1
|
Sun L, Zhang P, Li W, Li R, Ju Q, Tran LSP, Xu J. The bifunctional transcription factor NAC32 modulates nickel toxicity responses through repression of root-nickel compartmentalization and activation of auxin biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135925. [PMID: 39341195 DOI: 10.1016/j.jhazmat.2024.135925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Nickel (Ni) is an important micronutrient, but excess Ni is toxic to many plant species. Currently, relatively little is known about the genetic basis of the plant responses to Ni toxicity. Here, we demonstrate that NAC32 transcription factor functions as a core genetic hub to regulate the Ni toxicity responses in Arabidopsis. NAC32 negatively regulates root-Ni concentration through the IREG2 (IRON REGULATED2) encoding a transporter. NAC32 also induces local auxin biosynthesis in the root-apex transition zone by upregulating YUCCA 7 (YUC7)/8/9 expression, which results in a local enhancement of auxin signaling in root tips, especially under Ni toxicity, thereby impaired primary root growth. By analyses of various combinations of nac32 and ireg2 mutants, as well as nac32 and yuc7/8/9 triple mutants, including high-order quadruple mutant, we demonstrated that NAC32 negatively regulates Ni stress tolerance by acting upstream of IREG2 and YUC7/8/9 to modulate their function in Ni toxicity responses. ChIPqPCR, EMSA (electrophoretic mobility shift assay) and transient dual-LUC reporter assays showed that NAC32 transcriptionally represses IREG2 expression but activates YUC7/8/9 expression by directly binding to their promoters. Our work demonstrates that NAC32 coordinates Ni compartmentation and developmental plasticity in roots, providing a conceptual framework for understanding Ni toxicity responses in plants.
Collapse
Affiliation(s)
- Liangliang Sun
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; College of Tropical Crop, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Zhang
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Weimin Li
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Ruishan Li
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Qiong Ju
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| | - Jin Xu
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
2
|
Huang C, Huang F, Wang X, Wang D, Wang J, Zhan X. Regulation mechanism of exogenous nitric oxide on phenanthrene uptake by ryegrass roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109185. [PMID: 39395225 DOI: 10.1016/j.plaphy.2024.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/29/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute a category of persistent organic contaminants that possess the potential to induce carcinogenic, teratogenic, and mutagenic consequences. Our previous findings have revealed that plant roots actively take up PAHs through co-transport with protons, and auxin can promote PAHs uptake by wheat roots. It remains unclear whether nitric oxide (NO), a signaling molecule involved in numerous physiological processes in plants and downstream of auxin, can affect PAHs uptake by plant roots. In our study, 50 μmol/L sodium nitroprusside (SNP) significantly enhanced phenanthrene uptake after 4 h of exposure. After the addition of SNP (50 μmol/L), the H+ flux on root surface increased, and H+-ATPase activity was activated, indicating that exogenous NO promotes phenanthrene uptake by plant roots via activating H+-ATPase. By studying the effects of 50 μmol/L cyclic guanosine monophosphate (cGMP), 5 mmol/L Ca2+, and 50 μmol/L adenosine monophosphate (AMP) on phenanthrene uptake by ryegrass roots and measuring root calcium-dependent protein kinases (CDPK) activity, we demonstrated that exogenous NO promotes phenanthrene uptake through the signaling pathway of NO, cGMP, Ca2+, CDPK, 14-3-3 protein and H+-ATPase. The results contribute significant insights into elucidating the underlying mechanisms of NO modulating PAHs absorption by plant roots, thereby offering crucial strategies for advancing food safety measures and enhancing the phytoremediation potential of soils and waters contaminated with PAHs.
