1
|
Han D, Ma X, Zhang L, Zhang S, Sun Q, Li P, Shu J, Zhao Y. Serial-Omics and Molecular Function Study Provide Novel Insight into Cucumber Variety Improvement. PLANTS 2022; 11:plants11121609. [PMID: 35736760 PMCID: PMC9228134 DOI: 10.3390/plants11121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Cucumbers are rich in vitamins and minerals. The cucumber has recently become one of China’s main vegetable crops. More specifically, the adjustment of the Chinese agricultural industry’s structure and rapid economic development have resulted in increases in the planting area allocated to Chinese cucumber varieties and in the number of Chinese cucumber varieties. After complete sequencing of the “Chinese long” genome, the transcriptome, proteome, and metabolome were obtained. Cucumber has a small genome and short growing cycle, and these traits are conducive to the application of molecular breeding techniques for improving fruit quality. Here, we review the developments and applications of molecular markers and genetic maps for cucumber breeding and introduce the functions of gene families from the perspective of genomics, including fruit development and quality, hormone response, resistance to abiotic stress, epitomizing the development of other omics, and relationships among functions.
Collapse
Affiliation(s)
- Danni Han
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China; (L.Z.); (S.Z.); (Q.S.)
| | - Xiaojun Ma
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Lei Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China; (L.Z.); (S.Z.); (Q.S.)
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China; (L.Z.); (S.Z.); (Q.S.)
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China; (L.Z.); (S.Z.); (Q.S.)
| | - Pan Li
- School of Pharmacy, Liaocheng University, Liaocheng 252000, China;
| | - Jing Shu
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
- Correspondence: (J.S.); (Y.Z.)
| | - Yanting Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Correspondence: (J.S.); (Y.Z.)
| |
Collapse
|
2
|
Abstract
Soil contamination with petroleum hydrocarbons (PHCs) has become a global concern and has resulted from the intensification of industrial activities. This has created a serious environmental issue; therefore, there is a need to find solutions, including application of efficient remediation technologies or improvement of current techniques. Rhizoremediation is a green technology that has received global attention as a cost-effective and possibly efficient remediation technique for PHC-polluted soil. Rhizoremediation refers to the use of plants and their associated microbiota to clean up contaminated soils, where plant roots stimulate soil microbes to mineralize organic contaminants to H2O and CO2. However, this multipartite interaction is complicated because many biotic and abiotic factors can influence microbial processes in the soil, making the efficiency of rhizoremediation unpredictable. This review reports the current knowledge of rhizoremediation approaches that can accelerate the remediation of PHC-contaminated soil. Recent approaches discussed in this review include (1) selecting plants with desired characteristics suitable for rhizoremediation; (2) exploiting and manipulating the plant microbiome by using inoculants containing plant growth-promoting rhizobacteria (PGPR) or hydrocarbon-degrading microbes, or a combination of both types of organisms; (3) enhancing the understanding of how the host–plant assembles a beneficial microbiome, and how it functions, under pollutant stress. A better understanding of plant–microbiome interactions could lead to successful use of rhizoremediation for PHC-contaminated soil in the future.
Collapse
|
3
|
Long-Term Waterlogging as Factor Contributing to Hypoxia Stress Tolerance Enhancement in Cucumber: Comparative Transcriptome Analysis of Waterlogging Sensitive and Tolerant Accessions. Genes (Basel) 2021; 12:genes12020189. [PMID: 33525400 PMCID: PMC7912563 DOI: 10.3390/genes12020189] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Waterlogging (WL), excess water in the soil, is a phenomenon often occurring during plant cultivation causing low oxygen levels (hypoxia) in the soil. The aim of this study was to identify candidate genes involved in long-term waterlogging tolerance in cucumber using RNA sequencing. Here, we also determined how waterlogging pre-treatment (priming) influenced long-term memory in WL tolerant (WL-T) and WL sensitive (WL-S) i.e., DH2 and DH4 accessions, respectively. This work uncovered various differentially expressed genes (DEGs) activated in the long-term recovery in both accessions. De novo assembly generated 36,712 transcripts with an average length of 2236 bp. The results revealed that long-term waterlogging had divergent impacts on gene expression in WL-T DH2 and WL-S DH4 cucumber accessions: after 7 days of waterlogging, more DEGs in comparison to control conditions were identified in WL-S DH4 (8927) than in WL-T DH2 (5957). Additionally, 11,619 and 5007 DEGs were identified after a second waterlogging treatment in the WL-S and WL-T accessions, respectively. We identified genes associated with WL in cucumber that were especially related to enhanced glycolysis, adventitious roots development, and amino acid metabolism. qRT-PCR assay for hypoxia marker genes i.e., alcohol dehydrogenase (adh), 1-aminocyclopropane-1-carboxylate oxidase (aco) and long chain acyl-CoA synthetase 6 (lacs6) confirmed differences in response to waterlogging stress between sensitive and tolerant cucumbers and effectiveness of priming to enhance stress tolerance.
