1
|
Calzone A, Baldoni E, Cabassi G, Toscani G, Gasparini A, Casaletta E, Picchi V. Sewage sludge amendment of rice as a potential alternative to mineral fertilizer: Analyses of physiological, biochemical and molecular mechanisms of plant response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108527. [PMID: 38484682 DOI: 10.1016/j.plaphy.2024.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Sewage sludge (SS) disposal poses environmental concerns, yet its organic matter, macro- and micronutrients, make it potentially beneficial for enhancing soil quality and crop yield. This study focuses on three types of SS: "R10" (SS1), which is commonly used in agricultural practices, and two environmentally friendlier options (SS2 and SS3), as alternatives to mineral fertilizer (urea) for rice cultivation. A pot experiment was conducted to investigate the ecophysiological, biochemical, and molecular responses of rice at three different growth stages. SS application led to a significant increase in biomass production (particularly SS3), along with increased nitrogen (N) levels. Enhanced chlorophyll content was observed in SS-treated plants, especially during inflorescence emergence (with the highest content in SS3 plants). At the ecophysiological and biochemical levels, SS treatments did not adversely affect plant health, as evidenced by unchanged values of maximal PSII photochemical efficiency and malondialdehyde by-products. At biochemical and gene expression levels, antioxidant enzyme activities showed transient variations, likely related to physiological adjustments rather than oxidative stress. Ascorbic acid and glutathione did not significantly vary. This study concludes that the use of SS in soil can be a viable alternative fertilizer for rice plants, with positive effects on biomass, chlorophyll content, and no adverse effects on plant health. Among the tested SSs, SS3 showed the most positive effect, even compared to commercial fertilizer. These results suggest that SS application could improve rice yield while addressing environmental concerns surrounding SS disposal.
Collapse
Affiliation(s)
- Antonella Calzone
- CREA Research Centre for Engineering and Agro-Food Processing, via G. Venezian 26, 20133, Milano, Italy
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133, Milano, Italy
| | - Giovanni Cabassi
- CREA Research Centre for Animal Production and Aquaculture, viale Piacenza 29, 26900, Lodi, Italy
| | - Giada Toscani
- CREA Research Centre for Animal Production and Aquaculture, viale Piacenza 29, 26900, Lodi, Italy
| | - Andrea Gasparini
- CREA Research Centre for Animal Production and Aquaculture, viale Piacenza 29, 26900, Lodi, Italy
| | - Elisa Casaletta
- Agromatrici Srl-Gruppo Fratelli Visconti, Strada Vicinale della Bellaria snc, 27020, Tromello (PV), Italy
| | - Valentina Picchi
- CREA Research Centre for Engineering and Agro-Food Processing, via G. Venezian 26, 20133, Milano, Italy.
| |
Collapse
|
2
|
Bhattacharjee B, Ali A, Rangappa K, Choudhury BU, Mishra VK. A detailed study on genetic diversity, antioxidant machinery, and expression profile of drought-responsive genes in rice genotypes exposed to artificial osmotic stress. Sci Rep 2023; 13:18388. [PMID: 37884634 PMCID: PMC10603178 DOI: 10.1038/s41598-023-45661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023] Open
Abstract
Seasonal variations in rainfall patterns, particularly during sowing, early growing season, and flowering, drastically affect rice production in northeastern India. However, sensitivity to drought stress is genotype-specific. Since 80% of the land in this region is used for rice production, it is crucial to understand how they have adapted to water stress. This study evaluated 112 rice genotypes grown in NE India for seed germination percentage and seedling development under PEG-mediated drought stress. Among the rice genotype, Sahbhagi dhan, RCPL-1-82, Bhalum-3 and RCPL-1-128 showed drought-tolerant traits, while Ketaki Joha, Chakhao, Chandan, RCPL-1-185 and IR-64 were the most drought-sensitive rice genotypes. Drought-tolerant rice also showed significantly higher seed germination potential, proline content, antioxidant activity and expression of drought-responsive genes than drought-sensitive rice genotypes. A similar expression pattern of genes was also observed in the rice genotype treated with a 50% water deficit in pot culture. In addition, drought stress reduced the pollen fertility and yield per plant in sensitive rice genotypes. Molecular markers associated with drought stress were also used to characterize genetic diversity among the rice genotypes studied.