Collapse
Affiliation(s)
- Chenghao Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Fei Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xuke Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Dongru Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
3
|
Liu Y, Ge L, Tang H, Zheng J, Hu J, Wang J, Yang X, Zhang R, Wang X, Li X, Zhang Y, Shi Q. cGMP functions as an important messenger involved in SlSAMS1-regulated salt stress tolerance in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108097. [PMID: 37864930 DOI: 10.1016/j.plaphy.2023.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Salt stress adversely affects the growth, development, and yield of tomato (Solanum lycopersicum). SAM Synthetase (SAMS), which is responsible for the biosynthesis of S-adenosylmethionine (SAM, a precursor of polyamine biosynthesis), participates in plant response to abiotic stress. However, the regulatory mechanism of SAMS-mediated salt stress tolerance remains elusive. In this study, we characterized a SAMS homologue SlSAMS1 in tomato. We found that SlSAMS1 is highly expressed in tomato roots, and its expression can be induced by salt stress. Crucially, overexpression of SlSAMS1 in tomato enhances salt stress tolerance. Through metabolomic profiling, we identified some differentially accumulated metabolites, especially, a secondary messenger guanosine 3',5'-cyclic monophosphate (cGMP) which may play a key role in SlSAMS1-regulated salt tolerance. A series of physiological and biochemical data suggest that cGMP alleviates salt stress-induced growth inhibition, and potentially acts downstream of the polyamine-nitric oxide (PA-NO) signaling pathway to trigger H2O2 signaling in response to salt stress. Taken together, the study reveals that SlSAMS1 regulates tomato salt tolerance via the PA-NO-cGMP-H2O2 signal module. Our findings elucidate the regulatory pathway of SlSAMS1-induced plant response to salt stress and indicate a pivotal role of cGMP in salt tolerance.
Collapse
Affiliation(s)
- Yue Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Lianjing Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Huimeng Tang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Jinhui Zheng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Jinxiang Hu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Jingru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Xiaoyu Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Ruimin Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Xiaoyun Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Xiuming Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Yan Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| |
Collapse
|
4
|
Kong L, Wang Y, Li M, Cai C, Li L, Wang R, Shen W. A methane-cGMP module positively influences adventitious rooting. PLANT CELL REPORTS 2023:10.1007/s00299-023-03019-4. [PMID: 37084115 DOI: 10.1007/s00299-023-03019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Endogenous cGMP operates downstream of CH4 control of adventitious rooting, following by the regulation in the expression of cell cycle regulatory and auxin signaling-related genes. Methane (CH4) is a natural product from plants and microorganisms. Although exogenously applied CH4 and cyclic guanosine monophosphate (cGMP) are separately confirmed to be involved in the control of adventitious root (AR) formation, the possible interaction still remains elusive. Here, we observed that exogenous CH4 not only rapidly promoted cGMP synthesis through increasing the activity of guanosine cyclase (GC), but also induced cucumber AR development. These responses were obviously impaired by the removal of endogenous cGMP with two GC inhibitors. Anatomical evidence showed that the emerged stage (V) among AR primordia development might be the main target of CH4-cGMP module. Genetic evidence revealed that the transgenic Arabidopsis that overexpressed the methyl-coenzyme M reductase gene (MtMCR) from Methanobacterium thermoautotrophicum not only increased-cGMP production, but also resulted in a pronounced AR development compared to wild-type (WT), especially with the addition of CH4 or the cell-permeable cGMP derivative 8-Br-cGMP. qPCR analysis confirmed that some marker genes associated with cell cycle regulatory and auxin signaling were closely related to the brand-new CH4-cGMP module in AR development. Overall, our results clearly revealed an important function of cGMP in CH4 governing AR formation by modulating auxin-dependent pathway and cell cycle regulation.
Collapse
Affiliation(s)
- Lingshuai Kong
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenxu Cai
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Tang Y, Wang L, Qu Z, Huang C, Zhao T, Li Y, Zhang C. BSISTER transcription factors directly binds to the promoter of IAA19 and IAA29 genes to up-regulate gene expression and promote the root development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111324. [PMID: 35696924 DOI: 10.1016/j.plantsci.2022.111324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Roots play an important role in the growth and development of plants and auxin participates in regulating plant root development. Some studies have shown that BS (BSISTER) gene (the closest gene of class B gene) is involved in plant root development, but whether BS regulates root development via auxin signaling still not clear. To explore VviBS1 and VviBS2 roles in root development, VviBS1 and VviBS2 were overexpressedin Arabidopsis tt16 mutant and we found that they could restore the phenotype of shorter PR (primary roots) and high density of LR (lateral root) of tt16 compared with the wild type Ws Arabidopsis seedlings. However, the addition of exogenous NAA (naphthalene acetic acid) could not significantly promote the PR length of tt16 Arabidopsis, and the auxin signal transduction of tt16 may be blocked. The expression levels of auxin signal transduction pathway genes in Ws, tt16, p35s:VviBS1 in tt16 and p35s:VviBS2 in tt16 seedlings were detected. It was found that the expression of AtARF2, AtARF12, AtARF14, AtARF15, AtARF20, AtGH3, AtGH3-2 and AtSAUR51 genes in tt16 seedlings was higher than that in Ws, while the expression of AtIAA19 and AtIAA29 in Ws seedlings was higher than that of tt16. More importantly, BS may up regulate AtIAA19 and AtIAA29 expression directly by binding to their promoter. In addition, VviBS1 and VviBS2 also affect seed germination and may regulate leaf yellowing by regulating ethylene synthase. Therefore, our findings reveal a molecular mechanism that BS may modulate root system development via Aux/IAA-based auxin signaling, and provide insight into the BS function in regulation of leaf yellowing.
