance to drought and oxidative stresses, as determined through developmental and physiological analyses of germination rate, root growth, survival rate, relative water content, ion leakage, chlorophyll content and antioxidant enzyme activities. Furthermore, expression of SiASR1 modulated the transcript levels of oxidation-related genes, including NtSOD, NtAPX, NtCAT, NtRbohA and NtRbohB, under drought and oxidative stress conditions. These results provide a foundation for evolutionary and functional characterization of the ASR gene family in foxtail millet.
Collapse
Affiliation(s)
- Zhi-Juan Feng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Jiutong Sun
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Lian-Cheng Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Guang-Xiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guang-Yuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
24
|
Neto LB, Arenhart RA, de Oliveira LFV, de Lima JC, Bodanese-Zanettini MH, Margis R, Margis-Pinheiro M. ASR5 is involved in the regulation of miRNA expression in rice. PLANT CELL REPORTS 2015; 34:1899-1907. [PMID: 26183952 DOI: 10.1007/s00299-015-1836-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 06/04/2023]
Abstract
The work describes an ASR knockdown transcriptomic analysis by deep sequencing of rice root seedlings and the transactivation of ASR cis-acting elements in the upstream region of a MIR gene. MicroRNAs are key regulators of gene expression that guide post-transcriptional control of plant development and responses to environmental stresses. ASR (ABA, Stress and Ripening) proteins are plant-specific transcription factors with key roles in different biological processes. In rice, ASR proteins have been suggested to participate in the regulation of stress response genes. This work describes the transcriptomic analysis by deep sequencing two libraries, comparing miRNA abundance from the roots of transgenic ASR5 knockdown rice seedlings with that of the roots of wild-type non-transformed rice seedlings. Members of 59 miRNA families were detected, and 276 mature miRNAs were identified. Our analysis detected 112 miRNAs that were differentially expressed between the two libraries. A predicted inverse correlation between miR167abc and its target gene (LOC_Os07g29820) was confirmed using RT-qPCR. Protoplast transactivation assays showed that ASR5 is able to recognize binding sites upstream of the MIR167a gene and drive its expression in vivo. Together, our data establish a comparative study of miRNAome profiles and is the first study to suggest the involvement of ASR proteins in miRNA gene regulation.
Collapse
Affiliation(s)
- Lauro Bücker Neto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio 43312, Porto Alegre, RS, 91501-970, Brazil.
| | - Rafael Augusto Arenhart
- Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Rua Livramento 515, Bento Gonçalves, RS, 95700-000, Brazil.
| | - Luiz Felipe Valter de Oliveira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio 43431, Porto Alegre, RS, 91501-970, Brazil.
| | - Júlio Cesar de Lima
- Universidade de Passo Fundo, Laboratório de Genética Molecular, BR285, Passo Fundo, RS, 99052-900, Brazil.
| | - Maria Helena Bodanese-Zanettini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio 43312, Porto Alegre, RS, 91501-970, Brazil.
| | - Rogerio Margis
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio 43431, Porto Alegre, RS, 91501-970, Brazil.
| | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio 43312, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
25
|
Dominguez PG, Carrari F. ASR1 transcription factor and its role in metabolism. PLANT SIGNALING & BEHAVIOR 2015; 10:e992751. [PMID: 25794140 PMCID: PMC4623331 DOI: 10.4161/15592324.2014.992751] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 05/23/2023]
Abstract
Asr1 (ABA, stress, ripening) is a plant gene widely distributed in many species which was discovered by differential induction levels in tomato plants subjected to drought stress conditions. ASR1 also regulates the expression of a hexose transporter in grape and is involved in sugar and amino acid accumulation in some species like maize and potato. The control that ASR1 exerts on hexose transport is interesting from a biotechnological perspective because both sugar partitioning and content in specific organs affect the yield and the quality of many agronomically important crops. ASR1 affect plant metabolism by its dual activity as a transcription factor and as a chaperone-like protein. In this paper, we review possible mechanisms by which ASR1 affects metabolism, the differences observed among tissues and species, and the possible physiological implications of its role in metabolism.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Biotecnología; Instituto Nacional de Tecnología Agropecuaria (IB-INTA); and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Castelar, Argentina
| | - Fernando Carrari
- Instituto de Biotecnología; Instituto Nacional de Tecnología Agropecuaria (IB-INTA); and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Castelar, Argentina
| |
Collapse
|
26
|
Zhang L, Hu W, Wang Y, Feng R, Zhang Y, Liu J, Jia C, Miao H, Zhang J, Xu B, Jin Z. The MaASR gene as a crucial component in multiple drought stress response pathways in Arabidopsis. Funct Integr Genomics 2014; 15:247-60. [DOI: 10.1007/s10142-014-0415-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/06/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|
27
|
Golan I, Dominguez PG, Konrad Z, Shkolnik-Inbar D, Carrari F, Bar-Zvi D. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited. PLoS One 2014; 9:e107117. [PMID: 25310287 PMCID: PMC4195575 DOI: 10.1371/journal.pone.0107117] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/12/2014] [Indexed: 01/10/2023] Open
Abstract
Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding.