Collapse
Affiliation(s)
- Bijoya Bhattacharjee
- Division of Crop Sciences, ICAR Research Complex for NER, Umiam, Meghalaya, 793103, India.
| | - Akib Ali
- Division of Crop Sciences, ICAR Research Complex for NER, Umiam, Meghalaya, 793103, India
| | - Krishnappa Rangappa
- Division of Crop Sciences, ICAR Research Complex for NER, Umiam, Meghalaya, 793103, India
| | - Burhan U Choudhury
- Division of System Research and Engineering, ICAR Research Complex for NER, Umiam, Meghalaya, 793103, India
| | - V K Mishra
- ICAR Research Complex for NER, Umiam, Meghalaya, 793103, India
| |
Collapse
|
3
|
Ni Ong S, Chin Tan B, Hanada K, How Teo C. Unearth of small open reading frames (sORFs) in drought stress transcriptome of Oryza sativa subsp. indica. Gene 2023:147579. [PMID: 37336274 DOI: 10.1016/j.gene.2023.147579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Drought is a major abiotic stress that influences rice production. Although the transcriptomic data of rice against drought is widely available, the regulation of small open reading frames (sORFs) in response to drought stress in rice is yet to be investigated. Different levels of drought stress have different regulatory mechanisms in plants. In this study, drought stress was imposed on four-leaf stage rice, divided into two treatments, 40% and 30% soil moisture content (SMC). The RNAs of the samples were extracted, followed by the RNA sequencing analysis on their sORF expression changes under 40%_SMC and 30%_SMC, and lastly, the expression was validated through NanoString. A total of 122 and 143 sORFs were differentially expressed (DE) in 40%_SMC and 30%_SMC, respectively. In 40%_SMC, 69 sORFs out of 696 (9%) DEGs were found to be upregulated. On the other hand, 69 sORFs out of 449 DEGs (11%) were significantly downregulated. The trend seemed to be higher in 30%_SMC, where 112 (12%) sORFs were found to be upregulated from 928 significantly upregulated DEGs. However, only 8% (31 sORFs out of 385 DEGs) sORFs were downregulated in 30%_SMC. Among the identified sORFs, 110 sORFs with high similarity to rice proteome in the PsORF database were detected in 40%_SMC, while 126 were detected in 30%_SMC. The Gene Ontology (GO) enrichment analysis of DE sORFs revealed their involvement in defense-related biological processes, such as defense response, response to biotic stimulus, and cellular homeostasis, whereas enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways indicated that DE sORFs were associated with tryptophan and phenylalanine metabolisms. Several DE sORFs were identified, including the top five sORFs (OsisORF_3394, OsisORF_0050, OsisORF_3007, OsisORF_6407, and OsisORF_7805), which have yet to be characterised. Since these sORFs were responsive to drought stress, they might hold significant potential as targets for future climate-resilient rice development.
