1
|
Trotta G, Vuerich M, Pellegrini E, Vilà M, Asquini E, Cingano P, Boscutti F. Containing alien plants in coastal dunes: Evidence from a soil manipulation experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121780. [PMID: 38996603 DOI: 10.1016/j.jenvman.2024.121780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Biological invasion is recognised as one of the major threats to biodiversity, particularly in disturbance-prone ecosystems such as costal dunes. Many studies have associated alien plant invasion of dune ecosystem to human disturbances, but less is known about the role of soil properties in invasion after disturbance. Soil properties are crucial filters during plant succession and soil-related changes in the initial stage of species colonization might shape the final success of the invaders. We performed a manipulative experiment aimed at elucidating the effects of soil properties on plant colonization processes in highly invaded dune systems, as a proxy for plausible management actions to curb the success of exotic plant species over native ones, which was measured through species richness and abundance. In a barrier island of the Marano and Grado lagoon, Northern Adriatic Sea, we mechanically removed all the native and alien vegetation present in the back dune (also known as secondary dune), triggering a new ecological succession and further altered, for the following three months, soil properties by adding salt, nitrogen, and organic matter in a full factorial design with randomized blocks. The soil treatments reduced the overall species richness and abundance of alien plants. Further, soil treatment interactions strongly shaped community evenness and species richness. Soil salinity had a positive effect on native cover while decreasing the overall number of alien species, especially in soil with added organic matter. Our findings suggest that soil salinity, and its interplay with organic matter, might significantly reduce the initial success of alien species propagule pressure (i.e. alien plant germination), with likely implications for the trajectories of future plant communities. This study highlights that alien plant containment should be focused on early stages of succession, giving new perspective on future environmental management actions for dune restoration and conservation.
Collapse
Affiliation(s)
- Giacomo Trotta
- Department of Environmental and Life Sciences (DSV), University of Trieste, Via Licio Giorgieri 5, 34127, Trieste, Italy; Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy.
| | - Marco Vuerich
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Elisa Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy
| | - Montserrat Vilà
- Doñana Biological Station - Spanish National Research Council (EBD-CSIC), 41092, Sevilla, Spain; Department of Plant Biology and Ecology, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Edoardo Asquini
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy; University of Palermo, 90133, Palermo, Italy
| | - Paolo Cingano
- Department of Environmental and Life Sciences (DSV), University of Trieste, Via Licio Giorgieri 5, 34127, Trieste, Italy; Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy
| | - Francesco Boscutti
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
2
|
He M, Ge L, Hui X, Li W, Ding J, Siemann E. Chlorophyll fluorescence characteristics and H 2O 2 contents of Chinese tallow tree are dependent on population origin, nutrients and salinity. AOB PLANTS 2024; 16:plae024. [PMID: 39077392 PMCID: PMC11285151 DOI: 10.1093/aobpla/plae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/01/2024] [Indexed: 07/31/2024]
Abstract
Plants from invasive populations often have higher growth rates than conspecifics from native populations due to better environmental adaptability. However, the roles of improved chlorophyll fluorescence or antioxidant defenses in helping them to grow better under adverse situations are insufficient, even though this is a key physiological question for elucidating mechanisms of plant invasion. Here, we conducted experiments with eight native (China) and eight introduced (USA) populations of Chinese tallow tree (Triadica sebifera). We tested how salinity, nutrients (overall amount or N:P in two separate experiments) and their interaction affected T. sebifera aboveground biomass, leaf area, chlorophyll fluorescence and antioxidant defenses. Plants from introduced populations were larger than those from native populations, but salinity and nutrient shortage (low nutrients or high N:P) reduced this advantage, possibly reflecting differences in chlorophyll fluorescence based on their higher PSII maximum photochemical efficiency (F v/F m) and PSI maximum photo-oxidizable P700 in higher nutrient conditions. Native population plants had lower F v/F m with saline. Except in high nutrients/N:P with salinity, introduced population plants had lower electron transfer rate and photochemical quantum yield. There were no differences in antioxidant defenses between introduced and native populations except accumulation of hydrogen peroxide (H2O2), which was lower for introduced populations. Low nutrients and higher N:P or salinity increased total antioxidant capacity and H2O2. Our results indicate that nutrients and salinity induce differences in H2O2 contents and chlorophyll fluorescence characteristics between introduced and native populations of an invasive plant, illuminating adaptive mechanisms using photosynthetic physiological descriptors in order to predict invasions.