Collapse
Affiliation(s)
- Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Ziyang Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Ting Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Çetinbaş-Genç A, Vardar F. Effect of methyl jasmonate on in-vitro pollen germination and tube elongation of Pinus nigra. PROTOPLASMA 2020; 257:1655-1665. [PMID: 32734410 DOI: 10.1007/s00709-020-01539-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The purpose of the main research was to investigate the effects of methyl jasmonate (MeJA) (0.05, 0.25, 0.5, and 2.5 mM) on the pollen germination and tube elongation of Pinus nigra. Total pollen germination rate increased after MeJA treatments while the most enhancement was observed at 0.05-mM MeJA. No germination was observed at 2.5-mM MeJA. Although the unipolar and bipolar germination were observed in all groups, no significant changes were observed in unipolar and bipolar pollen germination rates after MeJA treatments. Tube length increased only at 0.05-mM MeJA. Although branched tubes were observed in all groups, branched tube rate increased only at 0.05-mM MeJA. Although two branched, three branched, and consecutive branched tubes were observed in all groups, the most common branching type was two branched type in all groups. Although anisotropy of actin filaments in the shank and apex of unbranched tubes decreased after MeJA treatments, the most decrease was observed at 0.05-mM MeJA. Also, anisotropy of actin filaments in the shank and in pre-branching region of branched tubes decreased only at 0.25-mM MeJA. Anisotropy of both two apexes of a branched tube changed only at 0.25- and 0.5-mM MeJA. Callose accumulation in the apex of unbranched and branched tubes increased in parallel with the increase in MeJA concentration. However, more callose is accumulated in one apex than the other apex of a branched tube. In conclusion, MeJA affected the actin organization, changed the callose distribution, and altered the pollen tube growth of Pinus nigra.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, Kadıköy, 34722, Istanbul, Turkey.
| | - Filiz Vardar
- Department of Biology, Marmara University, Göztepe Campus, Kadıköy, 34722, Istanbul, Turkey
| |
Collapse
|
7
|
Silveira NM, Seabra AB, Marcos FC, Pelegrino MT, Machado EC, Ribeiro RV. Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants. Nitric Oxide 2019; 84:38-44. [DOI: 10.1016/j.niox.2019.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/03/2018] [Accepted: 01/06/2019] [Indexed: 02/05/2023]
|
8
|
Jia H, Yang J, Liesche J, Liu X, Hu Y, Si W, Guo J, Li J. Ethylene promotes pollen tube growth by affecting actin filament organization via the cGMP-dependent pathway in Arabidopsis thaliana. PROTOPLASMA 2018; 255:273-284. [PMID: 28864968 DOI: 10.1007/s00709-017-1158-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
Ethylene and cGMP are key regulators of plant developmental processes. In this study, we demonstrate that ethylene or cGMP promote pollen tube growth in a dose-dependent manner. The etr1-1 mutant was found to be insensitive to ethylene with regard to pollen tube growth, while the growth-promoting effect of ethylene in etr2-2, ein4-4, or ein4-7 did not change, suggesting that ethylene signaling was mainly perceived by ETR1. However, the function of cGMP was not inhibited in etr1-1 and pollen tubes became insensitive to ethylene when the endogenous cGMP level was artificially decreased. This shows that cGMP is necessary for the control of pollen tube growth and that it might be a downstream component of ETR1 in the ethylene signaling pathway. Our study also found that ethylene or cGMP increase the actin bundles and elevated the percentage of relative amount of F-actin, while removal of cGMP decreased actin bundles abundance and altered the ratio of F-actin in the tip and base regions of pollen tubes. In conclusion, our data suggests that ethylene functions as the upstream signal of cGMP, and that both signals promote pollen germination and tube growth by regulating F-actin, which is essential for vesicular transport and cytoplasmic streaming.