Collapse
Affiliation(s)
- Sheue Ni Ong
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka‑shi, Fukuoka 820‑8502, Japan
| | - Chee How Teo
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Baldoni E, Frugis G, Martinelli F, Benny J, Paffetti D, Buti M. A Comparative Transcriptomic Meta-Analysis Revealed Conserved Key Genes and Regulatory Networks Involved in Drought Tolerance in Cereal Crops. Int J Mol Sci 2021; 22:13062. [PMID: 34884864 PMCID: PMC8657901 DOI: 10.3390/ijms222313062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Drought affects plant growth and development, causing severe yield losses, especially in cereal crops. The identification of genes involved in drought tolerance is crucial for the development of drought-tolerant crops. The aim of this study was to identify genes that are conserved key players for conferring drought tolerance in cereals. By comparing the transcriptomic changes between tolerant and susceptible genotypes in four Gramineae species, we identified 69 conserved drought tolerant-related (CDT) genes that are potentially involved in the drought tolerance of all of the analysed species. The CDT genes are principally involved in stress response, photosynthesis, chlorophyll biogenesis, secondary metabolism, jasmonic acid signalling, and cellular transport. Twenty CDT genes are not yet characterized and can be novel candidates for drought tolerance. The k-means clustering analysis of expression data highlighted the prominent roles of photosynthesis and leaf senescence-related mechanisms in differentiating the drought response between tolerant and sensitive genotypes. In addition, we identified specific transcription factors that could regulate the expression of photosynthesis and leaf senescence-related genes. Our analysis suggests that the balance between the induction of leaf senescence and maintenance of photosynthesis during drought plays a major role in tolerance. Fine-tuning of CDT gene expression modulation by specific transcription factors can be the key to improving drought tolerance in cereals.
Collapse
Affiliation(s)
- Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Alfonso Corti 12, 20133 Milan, Italy
| | - Giovanna Frugis
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, 00015 Monterotondo, Italy;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Jubina Benny
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90133 Palermo, Italy;
| | - Donatella Paffetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy;
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy;
| |
Collapse
|
5
|
Thayale Purayil F, Rajashekar B, S. Kurup S, Cheruth AJ, Subramaniam S, Hassan Tawfik N, M.A. Amiri K. Transcriptome Profiling of Haloxylon persicum (Bunge ex Boiss and Buhse) an Endangered Plant Species under PEG-Induced Drought Stress. Genes (Basel) 2020; 11:genes11060640. [PMID: 32531994 PMCID: PMC7349776 DOI: 10.3390/genes11060640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/06/2023] Open
Abstract
Haloxylon persicum is an endangered western Asiatic desert plant species, which survives under extreme environmental conditions. In this study, we focused on transcriptome analysis of H. persicum to understand the molecular mechanisms associated with drought tolerance. Two different periods of polyethylene glycol (PEG)-induced drought stress (48 h and 72 h) were imposed on H. persicum under in vitro conditions, which resulted in 18 million reads, subsequently assembled by de novo method with more than 8000 transcripts in each treatment. The N50 values were 1437, 1467, and 1524 for the control sample, 48 h samples, and 72 h samples, respectively. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis resulted in enrichment of mitogen-activated protein kinase (MAPK) and plant hormone signal transduction pathways under PEG-induced drought conditions. The differential gene expression analysis (DGEs) revealed significant changes in the expression pattern between the control and the treated samples. The KEGG analysis resulted in mapping transcripts with 138 different pathways reported in plants. The differential expression of drought-responsive transcription factors depicts the possible signaling cascades involved in drought tolerance. The present study provides greater insight into the fundamental transcriptome reprogramming of desert plants under drought.
Collapse
Affiliation(s)
- Fayas Thayale Purayil
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, P.O. Box. Al-Ain 15551, UAE; (F.T.P.); (A.J.C.); (N.H.T.)
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box. Al Ain 15551, UAE
| | - Balaji Rajashekar
- Institute of Computer Science, University of Tartu, 50409 Tartu, Estonia;
- Celixa, Bangalore, Karnataka 560020, India
| | - Shyam S. Kurup
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, P.O. Box. Al-Ain 15551, UAE; (F.T.P.); (A.J.C.); (N.H.T.)
- Correspondence: (S.S.K.); (K.M.A.)
| | - Abdul Jaleel Cheruth
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, P.O. Box. Al-Ain 15551, UAE; (F.T.P.); (A.J.C.); (N.H.T.)