Collapse
Affiliation(s)
- Ido Golan
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Pia Guadalupe Dominguez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Zvia Konrad
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Doron Shkolnik-Inbar
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Dudy Bar-Zvi
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
28
|
Hu YX, Yang X, Li XL, Yu XD, Li QL. The SlASR gene cloned from the extreme halophyte Suaeda liaotungensis K. enhances abiotic stress tolerance in transgenic Arabidopsis thaliana. Gene 2014; 549:243-51. [DOI: 10.1016/j.gene.2014.07.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/16/2014] [Accepted: 07/30/2014] [Indexed: 10/25/2022]
|
29
|
Luo C, He XH, Hu Y, Yu HX, Ou SJ, Fang ZB. Oligo-dT anchored cDNA-SCoT: a novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.). Gene 2014; 548:182-9. [PMID: 25017057 DOI: 10.1016/j.gene.2014.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
Differential display is a powerful technique for analyzing differences in gene expression. Oligo-dT cDNAstart codon targeted marker (cDNA-SCoT) technique is a novel, simple, cheap, rapid, and efficient method for differential gene expression research. In the present study, the oligo-dT anchored cDNA-SCoT technique was exploited to identify differentially expressed genes during several stress treatments in mango. A total of 37 primers combined with oligo-dT anchor primers 3side amplified approximately 150 fragments of 150 bp to 1500 bp in length. Up to 100 fragments were differentially expressed among the stress treatments and control samples, among which 92 were obtained and sequenced. Out of the 92 transcript derived fragments (TDFs), 70% were highly homologous to known genes, and 30% encoded unclassified proteins with unknown functions. The expression pattern of nine genes with known functions involved in several abiotic stresses in other species was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) under cold (4 °C), salinity (NaCl), polyethylene glycol (PEG, MW 6000), and heavy metal treatments in leaves and stems at different time points (0, 24, 48, and 72 h). The expression patterns of the genes (TDF4, TDF7, TDF23, TDF45, TDF49, TDF50, TDF57, TDF91 and TDF92) that had direct or indirect relationships with cold, salinity, drought and heavy metal stress response were analyzed through qRT-PCR. The possible roles of these genes are discussed. This study suggests that the oligo-dT anchored cDNA-SCoT differential display method is a useful tool to serve as an initial step for characterizing transcriptional changes induced by abiotic stresses and provide gene information for further study and application in genetic improvement and breeding in mango.
Collapse
Affiliation(s)
- Cong Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xin-Hua He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, Guangxi 530007, China.
| | - Ying Hu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Hai-xia Yu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Shi-Jin Ou
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhong-Bin Fang
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
30
|
González RM, Iusem ND. Twenty years of research on Asr (ABA-stress-ripening) genes and proteins. PLANTA 2014; 239:941-949. [PMID: 24531839 DOI: 10.1007/s00425-014-2039-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/29/2014] [Indexed: 05/29/2023]
Abstract
Investigating how plants cope with different abiotic stresses-mainly drought and extreme temperatures-is pivotal for both understanding the underlying signaling pathways and improving genetically engineered crops. Plant cells are known to react defensively to mild and severe dehydration by initiating several signal transduction pathways that result in the accumulation of different proteins, sugar molecules and lipophilic anti-oxidants. Among the proteins that build up under these adverse conditions are members of the ancestral ASR (ABA-stress-ripening) family, which is conserved in the plant kingdom but lacks orthologs in Arabidopsis. This review provides a comprehensive summary of the state of the art regarding ASRs, going back to the original description and cloning of the tomato ASR cDNA. That seminal discovery sparked worldwide interest amongst research groups spanning multiple fields: biochemistry, cell biology, evolution, physiology and epigenetics. As these proteins function as both chaperones and transcription factors; this review also covers the progress made on relevant molecular features that account for these dual roles-including the recent identification of their target genes-which may inspire future basic research. In addition, we address reports of drought-tolerant ASR-transgenic plants of different species, highlighting the influential work of authors taking more biotechnological approaches.