Collapse
Affiliation(s)
- Mengyue He
- School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Lihong Ge
- School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Xue Hui
- School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Wenrao Li
- School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Jianqing Ding
- School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
3
|
Ahmed AA, Ghoneim M, Ali MAA, Amer A, Głowacka A, Ahmed MAA. Comparative studies of four cumin landraces grown in Egypt. Sci Rep 2024; 14:7990. [PMID: 38580717 PMCID: PMC10997781 DOI: 10.1038/s41598-024-57637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
One of the significant aromatic plants applied in food and pharma is cumin. Despite its massive trading in Egypt, there are no comprehensive reports on cumin landraces profile screening. This study aimed to investigate the variation in seeds' physical and biochemical profiles and genetic diversity as well as assess the efficiency of seeds' germination under salinity stress. Consequently, during the 2020/2021 growing season, four common cumin seed landraces were gathered from various agro-climatic regions: El Gharbia, El Menia, Assiut, and Qena. Results showed a significant variation in physical profile among the four seeds of landraces. In addition, Assiut had the highest percentage of essential oil at 8.04%, whilst Qena had the largest amount of cumin aldehyde, the primary essential oil component, at 25.19%. Lauric acid was found to be the predominant fatty acid (54.78 to 62.73%). According to ISSR amplification, El Menia presented a negative unique band, whereas other landraces offered a positive band. Additionally, the cumin genotypes were separated into two clusters by the dendrogram, with El Gharbia being located in an entirely separate cluster. There were two sub-clusters within the other cluster: El Menia in one and Assiut and Qena in the other. Moreover, the germination sensitivity to the diverse salinity concentrations (control, 4, 8, 12, and 16 dS/m) findings showed that landraces exhibited varying responses to increased salinity when El Gharbia and El Menia showed a moderate response at four dS/m. Whilst, Qena landraces showed supreme values among other landraces under 12 and 16 dS/m. The majority of the examined features had strong positive associations over a range of salinity levels, according to phenotypic correlation coefficient analysis. To accomplish the aims of sustainable agriculture in Egypt, it would be imperative that the potential breeding program for cumin landraces consider this screening study.
Collapse
Affiliation(s)
- Abeer A Ahmed
- Seed Technology Research Department, Field Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - Marwa Ghoneim
- Cell Department, Field Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mahmoud A A Ali
- Horticultural Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Alia Amer
- Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt.
| | - Aleksandra Głowacka
- Department of Plant Cultivation Technology and Commodity Sciences, University of Life Sciences in Lublin, 13 Akademicka Street, 20-950, Lublin, Poland
| | - Mohamed A A Ahmed
- Plant Production Department (Horticulture - Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| |
Collapse
|
4
|
Xu H, Zhu M, Chen X. Fungal epiphytes differentially regulate salt tolerance of invasive Ipomoea cairica according to salt stress levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4797-4807. [PMID: 38105332 DOI: 10.1007/s11356-023-31540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Fungal symbionts can improve plant tolerance to salt stress. However, the interaction of epiphytic Fusarium oxysporum and Fusarium fujikuroi with the tolerance of the invasive plant Ipomoea cairica against saline coastal habitats is largely unknown. This study aimed to investigate the interaction of the mixture of the two epiphytic fungi with salt tolerance of I. cairica. Surface-sterilized I. cairica cuttings inoculated (E+) and non-inoculated (E-) with the fungal mixture were cultivated with 2, 3, and 5 parts per thousand (PPT) of NaCl solutions to simulate mild, moderate, and severe salt stress, respectively. The hydroponic experiment showed that the growth inhibition and peroxidation damages of E+ and E- cuttings were aggravated with salinity. Noteworthily, E+ cuttings had higher peroxidase (POD) and catalase (CAT) activities, chlorophyll content, total biomass, aboveground biomass, total shoot length and secondary shoot number, but lower root-to-shoot ratio than E- cuttings under 2 and 3 PPT NaCl conditions. Moreover, E+ had higher superoxide dismutase (SOD) activity and proline content but lower belowground biomass and malondialdehyde (MDA) content than E- cuttings under 3 PPT NaCl condition. However, lower SOD, POD, and CAT activities, and chlorophyll content, but higher MDA content occurred in E+ cuttings than in E- cuttings under 5 PPT NaCl condition. These findings suggested that the mixture of the two epiphytic fungi increased salt tolerance of I. cairica mainly through increasing its antioxidation ability and chlorophyll stability under mildly and moderately saline conditions, but decreased salt tolerance of this plant in an opposite way under severely saline conditions.