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), Minden Heights, Georgetown, Penang 11800, Malaysia;
| | - Nadia Hassan Tawfik
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University, P.O. Box. Al-Ain 15551, UAE; (F.T.P.); (A.J.C.); (N.H.T.)
| | - Khaled M.A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box. Al Ain 15551, UAE
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box. Al Ain 15551, UAE
- Correspondence: (S.S.K.); (K.M.A.)
| |
Collapse
|
6
|
Schaarschmidt S, Lawas LMF, Glaubitz U, Li X, Erban A, Kopka J, Jagadish SVK, Hincha DK, Zuther E. Season Affects Yield and Metabolic Profiles of Rice ( Oryza sativa) under High Night Temperature Stress in the Field. Int J Mol Sci 2020; 21:E3187. [PMID: 32366031 PMCID: PMC7247591 DOI: 10.3390/ijms21093187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Rice (Oryza sativa) is the main food source for more than 3.5 billion people in the world. Global climate change is having a strong negative effect on rice production. One of the climatic factors impacting rice yield is asymmetric warming, i.e., the stronger increase in nighttime as compared to daytime temperatures. Little is known of the metabolic responses of rice to high night temperature (HNT) in the field. Eight rice cultivars with contrasting HNT sensitivity were grown in the field during the wet (WS) and dry season (DS) in the Philippines. Plant height, 1000-grain weight and harvest index were influenced by HNT in both seasons, while total grain yield was only consistently reduced in the WS. Metabolite composition was analysed by gas chromatography-mass spectrometry (GC-MS). HNT effects were more pronounced in panicles than in flag leaves. A decreased abundance of sugar phosphates and sucrose, and a higher abundance of monosaccharides in panicles indicated impaired glycolysis and higher respiration-driven carbon losses in response to HNT in the WS. Higher amounts of alanine and cyano-alanine in panicles grown in the DS compared to in those grown in the WS point to an improved N-assimilation and more effective detoxification of cyanide, contributing to the smaller impact of HNT on grain yield in the DS.
Collapse
Affiliation(s)
- Stephanie Schaarschmidt
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; (S.S.); (L.M.F.L.); (U.G.); (X.L.); (A.E.); (J.K.); (D.K.H.)
| | - Lovely Mae F. Lawas
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; (S.S.); (L.M.F.L.); (U.G.); (X.L.); (A.E.); (J.K.); (D.K.H.)
- International Rice Research Institute, Metro Manila 1301, Philippines;
| | - Ulrike Glaubitz
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; (S.S.); (L.M.F.L.); (U.G.); (X.L.); (A.E.); (J.K.); (D.K.H.)
| | - Xia Li
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; (S.S.); (L.M.F.L.); (U.G.); (X.L.); (A.E.); (J.K.); (D.K.H.)
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; (S.S.); (L.M.F.L.); (U.G.); (X.L.); (A.E.); (J.K.); (D.K.H.)
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; (S.S.); (L.M.F.L.); (U.G.); (X.L.); (A.E.); (J.K.); (D.K.H.)
| | - S. V. Krishna Jagadish
- International Rice Research Institute, Metro Manila 1301, Philippines;
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Dirk K. Hincha
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; (S.S.); (L.M.F.L.); (U.G.); (X.L.); (A.E.); (J.K.); (D.K.H.)
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; (S.S.); (L.M.F.L.); (U.G.); (X.L.); (A.E.); (J.K.); (D.K.H.)