Collapse
Affiliation(s)
- Rodrigo M González
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE)-CONICET, Buenos Aires, Argentina
| | | |
Collapse
|
31
|
Arenhart RA, Bai Y, Valter de Oliveira LF, Bucker Neto L, Schunemann M, Maraschin FDS, Mariath J, Silverio A, Sachetto-Martins G, Margis R, Wang ZY, Margis-Pinheiro M. New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. MOLECULAR PLANT 2014; 7:709-21. [PMID: 24253199 PMCID: PMC3973494 DOI: 10.1093/mp/sst160] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/05/2013] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) toxicity in plants is one of the primary constraints in crop production. Al³⁺, the most toxic form of Al, is released into soil under acidic conditions and causes extensive damage to plants, especially in the roots. In rice, Al tolerance requires the ASR5 gene, but the molecular function of ASR5 has remained unknown. Here, we perform genome-wide analyses to identify ASR5-dependent Al-responsive genes in rice. Based on ASR5_RNAi silencing in plants, a global transcriptome analysis identified a total of 961 genes that were responsive to Al treatment in wild-type rice roots. Of these genes, 909 did not respond to Al in the ASR5_RNAi plants, indicating a central role for ASR5 in Al-responsive gene expression. Under normal conditions, without Al treatment, the ASR5_RNAi plants expressed 1.756 genes differentially compared to the wild-type plants, and 446 of these genes responded to Al treatment in the wild-type plants. Chromatin immunoprecipitation followed by deep sequencing identified 104 putative target genes that were directly regulated by ASR5 binding to their promoters, including the STAR1 gene, which encodes an ABC transporter required for Al tolerance. Motif analysis of the binding peak sequences revealed the binding motif for ASR5, which was confirmed via in vitro DNA-binding assays using the STAR1 promoter. These results demonstrate that ASR5 acts as a key transcription factor that is essential for Al-responsive gene expression and Al tolerance in rice.
Collapse
Affiliation(s)
- Rafael Augusto Arenhart
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | - Yang Bai
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Luiz Felipe Valter de Oliveira
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | - Lauro Bucker Neto
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | - Mariana Schunemann
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
| | | | - Jorge Mariath
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Adriano Silverio
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular Avenida Bento Gonçalves 9500, Departamento de Genética, sala 207, prédio 43312, Universidade Federal do Rio Grande do Sul, 91501–970, Porto Alegre, Brasil
- To whom correspondence should be addressed. E-mail , fax 55-51-3308-7311, tel. 55 (51) 3308–9814
| |
Collapse
|
32
|
Pérez-Díaz J, Wu TM, Pérez-Díaz R, Ruíz-Lara S, Hong CY, Casaretto JA. Organ- and stress-specific expression of the ASR genes in rice. PLANT CELL REPORTS 2014; 33:61-73. [PMID: 24085307 DOI: 10.1007/s00299-013-1512-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/14/2013] [Accepted: 09/20/2013] [Indexed: 05/26/2023]
Abstract
Rice ASR genes respond distinctly to abscisic acid, dehydration and cold stress. Their tissue-specific expression provides new hints about their possible roles in plant responses to stress. Plant ASR proteins have emerged as an interesting distinct group of proteins with apparent roles in protecting cellular structures as well as putative regulators of gene expression, both important responses of plants to environmental stresses. Regardless of the possible functions proposed by different studies, little is known about their role in cereals. To further understand the function of these proteins in the Gramineae, we investigated the expression pattern of the six ASR genes present in the rice genome in response to ABA, stress conditions and in different organs. Although transcription of most OsASRs is transiently enhanced by ABA treatment, the genes present a differential response under cold and drought stress as well as specific expression in certain tissues and organs. Analysis of their promoters reveals regulatory cis-elements associated to hormonal, sugar and stress responses. The promoters of two genes, OsASR1 and OsASR5, direct the expression of the GUS reporter gene especially to leaf vascular tissue in response to dehydration and low temperature. In control conditions, a GUS reporter assay also indicates specific expression of these two genes in roots, anthers and seed scutellar tissues. These results provide new clues about the possible role of ASRs in plant stress responses and development.