Collapse
|
4
|
Irrigation Combined with Aeration Promoted Soil Respiration through Increasing Soil Microbes, Enzymes, and Crop Growth in Tomato Fields. Catalysts 2019. [DOI: 10.3390/catal9110945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Soil respiration (Rs) is one of the major components controlling the carbon budget of terrestrial ecosystems. Aerated irrigation has been proven to increase Rs compared with the control, but the mechanisms of CO2 release remain poorly understood. The objective of this study was (1) to test the effects of irrigation, aeration, and their interaction on Rs, soil physical and biotic properties (soil water-filled pore space, temperature, bacteria, fungi, actinomycetes, microbial biomass carbon, cellulose activity, dehydrogenase activity, root morphology, and dry biomass of tomato), and (2) to assess how soil physical and biotic variables control Rs. Therefore, three irrigation levels were included (60%, 80%, and 100% of full irrigation). Each irrigation level contained aeration and control. A total of six treatments were included. The results showed that aeration significantly increased total root length, dry biomass of leaf, stem, and fruit compared with the control (p < 0.05). The positive effect of irrigation on dry biomass of leaf, fruit, and root was significant (p < 0.05). With respect to the control, greater Rs under aeration (averaging 6.2% increase) was mainly driven by soil water-filled pore space, soil bacteria, and soil fungi. The results of this study are helpful for understanding the mechanisms of soil CO2 release under aerated subsurface drip irrigation.
Collapse
|
5
|
Zhang P, Zhu Y, Luo X, Zhou S. Comparative proteomic analysis provides insights into the complex responses to Pseudoperonospora cubensis infection of cucumber (Cucumis sativus L.). Sci Rep 2019; 9:9433. [PMID: 31263111 PMCID: PMC6603182 DOI: 10.1038/s41598-019-45111-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/28/2019] [Indexed: 02/04/2023] Open
Abstract
Cucumber (Cucumis sativus L.) is an important crop distributed in many countries. Downy mildew (DM) caused by the obligate oomycete Pseudoperonospora cubensis is especially destructive in cucumber production. So far, few studies on the changes in proteomes during the P. cubensis infection have been performed. In the present study, the proteomes of DM-resistant variety ‘ZJ’ and DM-susceptible variety ‘SDG’ under the P. cubensis infection were investigated. In total, 6400 peptides were identified, 5629 of which were quantified. KEGG analysis showed that a number of metabolic pathways were significantly altered under P. cubensis infection, such as terpenoid backbone biosynthesis, and selenocompound metabolism in ZJ, and starch and sucrose metabolism in SDG. For terpenoid backbone synthesis, 1-deoxy-D-xylulose-5-phosphate synthase, 1-deoxy-D-xylulose 5-phosphate reductoisomerase, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, and geranylgeranyl pyrophosphate synthase were significantly accumulated in ZJ rather than in SDG, suggesting that pathogen-induced terpenoids accumulation might play an important role in the resistance against P. cubensis infection. Furthermore, a number of pathogenesis-related proteins, such as endochitinases, peroxidases, PR proteins and heat shock proteins were identified as DAPs, suggesting that DM resistance was controlled by a complex network. Our data allowed us to identify and screen more potential proteins related to the DM resistance.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yuqiang Zhu
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Xiujun Luo
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
| | - Shengjun Zhou
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China.