| |
Collapse
|
7
|
Liu Z, Shi L, Weng Y, Zou H, Li X, Yang S, Qiu S, Huang X, Huang J, Hussain A, Zhang K, Guan D, He S. ChiIV3 Acts as a Novel Target of WRKY40 to Mediate Pepper Immunity Against Ralstonia solanacearum Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1121-1133. [PMID: 31039081 DOI: 10.1094/mpmi-11-18-0313-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
ChiIV3, a chitinase of pepper (Capsicum annuum), stimulates cell death in pepper plants. However, there are only scarce reports on its role in resistance against bacterial wilt disease such as that caused by Ralstonia solanacearum and their transcriptional regulation. In this study, the silencing of ChiIV3 in pepper plants significantly reduced the resistance to R. solanacearum. The transcript of ChiIV3 was induced by R. solanacearum inoculation (RSI) as well as exogenous application of methyl jasmonate and abscisic acid. The bioinformatics analysis revealed that the ChiIV3 promoter consists of multiple stress-related cis elements, including six W-boxes and one MYB1AT. With the 5' deletion assay in the ChiIV3 promoter, the W4-box located from -640 to -635 bp was identified as the cis element that is required for the response to RSI. In addition, the W4-box element was shown to be essential for the binding of the ChiIV3 promoter by the WRKY40 transcription factor, which is known to positively regulate the defense response to R. solanacearum. Site-directed mutagenesis in the W4-box sequence impaired the binding of WRKY40 to the ChiIV3 promoter. Subsequently, the transcription of ChiIV3 decreased in WRKY40-silenced pepper plants. These results demonstrated that the expression of the defense gene ChiIV3 is controlled through multiple modes of regulation, and WRKY40 directly binds to the W4-box element of the ChiIV3 promoter region for its transcriptional regulation.
Collapse
Affiliation(s)
- Zhiqin Liu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Lanping Shi
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Yahong Weng
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Huasong Zou
- College of Plant Protection, Fujian Agriculture and Forestry University
| | - Xia Li
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Sheng Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Shanshan Qiu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Xueying Huang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Jinfeng Huang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Ansar Hussain
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Kan Zhang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Deyi Guan
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| | - Shuilin He
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Crop Science, Fujian Agriculture and Forestry University
| |
Collapse
|
8
|
Chen YE, Cui JM, Su YQ, Zhang CM, Ma J, Zhang ZW, Yuan M, Liu WJ, Zhang HY, Yuan S. Comparison of phosphorylation and assembly of photosystem complexes and redox homeostasis in two wheat cultivars with different drought resistance. Sci Rep 2017; 7:12718. [PMID: 28983110 PMCID: PMC5629198 DOI: 10.1038/s41598-017-13145-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/19/2017] [Indexed: 12/31/2022] Open
Abstract
Reversible phosphorylation of proteins and the assembly of thylakoid complexes are the important protective mechanism against environmental stresses in plants. This research was aimed to investigate the different responses of the antioxidant defense system and photosystem II (PSII) to osmotic stress between drought-resistant and drought-susceptible wheat cultivars. Results showed that the decrease in PSII photochemistry and six enzyme activities was observed in drought-susceptible wheat compared with drought-resistant wheat under osmotic stress. In addition, a lower accumulation of reactive oxygen species (ROS) and cell death were found in the resistant wheat compared with the susceptible wheat under osmotic stress. Western blot analysis revealed that osmotic stress led to a remarkable decline in the steady state level of D1 protein in drought-susceptible wheat. However, the CP29 protein was strongly phosphorylated in drought-resistant wheat compared with the susceptible wheat under osmotic stress. Our results also showed that drought-resistant wheat presented higher phosphorylated levels of the light-harvesting complex II (LHCII), D1, and D2 proteins and a more rapid dephosphorylated rate than drought-susceptible wheat under osmotic stress. Furthermore, the PSII-LHCII supercomplexes and LHCII trimers were more rapidly disassembled in drought-susceptible wheat than the drought-resistant wheat under osmotic stress. These findings provide that reversible phosphorylation of thylakoid membrane proteins and assembly of thylakoid membrane complexes play important roles in plant adaptation to environmental stresses.