Collapse
Affiliation(s)
- Jorge Pérez-Díaz
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| | | | | | | | | | | |
Collapse
|
33
|
Hsu YF, Chen YC, Hsiao YC, Wang BJ, Lin SY, Cheng WH, Jauh GY, Harada JJ, Wang CS. AtRH57, a DEAD-box RNA helicase, is involved in feedback inhibition of glucose-mediated abscisic acid accumulation during seedling development and additively affects pre-ribosomal RNA processing with high glucose. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:119-35. [PMID: 24176057 PMCID: PMC4350433 DOI: 10.1111/tpj.12371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/28/2013] [Accepted: 10/24/2013] [Indexed: 05/04/2023]
Abstract
The Arabidopsis thaliana T-DNA insertion mutant rh57-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The other two rh57 mutants also showed Glc hypersensitivity similar to rh57-1, strongly suggesting that the Glc-hypersensitive feature of these mutants results from mutation of AtRH57. rh57-1 and rh57-3 displayed severely impaired seedling growth when grown in Glc concentrations higher than 3%. The gene, AtRH57 (At3g09720), was expressed in all Arabidopsis organs and its transcript was significantly induced by ABA, high Glc and salt. The new AtRH57 belongs to class II DEAD-box RNA helicase gene family. Transient expression of AtRH57-EGFP (enhanced green fluorescent protein) in onion cells indicated that AtRH57 was localized in the nucleus and nucleolus. Purified AtRH57-His protein was shown to unwind double-stranded RNA independent of ATP in vitro. The ABA biosynthesis inhibitor fluridone profoundly redeemed seedling growth arrest mediated by sugar. rh57-1 showed increased ABA levels when exposed to high Glc. Quantitative real time polymerase chain reaction analysis showed that AtRH57 acts in a signaling network downstream of HXK1. A feedback inhibition of ABA accumulation mediated by AtRH57 exists within the sugar-mediated ABA signaling. AtRH57 mutation and high Glc conditions additively caused a severe defect in small ribosomal subunit formation. The accumulation of abnormal pre-rRNA and resistance to protein synthesis-related antibiotics were observed in rh57 mutants and in the wild-type Col-0 under high Glc conditions. These results suggested that AtRH57 plays an important role in rRNA biogenesis in Arabidopsis and participates in response to sugar involving Glc- and ABA signaling during germination and seedling growth.