| |
Collapse
|
6
|
Kuang S, Fan X, Peng R. Quantitative proteomic analysis ofRhodococcus ruberresponsive to organic solvents. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1533432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sufang Kuang
- Department of Bioengineering, College of Life Science, Jiangxi Normal University, Nanchang, PR China
| | - Xin Fan
- Department of Bioengineering, College of Life Science, Jiangxi Normal University, Nanchang, PR China
| | - Ren Peng
- Department of Bioengineering, College of Life Science, Jiangxi Normal University, Nanchang, PR China
| |
Collapse
|
7
|
Ali S, Kim WC. Plant Growth Promotion Under Water: Decrease of Waterlogging-Induced ACC and Ethylene Levels by ACC Deaminase-Producing Bacteria. Front Microbiol 2018; 9:1096. [PMID: 29887854 PMCID: PMC5981179 DOI: 10.3389/fmicb.2018.01096] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Some plant growth-promoting bacteria encode for 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which facilitates plant growth and development by lowering the level of stress ethylene under waterlogged conditions. The substrate ACC is the immediate precursor for ethylene synthesis in plants; while bacterial ACC deaminase hydrolyzes this compound into α-ketobutyrate and ammonia to mitigate the adverse effects of the stress caused by ethylene exposure. Here, the structure and function of ACC deaminase, ethylene biosynthesis and waterlogging response, waterlogging and its consequences, role of bacterial ACC deaminase under waterlogged conditions, and effect of this enzyme on terrestrial and riparian plants are discussed.
Collapse
|
8
|
Sang Q, Shan X, An Y, Shu S, Sun J, Guo S. Proteomic Analysis Reveals the Positive Effect of Exogenous Spermidine in Tomato Seedlings' Response to High-Temperature Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:120. [PMID: 28220137 PMCID: PMC5292424 DOI: 10.3389/fpls.2017.00120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/20/2017] [Indexed: 05/02/2023]
Abstract
Polyamines are phytohormones that regulate plant growth and development as well as the response to environmental stresses. To evaluate their functions in high-temperature stress responses, the effects of exogenous spermidine (Spd) were determined in tomato leaves using two-dimensional electrophoresis and MALDI-TOF/TOF MS. A total of 67 differentially expressed proteins were identified in response to high-temperature stress and/or exogenous Spd, which were grouped into different categories according to biological processes. The four largest categories included proteins involved in photosynthesis (27%), cell rescue, and defense (24%), protein synthesis, folding and degradation (22%), and energy and metabolism (13%). Exogenous Spd up-regulated most identified proteins involved in photosynthesis, implying an enhancement in photosynthetic capacity. Meanwhile, physiological analysis showed that Spd could improve net photosynthetic rate and the biomass accumulation. Moreover, an increased high-temperature stress tolerance by exogenous Spd would contribute to the higher expressions of proteins involved in cell rescue and defense, and Spd regulated the antioxidant enzymes activities and related genes expression in tomato seedlings exposed to high temperature. Taken together, these findings provide a better understanding of the Spd-induced high-temperature resistance by proteomic approaches, providing valuable insight into improving the high-temperature stress tolerance in the global warming epoch.
Collapse
Affiliation(s)
- Qinqin Sang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xi Shan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yahong An
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Nanjing Agricultural University (Suqian), Academy of Protected HorticultureSuqian, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Nanjing Agricultural University (Suqian), Academy of Protected HorticultureSuqian, China
| |
Collapse
|
9
|
An Y, Zhou H, Zhong M, Sun J, Shu S, Shao Q, Guo S. Root proteomics reveals cucumber 24-epibrassinolide responses under Ca(NO3)2 stress. PLANT CELL REPORTS 2016; 35:1081-101. [PMID: 26931454 DOI: 10.1007/s00299-016-1940-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/24/2016] [Indexed: 05/04/2023]
Abstract
The application of exogenous 24-epibrassinolide promotes Brassinosteroids intracellular signalling in cucumber, which leads to differentially expressed proteins that participate in different life process to relieve Ca(NO 3 ) 2 damage. NO3 (-) and Ca(2+) are the main anion and cation of soil secondary salinization during greenhouse cultivation. Brassinosteroids (BRs), steroidal phytohormones, regulate various important physiological and developmental processes and are used against abiotic stress. A two-dimensional electrophoresis gel coupled with MALDI-TOF/TOF MS was performed to investigate the effects of exogenous 24-epibrassinolide (EBL) on proteomic changes in cucumber seedling roots under Ca(NO3)2 stress. A total of 80 differentially accumulated protein spots in response to stress and/or exogenous EBL were identified and grouped into different categories of biological processes according to Gene Ontology. Under Ca(NO3)2 stress, proteins related to nitrogen metabolism and lignin biosynthesis were induced, while those related to cytoskeleton organization and cell-wall neutral sugar metabolism were inhibited. However, the accumulation of abundant proteins involved in protein modification and degradation, defence mechanisms against antioxidation and detoxification and lignin biosynthesis by exogenous EBL might play important roles in salt tolerance. Real-time quantitative PCR was performed to investigate BR signalling. BR signalling was induced intracellularly under Ca(NO3)2 stress. Exogenous EBL can alleviate the root indices, effectively reduce the Ca(2+) content and increase the K(+) content in cucumber roots under Ca(NO3)2 stress. This study revealed the differentially expressed proteins and BR signalling-associated mRNAs induced by EBL in cucumber seedling roots under Ca(NO3)2 stress, providing a better understanding of EBL-induced salt resistance in cucumber seedlings. The mechanism for alleviation provides valuable insight into improving Ca(NO3)2 stress tolerance of other horticultural plants.