Collapse
Affiliation(s)
- Hua Xu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430048, China
| | - Minjie Zhu
- Hunan Polytechnic of Environment and Biology, Hengyang, 421005, China
| | - Xuhui Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China.
| |
Collapse
|
5
|
Busoms S, Fischer S, Yant L. Chasing the mechanisms of ecologically adaptive salinity tolerance. PLANT COMMUNICATIONS 2023; 4:100571. [PMID: 36883005 PMCID: PMC10721451 DOI: 10.1016/j.xplc.2023.100571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Plants adapted to challenging environments offer fascinating models of evolutionary change. Importantly, they also give information to meet our pressing need to develop resilient, low-input crops. With mounting environmental fluctuation-including temperature, rainfall, and soil salinity and degradation-this is more urgent than ever. Happily, solutions are hiding in plain sight: the adaptive mechanisms from natural adapted populations, once understood, can then be leveraged. Much recent insight has come from the study of salinity, a widespread factor limiting productivity, with estimates of 20% of all cultivated lands affected. This is an expanding problem, given increasing climate volatility, rising sea levels, and poor irrigation practices. We therefore highlight recent benchmark studies of ecologically adaptive salt tolerance in plants, assessing macro- and microevolutionary mechanisms, and the recently recognized role of ploidy and the microbiome on salinity adaptation. We synthesize insight specifically on naturally evolved adaptive salt-tolerance mechanisms, as these works move substantially beyond traditional mutant or knockout studies, to show how evolution can nimbly "tweak" plant physiology to optimize function. We then point to future directions to advance this field that intersect evolutionary biology, abiotic-stress tolerance, breeding, and molecular plant physiology.
Collapse
Affiliation(s)
- Silvia Busoms
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Sina Fischer
- Future Food Beacon of Excellence, University of Nottingham, Nottingham NG7 2RD, UK; School of Biosciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Levi Yant
- Future Food Beacon of Excellence, University of Nottingham, Nottingham NG7 2RD, UK; School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
6
|
Mattingly KZ, Hovick SM. Autopolyploids of Arabidopsis thaliana are more phenotypically plastic than their diploid progenitors. ANNALS OF BOTANY 2023; 131:45-58. [PMID: 34175922 PMCID: PMC9904351 DOI: 10.1093/aob/mcab081] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/25/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Polyploids are often hypothesized to have increased phenotypic plasticity compared with their diploid progenitors, but recent work suggests that the relationship between whole-genome duplication (WGD) and plasticity is not so straightforward. Impacts of WGD on plasticity are moderated by other evolutionary processes in nature, which has impeded generalizations regarding the effects of WGD alone. We assessed shifts in phenotypic plasticity and mean trait values accompanying WGD, as well as the adaptive consequences of these shifts. METHODS To isolate WGD effects, we compared two diploid lineages of Arabidopsis thaliana wiht corresponding autotetraploids grown across different salt and nutrient conditions in a growth chamber. KEY RESULTS For the few cases in which diploids and polyploids differed in plasticity, polyploids were more plastic, consistent with hypotheses that WGD increases plasticity. Under stress, increased plasticity was often adaptive (associated with higher total seed mass), but in other cases plasticity was unrelated to fitness. Mean trait values and plasticity were equally likely to be affected by WGD, but the adaptive consequences of these shifts were often context dependent or lineage specific. For example, polyploids had extended life spans, a shift that was adaptive in one polyploid lineage under amenable conditions but was maladaptive in the other lineage under stress. CONCLUSIONS Our work shows that increased phenotypic plasticity can result from WGD alone, independent of other evolutionary processes. We find that the effects of WGD can differ depending on the genotype of the progenitor and the environmental context. Though our experiment was limited to two genotypes of a single species, these findings support the idea that WGD can indeed increase plasticity.