Collapse
Affiliation(s)
- Yi-Feng Hsu
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
| | - Yun-Chu Chen
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
| | - Yu-Chun Hsiao
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
| | - Bing-Jyun Wang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
| | - Shih-Yun Lin
- Institute of Plant and Microbial Biology, Academia SinicaNankang, Taipei, 11529, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia SinicaNankang, Taipei, 11529, Taiwan
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia SinicaNankang, Taipei, 11529, Taiwan
| | - John J Harada
- Section of Plant Biology, College of Biological Sciences, University of CaliforniaDavis, CA, 95616, USA
| | - Co-Shine Wang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, 40227, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, NCHU and Agricultural Biotechnology Center, NCHUTaichung, 40227, Taiwan
- *For correspondence (e-mail )
| |
Collapse
|
34
|
Hu W, Huang C, Deng X, Zhou S, Chen L, Li Y, Wang C, Ma Z, Yuan Q, Wang Y, Cai R, Liang X, Yang G, He G. TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. PLANT, CELL & ENVIRONMENT 2013; 36:1449-64. [PMID: 23356734 DOI: 10.1111/pce.12074] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 05/06/2023]
Abstract
Abscisic acid (ABA)-, stress-, and ripening-induced (ASR) proteins are reported to be involved in abiotic stresses. However, it is not known whether ASR genes confer drought stress tolerance by utilizing the antioxidant system. In this study, a wheat ASR gene, TaASR1, was cloned and characterized. TaASR1 transcripts increased after treatments with PEG6000, ABA and H(2)O(2). Overexpression of TaASR1 in tobacco resulted in increased drought/osmotic tolerance, which was demonstrated that transgenic lines had lesser malondialdehyde (MDA), ion leakage (IL) and reactive oxygen species (ROS), but higher relative water content (RWC) and superoxide dismutase (SOD) and catalase (CAT) activities than wild type (WT) under drought stress. Overexpression of TaASR1 in tobacco also enhanced the expression of ROS-related and stress-responsive genes under osmotic stress. In addition, transgenic lines exhibited improved tolerance to oxidative stress by retaining more effective antioxidant system. Finally, TaASR1 was localized in the cell nucleus and functioned as a transcriptional activator. Taken together, our results showed that TaASR1 functions as a positive factor under drought/osmotic stress, involved in the regulation of ROS homeostasis by activating antioxidant system and transcription of stress-associated genes.
Collapse
Affiliation(s)
- Wei Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, 430074, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Joo J, Lee YH, Kim YK, Nahm BH, Song SI. Abiotic stress responsive rice ASR1 and ASR3 exhibit different tissue-dependent sugar and hormone-sensitivities. Mol Cells 2013; 35:421-35. [PMID: 23620302 PMCID: PMC3887869 DOI: 10.1007/s10059-013-0036-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 10/26/2022] Open
Abstract
The expression of the six rice ASR genes is differentially regulated in a tissue-dependent manner according to environmental conditions and reproductive stages. OsASR1 and OsASR3 are the most abundant and are found in most tissues; they are enriched in the leaves and roots, respectively. Coexpression analysis of OsASR1 and OsASR3 and a comparison of the cis-acting elements upstream of OsASR1 and OsASR3 suggested that their expression is regulated in common by abiotic stresses but differently regulated by hormone and sugar signals. The results of quantitative real-time PCR analyses of OsASR1 and OsASR3 expression under various conditions further support this model. The expression of both OsASR1 and OsASR3 was induced by drought stress, which is a major regulator of the expression of all ASR genes in rice. In contrast, ABA is not a common regulator of the expression of these genes. OsASR1 transcription was highly induced by ABA, whereas OsASR3 transcription was strongly induced by GA. In addition, OsASR1 and OsASR3 expression was significantly induced by sucrose and sucrose/glucose treatments, respectively. The induction of gene expression in response to these specific hormone and sugar signals was primarily observed in the major target tissues of these genes (i.e., OsASR1 in leaves and OsASR3 in roots). Our data also showed that the overexpression of either OsASR1 or OsASR3 in transgenic rice plants increased their tolerance to drought and cold stress. Taken together, our results revealed that the transcriptional control of different rice ASR genes exhibit different tissue-dependent sugar and hormone-sensitivities.
Collapse
Affiliation(s)
- Joungsu Joo
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| | - Youn Hab Lee
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| | - Yeon-Ki Kim
- Genomics Genetics Institute, GreenGene BioTech, Inc., Yongin 449–728,
Korea
| | - Baek Hie Nahm
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
- Genomics Genetics Institute, GreenGene BioTech, Inc., Yongin 449–728,
Korea
| | - Sang Ik Song
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| |
Collapse
|
36
|
Dominguez PG, Frankel N, Mazuch J, Balbo I, Iusem N, Fernie AR, Carrari F. ASR1 mediates glucose-hormone cross talk by affecting sugar trafficking in tobacco plants. PLANT PHYSIOLOGY 2013; 161:1486-500. [PMID: 23302128 PMCID: PMC3585611 DOI: 10.1104/pp.112.208199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/21/2013] [Indexed: 05/02/2023]
Abstract
Asr (for ABA, stress, ripening) genes are exclusively found in the genomes of higher plants, and the encoded proteins have been found localized both to the nucleus and cytoplasm. However, before the mechanisms underlying the activity of ASR proteins can be determined, the role of these proteins in planta should be deciphered. Results from this study suggest that ASR is positioned within the signaling cascade of interactions among glucose, abscisic acid, and gibberellins. Tobacco (Nicotiana tabacum) transgenic lines with reduced levels of ASR protein showed impaired glucose metabolism and altered abscisic acid and gibberellin levels. These changes were associated with dwarfism, reduced carbon dioxide assimilation, and accelerated leaf senescence as a consequence of a fine regulation exerted by ASR to the glucose metabolism. This regulation resulted in an impact on glucose signaling mediated by Hexokinase1 and Snf1-related kinase, which would subsequently have been responsible for photosynthesis, leaf senescence, and hormone level alterations. It thus can be postulated that ASR is not only involved in the control of hexose uptake in heterotrophic organs, as we have previously reported, but also in the control of carbon fixation by the leaves mediated by a similar mechanism.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Argentina (P.G.D., F.C.); Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.F.); Max Planck Institute for Molecular Plant Physiology, 14416 Golm, Germany (J.M., I.B., A.R.F.); and Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.I.)