Collapse
Affiliation(s)
- Honglei Jia
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Jun Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Nangang District, Harbin, 150000, China
| | - Wantong Si
- Inner Mongolia Key Laboratory of Biomass-Energy Conversion, Inner Mongolia University of Science and Technology, Neimenggu, Baotou, 014010, China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Li J, Zhu D, Wang R, Shen W, Guo Y, Ren Y, Shen W, Huang L. β-Cyclodextrin-hemin complex-induced lateral root formation in tomato: involvement of nitric oxide and heme oxygenase 1. PLANT CELL REPORTS 2015; 34:381-93. [PMID: 25433859 DOI: 10.1007/s00299-014-1716-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/06/2014] [Accepted: 11/20/2014] [Indexed: 05/26/2023]
Abstract
β-Cyclodextrin-hemin complex-induced tomato lateral root formation was associated with nitric oxide and heme oxygenase 1 by modulating cell cycle regulatory genes. β-Cyclodextrin-hemin complex (β-CDH), a complex by combining β-cyclodextrin (β-CD) with hemin, a heme oxygenase 1 (HO1) inducer, was a trigger of cucumber adventitious root formation by enhancing HO1 gene expression. In this report, our results identified the previously unknown function of β-CDH in plants: the inducer of tomato lateral root (LR) formation. β-CDH-triggered LR formation is hemin-specific, since β-CD failed to induce LR development. Because nitric oxide (NO) is involved in LR formation, the correlation of β-CDH with NO and HO1 was investigated. Our analysis suggested that β-CDH induced an increase in endogenous NO production, followed by up-regulation of tomato HO1 gene and LR formation, all of which were mimicked by hemin and two NO-releasing compounds (SNP and GSNO). The induction of HO1 gene expression and LR formation triggered by β-CDH or hemin were significantly blocked by an inhibitor of HO1. Further results revealed that both β-CDH- and SNP-stimulated HO1 gene expression and thereafter LR formation were sensitive to the removal of NO with a potent NO scavenger, and the responses of SNP were significantly blocked by an inhibitor of HO1. Molecular evidence illustrated that representative cell cycle regulatory genes, including SlCDKA1, SlCYCA3;1, SlCYCA2;1, and SlCYCD3;1, were significantly up-regulated by β-CDH and SNP, but obviously blocked when seedlings were co-treated with the scavenger of NO or the inhibitor of HO1. In summary, our physiological and molecular evidence demonstrated that both NO and HO1 were involved in the β-CDH-induced LR formation with, at least partially, HO1 acting downstream of NO signaling.
Collapse
Affiliation(s)
- Jiale Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Jia H, Hu Y, Fan T, Li J. Hydrogen sulfide modulates actin-dependent auxin transport via regulating ABPs results in changing of root development in Arabidopsis. Sci Rep 2015; 5:8251. [PMID: 25652660 PMCID: PMC4317700 DOI: 10.1038/srep08251] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/12/2015] [Indexed: 01/22/2023] Open
Abstract
Hydrogen sulfide (H2S) signaling has been considered a key regulator of plant developmental processes and defenses. In this study, we demonstrate that high levels of H2S inhibit auxin transport and lead to alterations in root system development. H2S inhibits auxin transport by altering the polar subcellular distribution of PIN proteins. The vesicle trafficking and distribution of the PIN proteins are an actin-dependent process. H2S changes the expression of several actin-binding proteins (ABPs) and decreases the occupancy percentage of F-actin bundles in the Arabidopsis roots. We observed the effects of H2S on F-actin in T-DNA insertion mutants of cpa, cpb and prf3, indicating that the effects of H2S on F-actin are partially removed in the mutant plants. Thus, these data imply that the ABPs act as downstream effectors of the H2S signal and thereby regulate the assembly and depolymerization of F-actin in root cells. Taken together, our data suggest that the existence of a tightly regulated intertwined signaling network between auxin, H2S and actin that controls root system development. In the proposed process, H2S plays an important role in modulating auxin transport by an actin-dependent method, which results in alterations in root development in Arabidopsis.