Collapse
Affiliation(s)
| | - Stephen M Hovick
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Galappaththi HSSD, de Silva WAPP, Clavijo Mccormick A. A mini-review on the impact of common gorse in its introduced ranges. Trop Ecol 2023; 64:1-25. [PMID: 35531346 PMCID: PMC9059460 DOI: 10.1007/s42965-022-00239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/25/2021] [Accepted: 03/20/2022] [Indexed: 12/05/2022]
Abstract
It is indisputable that invasive plant species strongly impact the ecosystems they invade. Many of such impacts can be negative and threaten the local species through competition, environmental change, or habitat loss. However, introduced plants may also have positive roles in the ecosystems they invade. This review extracted information from reports on common gorse (Ulex europaeus), one of the top 100 invasive plants on the earth, including its detrimental effects and potential beneficial roles in invaded ecosystems. The reduction of native fauna and flora are the main harmful effects of common gorse identified by the literature review. Soil impoverishment and fire hazards are other negative impacts reported for common gorse that could affect agricultural systems and local economies. Despite the negative impacts, reports of positive ecological services provided by common gorse also exist, e.g., as a nursery plant or habitat for endangered native animals. We also reviewed the known human uses of this plant that could support management strategies through harvest and benefit the local communities, including its use as biofuel, raw matter for xylan extraction, medicine, and food. Finally, our review identified the gaps in the literature regarding the understanding of the beneficial role of common gorse on native ecosystems and potential human uses, especially in the tropics.
Collapse
Affiliation(s)
| | | | - Andrea Clavijo Mccormick
- School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
8
|
Hussain MS, Naeem MS, Tanvir MA, Nawaz MF, Abd-Elrahman A. Eco-physiological evaluation of multipurpose tree species to ameliorate saline soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:969-981. [PMID: 33455421 DOI: 10.1080/15226514.2020.1871321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salinity is a widespread soil and underground water contaminant threatening food security and economic stability. Phytoremediation is an efficient and environmental-friendly solution to mitigate salinity impacts. The present study was conducted to evaluate the phytoremediation potential of five multipurpose trees: Vachellia nilotica, Concorpus erectus, Syzygium cumini, Tamarix aphylla and Eucalyptus cammaldulensis under four salinity treatments: Control, 10, 20 and 30 dS m-1. Salinity negatively impacted all the tested species. However, E. cammaldulensis and T. aphylla exhibited the lowest reduction (28%) and (35%) in plant height respectively along with a minimal reduction in leaf gas exchange while V. nilotica, S. cumini and C. erectus showed severe dieback. Similarly, the antioxidant enzymes increased significantly in E. cammaldulensis and T. aphylla as Superoxide Dismutase (87% and 79%), Catalase (66% and 67%) and Peroxidase (89% and 81%), respectively. Furthermore, both of these species maintained optimum Na/K ratio reducing the highest levels of soil ECe and SAR, suggesting the best phytoremediation potential. The present study identifies that E. cammaldulensis and T. aphylla showed effective tolerance mechanisms and the highest salt sequestration; therefore, may be used for phyto-amelioration of salinity impacted lands. Novelty statement Although previous studies evaluated the tolerance potential of many tree species, comparative and physiochemical evaluation of multipurpose tree species has been remained unexplored. In this scenario, eco-physiological characterization of multipurpose tree species may inform tree species for phytoremediation of saline soils according to the level of salinity. Optimizing tree species selection also improves the success of wood for energy and revenue generation while restoring degraded soils.