Collapse
Affiliation(s)
- Yahong An
- College of Horticulture, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Heng Zhou
- College of Horticulture, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Min Zhong
- College of Horticulture, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Jin Sun
- College of Horticulture, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Sheng Shu
- College of Horticulture, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Qiaosai Shao
- College of Horticulture, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China
| | - Shirong Guo
- College of Horticulture, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China.
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, People's Republic of China.
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
10
|
Zhang X, Lin HM, Hu H, Hu X, Hu L. Gamma-aminobutyric acid mediates nicotine biosynthesis in tobacco under flooding stress. PLANT DIVERSITY 2016; 38:53-58. [PMID: 30159449 PMCID: PMC6112189 DOI: 10.1016/j.pld.2016.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 05/16/2023]
Abstract
Gamma-aminobutyric acid (GABA) is a four-carbon non-protein amino acid conserved from bacteria to plants and vertebrates. Increasing evidence supports a regulatory role for GABA in plant development and the plant's response to environmental stress. The biosynthesis of nicotine, the main economically important metabolite in tobacco, is tightly regulated. GABA has not hitherto been reported to function in nicotine biosynthesis. Here we report that water flooding treatment (hypoxia) markedly induced the accumulation of GABA and stimulated nicotine biosynthesis. Suppressing GABA accumulation by treatment with glutamate decarboxylase inhibitor impaired flooding-induced nicotine biosynthesis, while exogenous GABA application directly induced nicotine biosynthesis. Based on these results, we propose that GABA triggers nicotine biosynthesis in tobacco seedlings subjected to flooding. Our results provide insight into the molecular mechanism of nicotine biosynthesis in tobacco plants exposed to environmental stress.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-ming Lin
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hong Hu
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiangyang Hu
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Corresponding author.
| | - Liwei Hu
- Laboratory of Tobacco Agriculture, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Corresponding author.
| |
Collapse
|
11
|
He L, Li B, Lu X, Yuan L, Yang Y, Yuan Y, Du J, Guo S. The effect of exogenous calcium on mitochondria, respiratory metabolism enzymes and ion transport in cucumber roots under hypoxia. Sci Rep 2015; 5:11391. [PMID: 26304855 PMCID: PMC4548228 DOI: 10.1038/srep11391] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 04/29/2015] [Indexed: 11/20/2022] Open
Abstract
Hypoxia induces plant stress, particularly in cucumber plants under hydroponic culture. In plants, calcium is involved in stress signal transmission and growth. The ultimate goal of this study was to shed light on the mechanisms underlying the effects of exogenous calcium on the mitochondrial antioxidant system, the activity of respiratory metabolism enzymes, and ion transport in cucumber (Cucumis sativus L. cv. Jinchun No. 2) roots under hypoxic conditions. Our experiments revealed that exogenous calcium reduces the level of reactive oxygen species (ROS) and increases the activity of antioxidant enzymes in mitochondria under hypoxia. Exogenous calcium also enhances the accumulation of enzymes involved in glycolysis and the tricarboxylic acid (TCA) cycle. We utilized fluorescence and ultrastructural cytochemistry methods to observe that exogenous calcium increases the concentrations of Ca(2+) and K(+) in root cells by increasing the activity of plasma membrane (PM) H(+)-ATPase and tonoplast H(+)-ATPase and H(+)-PPase. Overall, our results suggest that hypoxic stress has an immediate and substantial effect on roots. Exogenous calcium improves metabolism and ion transport in cucumber roots, thereby increasing hypoxia tolerance in cucumber.