Collapse
Affiliation(s)
- Honglei Jia
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Nangang District, Harbin 150000, China
| | - Tingting Fan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Zou Y, Liu X, Wang Q, Chen Y, Liu C, Qiu Y, Zhang W. OsRPK1, a novel leucine-rich repeat receptor-like kinase, negatively regulates polar auxin transport and root development in rice. Biochim Biophys Acta Gen Subj 2014; 1840:1676-85. [DOI: 10.1016/j.bbagen.2014.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 11/25/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
|
12
|
Fang T, Cao Z, Li J, Shen W, Huang L. Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 76:44-51. [PMID: 24463534 DOI: 10.1016/j.plaphy.2013.12.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/30/2013] [Indexed: 05/21/2023]
Abstract
Similar to auxin, hydrogen sulfide (H2S), mainly produced by l-cysteine desulfhydrase (DES; EC 4.4.1.1) in plants, could induce lateral root formation. The objective of this study was to test whether H2S is also involved in auxin-induced lateral root development in tomato (Solanum lycopersicum L.) seedlings. We observed that auxin depletion-induced down-regulation of transcripts of SlDES1, decreased DES activity and endogenous H2S contents, and the inhibition of lateral root formation were rescued by sodium hydrosulfide (NaHS, an H2S donor). However, No additive effects were observed when naphthalene acetic acid (NAA) was co-treated with NaHS (lower than 10 mM) in the induction of lateral root formation. Subsequent work revealed that a treatment with NAA or NaHS could simultaneously induce transcripts of SlDES1, DES activity and endogenous H2S contents, and thereafter the stimulation of lateral root formation. It was further confirmed that H2S or HS(-), not the other sulfur-containing components derived from NaHS, was attributed to the stimulative action. The inhibition of lateral root formation and decreased of H2S metabolism caused by an H2S scavenger hypotaurine (HT) were reversed by NaHS, but not NAA. Molecular evidence revealed that both NaHS- or NAA-induced modulation of some cell cycle regulatory genes, including the up-regulation of SlCDKA;1, SlCYCA2;1, together with simultaneous down-regulation of SlKRP2, were differentially reversed by HT pretreatment. To summarize, above results clearly suggested that H2S might, at least partially, act as a downstream component of auxin signaling to trigger lateral root formation.
Collapse
Affiliation(s)
- Tao Fang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zeyu Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liqin Huang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Li J, Jia H, Wang J. cGMP and ethylene are involved in maintaining ion homeostasis under salt stress in Arabidopsis roots. PLANT CELL REPORTS 2014; 33:447-59. [PMID: 24306353 DOI: 10.1007/s00299-013-1545-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 11/08/2013] [Accepted: 11/20/2013] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE cGMP promotes ethylene production and enhances the perception of ethylene. Endogenous ethylene or cGMP accumulation maintains ion homeostasis to enhancing salt resistance. etr1 - 3 is insensitive to cGMP under salt stress. ABSTRACT In the present study, we presented a signaling network involving ethylene and cGMP in salt resistance pathway of Arabidopsis roots. Results showed that the ethylene-insensitive mutant etr1-3 was more sensitive to salt stress than the wild type (WT). etr1-3 displayed a greater electrolyte leakage, thiobarbituric acid reactive substances and Na(+)/K(+) ratio, but a lower plasma membrane (PM) H(+)-ATPase activity compared to WT under the different NaCl contents. Application of 1-aminocyclopropane-1-carboxylic acid (ACC, an ethylene precursor) or 8-Br-cGMP (the cGMP analog) alleviated NaCl-induced injury by maintaining a lower Na(+)/K(+) ratio and increasing PM H(+)-ATPase activity in WT, but not in etr1-3. Roots treated with 8-Br-cGMP could promote ethylene production and enhance the expression of ACC synthase gene in WT. In addition, the 8-Br-cGMP action in NaCl stress was inhibited by aminooxyacetic acid (an inhibitor of ethylene biosynthesis), but 6-Anilino-5,8-quinolinedione (Ly83583, a guanylate cyclase inhibitor) could not affect ACC action in WT. These results suggest that ethylene functions as a downstream signal of cGMP that stimulates the PM H(+)-ATPase activity, which finally results in regulating ion homeostasis in Arabidopsis tolerance to salt. Moreover, cGMP enhanced the perception of ethylene in Arabidopsis under salt stress, which reversed the salt-induced increase of ETR1 and increased ERF1 at the transcript levels in WT. In a word, cGMP modulates salt resistance pathway of ethylene through regulating biosynthesis and perception of ethylene in Arabidopsis roots.