Collapse
Affiliation(s)
- Muhammad Safdar Hussain
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shahbaz Naeem
- Department of Agronomy, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ayyoub Tanvir
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Amr Abd-Elrahman
- School of Forest Resources and Conservation Institute of Food and Agriculture, Gulf Coast Research and Education Center, University of Florida, Plant City, FL, USA
| |
Collapse
|
9
|
Charbonneau BR, Nicoletta R, Wootton LS. A decade of expansion of the invasive plant Carex kobomugi in a coastal foredune system. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02240-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Rehman S, Abbas G, Shahid M, Saqib M, Umer Farooq AB, Hussain M, Murtaza B, Amjad M, Naeem MA, Farooq A. Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: Implications for phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:146-153. [PMID: 30599432 DOI: 10.1016/j.ecoenv.2018.12.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 05/10/2023]
Abstract
Contamination of soil with salinity and Cd negatively affects growth and productivity of plants. The proposed study has been planned to explore the effects of salinity on Cd uptake, tolerance and phytoremediation potential of conocarpus (Conocarpus erectus L.). One-month-old uniform plants of conocarpus were exposed to 0, 8.9, 44.5, 89 and 178 µM Cd alone or in combination with 0, 100 and 200 mM NaCl in Hoagland's nutrient solution. Results revealed that shoot and root biomasses, leaf water content and pigment content decreased more in response to combination of Cd and salinity compared to Cd alone. The Na+ and Cl- concentrations in shoot and root were not affected by Cd alone, but increased in Cd + salinity treatments. The K+ concentration decreased by Cd alone as well as Cd combination with salinity. Plant Cd uptake increased in the presence of salinity but its translocation from root to shoot remained unaffected. Exposure of plants to Cd alone and Cd + salinity caused oxidative stress via overproduction of H2O2 and inducing lipid peroxidation. The activities of antioxidant enzymes such as SOD, CAT, POD and APX increased to mitigate this oxidative stress. It is concluded that the tolerance of conocarpus against Cd stress is decreased in the presence of salinity due to increased uptake of toxic ions and intensification of oxidative stress. Moreover, the Cd uptake behavior of this tree indicates its suitability for phytostabilization of Cd contaminated saline and non-saline soils.
Collapse
Affiliation(s)
- Sadia Rehman
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Muhammad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Abu Bakr Umer Farooq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Munawar Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Amjad Farooq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| |
Collapse
|
11
|
Scotti-Campos P, Duro N, Costa MD, Pais IP, Rodrigues AP, Batista-Santos P, Semedo JN, Leitão AE, Lidon FC, Pawlowski K, Ramalho JC, Ribeiro-Barros AI. Antioxidative ability and membrane integrity in salt-induced responses of Casuarina glauca Sieber ex Spreng. in symbiosis with N2-fixing Frankia Thr or supplemented with mineral nitrogen. JOURNAL OF PLANT PHYSIOLOGY 2016; 196-197:60-9. [PMID: 27070734 DOI: 10.1016/j.jplph.2016.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 05/15/2023]
Abstract
The actinorhizal tree Casuarina glauca tolerates extreme environmental conditions, such as high salinity. This species is also able to establish a root-nodule symbiosis with N2-fixing bacteria of the genus Frankia. Recent studies have shown that C. glauca tolerance to high salt concentrations is innate and linked to photosynthetic adjustments. In this study we have examined the impact of increasing NaCl concentrations (200, 400 and 600mM) on membrane integrity as well as on the control of oxidative stress in branchlets of symbiotic (NOD+) and non-symbiotic (KNO3+) C. glauca. Membrane selectivity was maintained in both plant groups at 200mM NaCl, accompanied by an increase in the activity of antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, glutathione reductase and catalase). Regarding cellular membrane lipid composition, linolenic acid (C18:3) showed a significant decline at 200mM NaCl in both NOD+ and KNO3+ plants. In addition, total fatty acids (TFA) and C18:2 also decreased in NOD+ plants at this salt concentration, resulting in malondialdehyde (MDA) production. Such initial impact at 200mM NaCl is probably due to the fact that NOD+ plants are subjected to a double stress, i.e., salinity and low nitrogen availability. At 400mM NaCl a strong reduction of TFA and C18:3 levels was observed in both plant groups. This was accompanied by a decrease in the unsaturation degree of membrane lipids in NOD+. However, in both NOD+ and KNO3+ lipid modifications were not reflected by membrane leakage at 200 or 400mM, suggesting acclimation mechanisms at the membrane level. The fact that membrane selectivity was impaired only at 600mM NaCl in both groups of plants points to a high tolerance of C. glauca to salt stress independently of the symbiotic relation with Frankia.