Collapse
Affiliation(s)
- Lizhong He
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Horticulture Research Institute, Shanghai Academy Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai, 201403, China
| | - Bin Li
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomin Lu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Life Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Lingyun Yuan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjuan Yang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinghui Yuan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Du
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Fan L, Wu X, Tian Z, Jia K, Pan Y, Li J, Gao H. Comparative proteomic analysis of gamma-aminobutyric acid responses in hypoxia-treated and untreated melon roots. PHYTOCHEMISTRY 2015; 116:28-37. [PMID: 25840728 DOI: 10.1016/j.phytochem.2015.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
Hypoxia is one of the main environmental stresses that accounts for decreasing crop yield. To further investigate the mechanisms whereby exogenous GABA alleviates hypoxia injury to melon seedlings, a comparative proteomic analysis was performed using roots subjected to normal aeration and hypoxia conditions with or without GABA (5mM). The results indicated that protein spots on gels after hypoxia and hypoxia+GABA treatment were significantly changed. Three "matched sets" were analyzed from four treatments, and 13 protein spots with large significant differences in expression were identified by MALDI-TOF/TOF mass spectrometry. Exogenous GABA treatment enhanced the expression of protein in cytosolic phosphoglycerate kinase 1, exaA2 gene product, dnaJ and myb-like DNA-binding domain-containing proteins, as well as elongation factor-1 alpha and hypothetical proteins in hypoxia-induced roots. However, the hypoxia+GABA treated roots had a significantly lower expression of proteins including malate dehydrogenase, nucleoside diphosphate kinase, disease resistance-like protein, disulfide isomerase, actin, ferrodoxin NADP oxidoreductase, glutathione transferase, netting associated peroxidase. This paper describes the effect of GABA on melon plants under hypoxia-induced stress using proteomics, and supports the alleviating function of GABA in melon plants grown under hypoxic conditions.
Collapse
Affiliation(s)
- Longquan Fan
- College of Horticulture, Agricultural University of Hebei, Baoding 071001, China; The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China.
| | - Xiaolei Wu
- College of Horticulture, Agricultural University of Hebei, Baoding 071001, China.
| | - Zhen Tian
- College of Horticulture, Agricultural University of Hebei, Baoding 071001, China.
| | - Kaizhi Jia
- Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Yinghong Pan
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China.
| | - Jingrui Li
- College of Horticulture, Agricultural University of Hebei, Baoding 071001, China.
| | - Hongbo Gao
- College of Horticulture, Agricultural University of Hebei, Baoding 071001, China.
| |
Collapse
|
13
|
Ampofo-Asiama J, Baiye VMM, Hertog MLATM, Waelkens E, Geeraerd AH, Nicolai BM. The metabolic response of cultured tomato cells to low oxygen stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:594-606. [PMID: 24119171 DOI: 10.1111/plb.12094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/17/2013] [Indexed: 05/10/2023]
Abstract
The storage of fruits and vegetables under a controlled atmosphere can induce low oxygen stress, which can lead to post-harvest losses through the induction of disorders such as core breakdown and browning. To gain better understanding of the metabolic response of plant organs to low oxygen, cultured tomato cells (Lycopersicum esculentum) were used as a model system to study the metabolic stress response to low oxygen (0 and 1 kPa O2). By adding 13C labelled glucose, changes in the levels of polar metabolites and their 13C label accumulation were quantified. Low oxygen stress altered the metabolite profile of tomato cells, with the accumulation of the intermediates of glycolysis in addition to increases in lactate and sugar alcohols. 13C label data showed reduced label accumulation in almost all metabolites except lactate and some sugar alcohols. The results showed that low oxygen stress in tomato cell culture activated fermentative metabolism and sugar alcohol synthesis while inhibiting the activity of the TCA cycle and the biosynthesis of metabolites whose precursors are derived from central metabolism, including fluxes to most organic acids, amino acids and sugars.
Collapse
Affiliation(s)
- J Ampofo-Asiama
- Division of Mechatronics, Department of Biosystems (BIOSYST), Biostatistics and Sensors (MeBioS), KU Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Plant mitochondria: source and target for nitric oxide. Mitochondrion 2014; 19 Pt B:329-33. [PMID: 24561220 DOI: 10.1016/j.mito.2014.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/23/2022]
Abstract
Plant mitochondria generate nitric oxide (NO) under anoxia through the action of cytochrome c oxidase and other electron transport chain components on nitrite. This reductive mechanism operates under aerobic conditions at high electron transport rates. Indirect evidence also indicates that the oxidative pathway of NO production may be associated with mitochondria. We review the consequences of mitochondrial NO production, including the inhibition of oxygen uptake by cytochrome c oxidase, the inhibition of aconitase and succinate dehydrogenase, the induction of alternative oxidase, and the nitrosylation of several proteins, including glycine decarboxylase. The importance of these events in adaptation to abiotic and biotic stresses is discussed.