| | - Nicolas Frankel
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Argentina (P.G.D., F.C.); Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.F.); Max Planck Institute for Molecular Plant Physiology, 14416 Golm, Germany (J.M., I.B., A.R.F.); and Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.I.)
| | - Jeannine Mazuch
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Argentina (P.G.D., F.C.); Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.F.); Max Planck Institute for Molecular Plant Physiology, 14416 Golm, Germany (J.M., I.B., A.R.F.); and Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.I.)
| | - Ilse Balbo
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Argentina (P.G.D., F.C.); Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.F.); Max Planck Institute for Molecular Plant Physiology, 14416 Golm, Germany (J.M., I.B., A.R.F.); and Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.I.)
| | - Norberto Iusem
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Argentina (P.G.D., F.C.); Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.F.); Max Planck Institute for Molecular Plant Physiology, 14416 Golm, Germany (J.M., I.B., A.R.F.); and Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.I.)
| | - Alisdair R. Fernie
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Argentina (P.G.D., F.C.); Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.F.); Max Planck Institute for Molecular Plant Physiology, 14416 Golm, Germany (J.M., I.B., A.R.F.); and Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.I.)
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Argentina (P.G.D., F.C.); Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.F.); Max Planck Institute for Molecular Plant Physiology, 14416 Golm, Germany (J.M., I.B., A.R.F.); and Departamento de Fisiología, Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina (N.I.)
| |
Collapse
|
37
|
Wang CS, Hsu SW, Hsu YF. New insights into desiccation-associated gene regulation by Lilium longiflorum ASR during pollen maturation and in transgenic Arabidopsis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:37-94. [PMID: 23317817 DOI: 10.1016/b978-0-12-407704-1.00002-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
LLA23, a member of the abscisic acid-, stress-, and ripening-induced (ASR) protein family, was previously isolated from lily (Lilium longiflorum) pollen. The lily ASR is induced through desiccation-associated ABA signaling transduction in the pollen. ASRs are highly hydrophilic and intrinsically unstructured proteins with molecular masses generally less than 18 kDa. LLA23 is abundant in the cytoplasm and nuclei of both vegetative and generative cells of pollen grains. The protein in the nucleus and in the cytoplasm is partly regulated by dehydration. A dual role is proposed for LLA23, as a regulator and a protective molecule, upon exposure to water deficits. This chapter reviews the current state of literature on Asr genes, protein structure, function, and their responses to various stresses. In a study, a genome-wide microarray was used to monitor the expression of LLA23-regulated genes, focusing on the relationship between ASR-, glucose-, and drought-inducible genes, and outlined the difference and cross talk of gene expression among these signaling networks. A strong association was observed in the expression of stress-responsive genes and found 25 genes that respond to all three treatments. Highly inducible genes were also found in each specific stress treatment. Promoter sequence analysis of LLA23-inducible genes enabled us not only to identify possible known cis-acting elements in the promoter regions but also to expect the existence of novel cis-acting elements involved in ASR-responsive gene expression. ASR can be used to improve crops and economically important plants against various environmental stresses.
Collapse
Affiliation(s)
- Co-Shine Wang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.
| | | | | |
Collapse
|