Collapse
Affiliation(s)
- Paula Scotti-Campos
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal; GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Nuno Duro
- Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Mário da Costa
- Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Isabel P Pais
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - Ana P Rodrigues
- Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - Paula Batista-Santos
- Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - José N Semedo
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - A Eduardo Leitão
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - Fernando C Lidon
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - José C Ramalho
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - Ana I Ribeiro-Barros
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal.
| |
Collapse
|
12
|
Liu S, Luo Y, Yang R, He C, Cheng Q, Tao J, Ren B, Wang M, Ma M. High resource-capture and -use efficiency, and effective antioxidant protection contribute to the invasiveness of Alnus formosana plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:436-447. [PMID: 26433486 DOI: 10.1016/j.plaphy.2015.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
To investigate the traits contributing to the invasiveness of Alnus formosana and the mechanisms underlying its invasiveness, we compared A. formosana with its native congener (Alnus cremastogyne) under three light treatments (13%, 56%, and 100%). The consistently higher plant height, total leaf area, light-saturated photosynthetic rate (A(max)), light saturation point (LSP), light compensation point (LCP), respiration efficiency (RE), and non-photochemical quenching coefficient (NPQ) but lower root mass fraction (RMF) and specific leaf area (SLA) of the invader than of its native congener contributed to the higher RGR and total biomass of A. formosana across light regimes. The total biomass and RGR of the invader increased markedly with increased RMF, A(max), LSP, LCP, RE, stomatal conductance (G(s)) and total leaf area. Furthermore, compared with the native species, the higher plasticity index in plant height, RMF, leaf mass fraction (LMF), SMF, SLA, A(max) and dark respiration rate (R(d)) within the range of total light contributed to the higher performance of the invader. In addition, the activities of antioxidant enzymes were higher in the invader compared to the native, contributing to its invasion success under high/low light via photoprotection. With a decrease in light level, superoxide dismutase (SOD) and catalase (CAT) activities increased significantly, whereas total carotenoid (Car) and total chlorophyll (Chl) decreased; ascorbate peroxidase (APX) and glutathione reductase (GR) activities remained unchanged. These responses may help the invader to spread and invade a wide range of habitats and form dense monocultures, displacing native plant species. The results suggest that both resource capture-related traits (morphological and photosynthetic) and adaptation-related traits (antioxidant protection) contribute to the competitive advantage of the invader.