Collapse
|
15
|
Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 2013; 169:30-9. [PMID: 24095256 DOI: 10.1016/j.micres.2013.09.009] [Citation(s) in RCA: 815] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/09/2013] [Accepted: 09/14/2013] [Indexed: 01/25/2023]
Abstract
To feed all of the world's people, it is necessary to sustainably increase agricultural productivity. One way to do this is through the increased use of plant growth-promoting bacteria; recently, scientists have developed a more profound understanding of the mechanisms employed by these bacteria to facilitate plant growth. Here, it is argued that the ability of plant growth-promoting bacteria that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase to lower plant ethylene levels, often a result of various stresses, is a key component in the efficacious functioning of these bacteria. The optimal functioning of these bacteria includes the synergistic interaction between ACC deaminase and both plant and bacterial auxin, indole-3-acetic acid (IAA). These bacteria not only directly promote plant growth, they also protect plants against flooding, drought, salt, flower wilting, metals, organic contaminants, and both bacterial and fungal pathogens. While a considerable amount of both basic and applied work remains to be done before ACC deaminase-producing plant growth-promoting bacteria become a mainstay of plant agriculture, the evidence indicates that with the expected shift from chemicals to soil bacteria, the world is on the verge of a major paradigm shift in plant agriculture.
Collapse
Affiliation(s)
- Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
16
|
Li MW, Qi X, Ni M, Lam HM. Silicon era of carbon-based life: application of genomics and bioinformatics in crop stress research. Int J Mol Sci 2013; 14:11444-83. [PMID: 23759993 PMCID: PMC3709742 DOI: 10.3390/ijms140611444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/07/2013] [Accepted: 05/17/2013] [Indexed: 01/25/2023] Open
Abstract
Abiotic and biotic stresses lead to massive reprogramming of different life processes and are the major limiting factors hampering crop productivity. Omics-based research platforms allow for a holistic and comprehensive survey on crop stress responses and hence may bring forth better crop improvement strategies. Since high-throughput approaches generate considerable amounts of data, bioinformatics tools will play an essential role in storing, retrieving, sharing, processing, and analyzing them. Genomic and functional genomic studies in crops still lag far behind similar studies in humans and other animals. In this review, we summarize some useful genomics and bioinformatics resources available to crop scientists. In addition, we also discuss the major challenges and advancements in the "-omics" studies, with an emphasis on their possible impacts on crop stress research and crop improvement.
Collapse
Affiliation(s)
- Man-Wah Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Xinpeng Qi
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Meng Ni
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Hon-Ming Lam
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| |
Collapse
|
17
|
Li J, McConkey BJ, Cheng Z, Guo S, Glick BR. Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach. J Proteomics 2013; 84:119-31. [PMID: 23568019 DOI: 10.1016/j.jprot.2013.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/19/2012] [Accepted: 03/19/2013] [Indexed: 11/17/2022]
Abstract
UNLABELLED Plant growth-promoting bacteria (PGPB) can both facilitate plant growth and improve plant resistance to a variety of environmental stresses. In order to investigate the mechanisms that PGPB use to protect plants under hypoxic conditions, the protein profiles of stressed and non-stressed cucumber roots, either treated or not treated with PGPB, were examined. Two dimensional difference in-gel electrophoresis (DIGE) was used to detect significantly up- or down-regulated proteins (p<0.05, |ratio|>1.5) in cucumber roots in response to hypoxia. There were 1980, 1893 and 1735 protein spots detected from cucumber roots in the absence of stress in the presence of the PGPB Pseudomonas putida UW4, following hypoxic stress, and following hypoxic stress in the presence of P. putida UW4, respectively. The numbers of significantly changed protein spots were 0, 106, and 147 in these three treatments respectively. Proteins were identified by LTQ-MS/MS and categorized into classes corresponding to transcription, protein synthesis, signal transduction, carbohydrate and nitrogen metabolism, defense stress, antioxidant, binding and others. The functions of the proteins whose expression changed significantly were analyzed in detail, contributing to a more thorough understanding of how PGPB mediate the stress response in plants. BIOLOGICAL SIGNIFICANCE To our knowledge, only a limited number of papers have addressed cucumber proteomics, this study is the first report to describe the effect of plant growth-promoting bacteria (P. putida UW4) on cucumber plants under hypoxic stress using a proteomic approach. Thus, this work provides new insights to understand the cross-reactivity between P. putida UW4 and cucumber plant. A model of cucumber roots in response to P. putida UW4 and hypoxia was proposed: P. putida UW4 and hypoxic stress caused changes of gene expression in cucumber roots, then transcription was stimulated, the proteins involved in carbohydrate metabolism, nitrogen metabolism, defense stress, antioxidant, binding and others were induced, these proteins might work cooperatively to release hypoxic stress and promote cucumber growth. These results describe a dynamic protein network to explain the promotion mechanism of P. putida UW4, and also provide a solid basis for further functional research of single nodes of this network.