Collapse
Affiliation(s)
- Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China,
| | | | | |
Collapse
|
14
|
Salmi ML, Clark G, Roux SJ. Current status and proposed roles for nitric oxide as a key mediator of the effects of extracellular nucleotides on plant growth. FRONTIERS IN PLANT SCIENCE 2013; 4:427. [PMID: 24298275 PMCID: PMC3829461 DOI: 10.3389/fpls.2013.00427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/09/2013] [Indexed: 05/20/2023]
Abstract
Recent data indicate that nucleotides are released into the extracellular matrix during plant cell growth, and that these extracellular nucleotides induce signaling changes that can, in a dose-dependent manner, increase or decrease the cell growth. After activation of a presumed receptor, the earliest signaling change induced by extracellular nucleotides is an increase in the concentration of cytosolic Ca(2+), but rapidly following this change is an increase in the cellular level of nitric oxide (NO). In Arabidopsis, mutants deficient in nitrate reductase activity (nia1nia2) have drastically reduced nitric oxide production and cannot transduce the effects of applied nucleotides into growth changes. Both increased levels of extracellular nucleotides and increased NO production inhibit auxin transport and inhibit growth, and these effects are potentially due to disruption of the localization and/or function of auxin transport facilitators. However, because NO- and auxin-induced signaling pathways can intersect at multiple points, there may be diverse ways by which the induction of NO by extracellular ATP could modulate auxin signaling and thus influence growth. This review will discuss these optional mechanisms and suggest possible regulatory routes based on current experimental data and predictive computational analyses.
Collapse
Affiliation(s)
| | | | - Stanley J. Roux
- *Correspondence: Stanley J. Roux, Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A6700, 205 West 24th Street, BIO 16, Austin, TX 78712-0183, USA e-mail:
| |
Collapse
|
15
|
Schlicht M, Ludwig-Müller J, Burbach C, Volkmann D, Baluska F. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. THE NEW PHYTOLOGIST 2013; 200:473-482. [PMID: 23795714 DOI: 10.1111/nph.12377] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/20/2013] [Indexed: 05/18/2023]
Abstract
Controlled plant growth requires regulation through a variety of signaling molecules, including steroids, peptides, radicals of oxygen and nitrogen, as well as the 'classical' phytohormone groups. Auxin is critical for the control of plant growth and also orchestrates many developmental processes, such as the formation of new roots. It modulates root architecture both slowly, through actions at the transcriptional level and, more rapidly, by mechanisms targeting primarily plasma membrane sensory systems and intracellular signaling pathways. The latter reactions use several second messengers, including Ca(2+) , nitric oxide (NO) and reactive oxygen species (ROS). Here, we investigated the different roles of two auxins, the major auxin indole-3-acetic acid (IAA) and another endogenous auxin indole-3-butyric acid (IBA), in the lateral root formation process of Arabidopsis and maize. This was mainly analyzed by different types of fluorescence microscopy and inhibitors of NO production. This study revealed that peroxisomal IBA to IAA conversion is followed by peroxisomal NO, which is important for IBA-induced lateral root formation. We conclude that peroxisomal NO emerges as a new player in auxin-induced root organogenesis. In particular, the spatially and temporally coordinated release of NO and IAA from peroxisomes is behind the strong promotion of lateral root formation via IBA.
Collapse
Affiliation(s)
- Markus Schlicht
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Christian Burbach
- Department of Plant Cell Biology IZMB, University of Bonn, 53115, Bonn, Germany
| | - Dieter Volkmann
- Department of Plant Cell Biology IZMB, University of Bonn, 53115, Bonn, Germany
| | - Frantisek Baluska
- Department of Plant Cell Biology IZMB, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
16
|
Li J, Jia H. Hydrogen peroxide is involved in cGMP modulating the lateral root development of Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2013; 8:25052. [PMID: 23733053 PMCID: PMC3999063 DOI: 10.4161/psb.25052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 05/31/2023]
Abstract
3',5'-cyclic guanosine monophosphate (cGMP) and hydrogen peroxide (H₂O₂) function as the important signaling molecule which promote the lateral root development of Arabidopsis thaliana. In this study, interestingly, application of 8-Br-cGMP (the membrane permeable cGMP analog) promoted the endogenous H₂O₂ production. In addition, the decrease of endogenous H₂O₂ also inhibited the effect of cGMP on the lateral root development. Thus, H₂O₂ maybe act as a downstream signaling of cGMP molecule which is involved in the lateral root development of Arabidopsis. We further found that H₂O₂ affected cGMP modulating polar auxin transport. When the endogenous H₂O₂ level was inhibited, the effect of cGMP on the acropetal auxin transport and the basipetal auxin transport was removed. Moreover, pin2 was insensitive for cGMP and H₂O₂ suggesting that PIN2 protein plays an important role in cGMP and H₂O₂ modulating the lateral root development of Arabidopsis.
Collapse
|