Collapse
Affiliation(s)
- Shiliang Liu
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| | - Yiming Luo
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Rongjie Yang
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Chengxiang He
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Qingsu Cheng
- Division of Life Sciences, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, 94720, USA
| | - Jianjun Tao
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Bo Ren
- Institute of Forestry Research, Sichuan Academy of Forestry (SAF), Chengdu, Sichuan, 610081, PR China
| | - Maohua Wang
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Faculty of Agriculture and Life Sciences, Chungnam National University, Daejeon, 305754, South Korea
| | - Mingdong Ma
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
13
|
Muscolo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T. Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5467-80. [PMID: 25969553 PMCID: PMC4585415 DOI: 10.1093/jxb/erv208] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Drought and salinity are among the major abiotic stresses which, often inter-relatedly, adversely affect plant growth and productivity. Plant stress responses depend on the type of stress, on its intensity, on the species, and also on the genotype. Different accessions of a species may have evolved different mechanisms to cope with stress and to complete their life cycles. This study is focused on lentil, an important Mediterranean legume with high quality protein for the human diet. The effects of salinity and drought on germination and early growth of Castelluccio di Norcia (CAST), Pantelleria (PAN), Ustica (UST), and Eston (EST) accessions were evaluated to identify metabolic and phenotypic traits related to drought and/or salinity stress tolerance. The results showed a relationship between imposed stresses and performance of the cultivars. According to germination frequencies, the accession ranking was as follows: NaCl resistant > susceptible, PAN > UST > CAST > EST; polyethylene glycol (PEG) resistant > susceptible, CAST > UST > EST > PAN. Seedling tolerance rankings were: NaCl resistant > susceptible, CAST ≈ UST > PAN ≈ EST; PEG resistant > susceptible, CAST > EST ≈ UST > PAN. Changes in the metabolite profiles, mainly quantitative rather than qualitative, were observed in the same cultivar in respect to the treatments, and among the cultivars under the same treatment. Metabolic differences in the stress tolerance of the different genotypes were related to a reduction in the levels of tricarboxylic acid (TCA) cycle intermediates. The relevant differences, between the most NaCl-tolerant genotype (PAN) and the most sensitive one (EST) were related to the decrease in the threonic acid level. Stress-specific metabolite indicators were also identified: ornithine and asparagine as markers of drought stress and alanine and homoserine as markers of salinity stress.
Collapse
Affiliation(s)
- A Muscolo
- Agriculture Department, Mediterranea University, Feo di Vito, 89124 Reggio Calabria, Italy
| | - A Junker
- Department of Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - C Klukas
- Department of Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - K Weigelt-Fischer
- Department of Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - D Riewe
- Department of Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - T Altmann
- Department of Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland OT Gatersleben, Germany
| |
Collapse
|
14
|
Theerawitaya C, Tisarum R, Samphumphuang T, Singh HP, Suriyan Cha-Um, Kirdmanee C, Takabe T. Physio-biochemical and morphological characters of halophyte legume shrub, Acacia ampliceps seedlings in response to salt stress under greenhouse. FRONTIERS IN PLANT SCIENCE 2015; 6:630. [PMID: 26379678 PMCID: PMC4553901 DOI: 10.3389/fpls.2015.00630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/30/2015] [Indexed: 05/06/2023]
Abstract
Acacia ampliceps (salt wattle), a leguminous shrub, has been introduced in salt-affected areas in the northeast of Thailand for the remediation of saline soils. However, the defense mechanisms underlying salt tolerance A. ampliceps are unknown. We investigated various physio-biochemical and morphological attributes of A. ampliceps in response to varying levels of salt treatment (200-600 mM NaCl). Seedlings of A. ampliceps (25 ± 2 cm in plant height) raised from seeds were treated with 200 mM (mild stress), 400 and 600 mM (extreme stress) of salt treatment (NaCl) under greenhouse conditions. Na(+) and Ca(2+) contents in the leaf tissues increased significantly under salt treatment, whereas K(+) content declined in salt-stressed plants. Free proline and soluble sugar contents in plants grown under extreme salt stress (600 mM NaCl) for 9 days significantly increased by 28.7 (53.33 μmol g(-1) FW) and 3.2 (42.11 mg g(-1) DW) folds, respectively over the control, thereby playing a major role as osmotic adjustment. Na(+) enrichment in the phyllode tissues of salt-stressed seedlings positively related to total chlorophyll (TC) degradation (R (2) = 0.72). Photosynthetic pigments and chlorophyll fluorescence in salt-stressed plants increased under mild salt stress (200 mM NaCl). However, these declined under high levels of salinity (400-600 mM NaCl), consequently resulting in a reduced net photosynthetic rate (R (2) = 0.81) and plant dry weight (R (2) = 0.91). The study concludes that A. ampliceps has an osmotic adjustment and Na(+) compartmentation as effective salt defense mechanisms, and thus it could be an excellent species to grow in salt-affected soils.