Collapse
Affiliation(s)
- Jing Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
18
|
He L, Lu X, Tian J, Yang Y, Li B, Li J, Guo S. Proteomic analysis of the effects of exogenous calcium on hypoxic-responsive proteins in cucumber roots. Proteome Sci 2012; 10:42. [PMID: 22788869 PMCID: PMC3576256 DOI: 10.1186/1477-5956-10-42] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/20/2012] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED BACKGROUND Hypoxia acts as a plant stress factor, particularly in cucumbers plants under hydroponic culture. Calcium is involved in stress signal transmission and in the growth of plants. To determine the effect of exogenous calcium on hypoxic-responsive proteins in cucumber (Cucumis sativus L. cv. Jinchun No.2) roots, proteomic analysis was performed using two-dimensional electrophoresis (2-DE) and mass spectrometry. RESULTS Cucumber roots were used to analyze the influence of hypoxia on plants. The expressions of 38 protein spots corresponding to enzymes were shown to change in response to hypoxia. Of these, 30 spots were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/TOF MS analysis). The proteins were categorized according to functional groups, including glycolysis, the tricarboxylic acid (TCA) cycle, fermentative metabolism, nitrogen metabolism, energy metabolism, protein synthesis and defense against stress. Exogenous calcium appeared to alleviate hypoxic stress via these metabolic and physiological systems. Western blotting was used to analyze the accumulation of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC); calcium further increased the expression of ADH and PDC under hypoxia. In addition, semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to assess the transcript levels of differentially expressed proteins. CONCLUSIONS Exogenous calcium enhanced the expression of enzymes involved in glycolysis, the TCA cycle, fermentative metabolism, nitrogen metabolism, and reactive oxygen species (ROS) defense in plants under hypoxia. Calcium appears to induce hypoxic tolerance of cucumber seedlings. These phenomena have prompted us to further investigate the mechanisms by which cucumbers respond to exogenous calcium under hypoxia.
Collapse
Affiliation(s)
- Lizhong He
- College of Horticulture, Nanjing Agriculture University/Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, 210095, P. R. China
| | - Xiaomin Lu
- College of Horticulture, Nanjing Agriculture University/Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, 210095, P. R. China.,Anhui Science and Technology University, Fengyang, 233100, An Hui, P. R. China
| | - Jing Tian
- College of Horticulture, Nanjing Agriculture University/Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, 210095, P. R. China
| | - Yanjuan Yang
- College of Horticulture, Nanjing Agriculture University/Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, 210095, P. R. China
| | - Bin Li
- College of Horticulture, Nanjing Agriculture University/Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, 210095, P. R. China
| | - Jing Li
- College of Horticulture, Nanjing Agriculture University/Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, 210095, P. R. China
| | - Shirong Guo
- College of Horticulture, Nanjing Agriculture University/Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, 210095, P. R. China
| |
Collapse
|
19
|
Glick BR. Plant growth-promoting bacteria: mechanisms and applications. SCIENTIFICA 2012; 2012:963401. [PMID: 24278762 PMCID: PMC3820493 DOI: 10.6064/2012/963401] [Citation(s) in RCA: 942] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 09/13/2012] [Indexed: 05/18/2023]
Abstract
The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.
Collapse
Affiliation(s)
- Bernard R. Glick
- Department of Biology, University of Waterloo, 200 University Avenue South, Waterloo, ON, Canada N2L 3G1
- *Bernard R. Glick:
| |
Collapse
|