Collapse
Affiliation(s)
- Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chalermpol Kirdmanee
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | | |
Collapse
|
15
|
Brito LM, Mourão I, Coutinho J, Smith SR. Co-composting of invasive Acacia longifolia with pine bark for horticultural use. ENVIRONMENTAL TECHNOLOGY 2015; 36:1632-1642. [PMID: 25559143 DOI: 10.1080/09593330.2014.1002863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The feasibility of commercial-scale co-composting of waste biomass from the control of invasive Acacia species with pine bark waste from the lumber industry, in a blend ratio of 60:40 (v:v), was investigated and compared with previous research on the composting of Acacia without additional feedstock, to determine the potential process and end-product quality benefits of co-composting with bark. Pile temperatures rose rapidly to >70 °C and were maintained at >60 °C for several months. Acacia and bark biomass contained a large fraction of mineralizable organic matter (OM) equivalent to approximately 600 g kg(-1) of initial OM. Bark was more recalcitrant to biodegradation compared with Acacia, which degraded at twice the rate of bark. Therefore, incorporating the bark increased the final amount of compost produced compared with composting Acacia residues without bark. The relatively high C/N ratio of the composting matrix (C/N=56) and NH3 volatilization explained the limited increases in NH4+-N content, whereas concentrations of conservative nutrient elements (e.g. P, K, Ca, Mg, Fe) increased in proportion to OM mineralization, enriching the compost as a nutrient source for horticultural use. Nitrogen concentrations also increased to a small extent, but were much more dynamic and losses, probably associated with N volatilization mechanisms, were difficult to actively control. The physicochemical characteristics of the stabilized end-product, such as pH, electrical conductivity and OM content, were improved with the addition of bark to Acacia biomass, and the final compost characteristics were suitable for use for soil improvement and also as horticultural substrate components.
Collapse
Affiliation(s)
- Luis Miguel Brito
- a Mountain Research Centre (CIMO), Escola Superior Agrária , Instituto Politécnico de Viana do Castelo , Refóios, 4990-706 Ponte de Lima , Portugal
| | | | | | | |
Collapse
|
16
|
Joseph S, Murphy DJ, Bhave M. Identification of salt tolerant Acacia species for saline land utilisation. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AOB PLANTS 2014; 6:plu047. [PMID: 25139769 PMCID: PMC4165890 DOI: 10.1093/aobpla/plu047] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/16/2014] [Indexed: 05/10/2023]
Abstract
Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development.
Collapse
Affiliation(s)
- M R Panuccio
- Department of Agriculture, Mediterranea University, località Feo di Vito, 89126 Reggio Calabria, Italy
| | - S E Jacobsen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - S S Akhtar
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark Sino-Danish Center for Education and Research (SDC), Beijing, China
| | - A Muscolo
- Department of Agriculture, Mediterranea University, località Feo di Vito, 89126 Reggio Calabria, Italy
| |
Collapse
|
18
|
Pintó-Marijuan M, Munné-Bosch S. Ecophysiology of invasive plants: osmotic adjustment and antioxidants. TRENDS IN PLANT SCIENCE 2013; 18:660-6. [PMID: 24001766 DOI: 10.1016/j.tplants.2013.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/16/2013] [Accepted: 08/11/2013] [Indexed: 05/06/2023]
Abstract
Current research into plant invasiveness often attempts to predict the effect of invasions under future climate change, but most studies only focus on ecological aspects. Understanding ecophysiological responses by characterizing physiological markers such as osmotic adjustment or antioxidant protection indicators will help us to project future invasiveness patterns. In this opinion article, we highlight how the information from physiological measurements can be incorporated into effective management strategies. Furthermore, we propose how combining research strategies of physiologists and ecologists could speed up our understanding of the advantageous mechanisms adopted by invasive species. We suggest that a combined approach would also be of considerable benefit for the development of effective governmental biodiversity conservation policies.
Collapse
Affiliation(s)
- Marta Pintó-Marijuan
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | | |
Collapse
|