Collapse
Affiliation(s)
- Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Jun-Mei Cui
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yan-Qiu Su
- College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Chao-Ming Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jie Ma
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wen-Juan Liu
- Center of Analysis and Testing, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Huai-Yu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
9
|
Jespersen D, Yu J, Huang B. Metabolic Effects of Acibenzolar- S-Methyl for Improving Heat or Drought Stress in Creeping Bentgrass. FRONTIERS IN PLANT SCIENCE 2017; 8:1224. [PMID: 28744300 PMCID: PMC5504235 DOI: 10.3389/fpls.2017.01224] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/28/2017] [Indexed: 05/27/2023]
Abstract
Acibenzolar-S-methyl (ASM) is a synthetic functional analog of salicylic acid which can induce systemic acquired resistance in plants, but its effects on abiotic stress tolerance is not well known. The objectives of this study were to examine effects of acibenzolar-S-methyl on heat or drought tolerance in creeping bentgrass (Agrostis stolonifera) and to determine major ASM-responsive metabolites and proteins associated with enhanced abiotic stress tolerance. Creeping bentgrass plants (cv. 'Penncross') were foliarly sprayed with ASM and were exposed to non-stress (20/15°C day/night), heat stress (35/30°C), or drought conditions (by withholding irrigation) in controlled-environment growth chambers. Exogenous ASM treatment resulted in improved heat or drought tolerance, as demonstrated by higher overall turf quality, relative water content, and chlorophyll content compared to the untreated control. Western blotting revealed that ASM application resulted in up-regulation of ATP synthase, HSP-20, PR-3, and Rubisco in plants exposed to heat stress, and greater accumulation of dehydrin in plants exposed to drought stress. Metabolite profiling identified a number of amino acids, organic acids, and sugars which were differentially accumulated between ASM treated and untreated plants under heat or drought stress, including aspartic acid, glycine, citric acid, malic acid, and the sugars glucose, and fructose. Our results suggested that ASM was effective in improving heat or drought tolerance in creeping bentgrass, mainly through enhancing protein synthesis and metabolite accumulation involved in osmotic adjustment, energy metabolism, and stress signaling.
Collapse
Affiliation(s)
- David Jespersen
- Department of Plant Biology and Pathology, Rutgers University, New BrunswickNJ, United States
- Department of Crop and Soil Sciences, University of Georgia, GriffinGA, United States
| | - Jingjin Yu
- College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New BrunswickNJ, United States
| |
Collapse
|
10
|
Baldoni E, Bagnaresi P, Locatelli F, Mattana M, Genga A. Comparative Leaf and Root Transcriptomic Analysis of two Rice Japonica Cultivars Reveals Major Differences in the Root Early Response to Osmotic Stress. RICE (NEW YORK, N.Y.) 2016; 9:25. [PMID: 27216147 PMCID: PMC4877341 DOI: 10.1186/s12284-016-0098-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/14/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most important crops cultivated in both tropical and temperate regions and is characterized by a low water-use efficiency and a high sensitivity to a water deficit, with yield reductions occurring at lower stress levels compared to most other crops. To identify genes and pathways involved in the tolerant response to dehydration, a powerful approach consists in the genome-wide analysis of stress-induced expression changes by comparing drought-tolerant and drought-sensitive genotypes. RESULTS The physiological response to osmotic stress of 17 japonica rice genotypes was evaluated. A clear differentiation of the most tolerant and the most sensitive phenotypes was evident, especially after 24 and 48 h of treatment. Two genotypes, which were characterized by a contrasting response (tolerance/sensitivity) to the imposed stress, were selected. A parallel transcriptomic analysis was performed on roots and leaves of these two genotypes at 3 and 24 h of stress treatment. RNA-Sequencing data showed that the tolerant genotype Eurosis and the sensitive genotype Loto mainly differed in the early response to osmotic stress in roots. In particular, the tolerant genotype was characterized by a prompt regulation of genes related to chromatin, cytoskeleton and transmembrane transporters. Moreover, a differential expression of transcription factor-encoding genes, genes involved in hormone-mediate signalling and genes involved in the biosynthesis of lignin was observed between the two genotypes. CONCLUSIONS Our results provide a transcriptomic characterization of the osmotic stress response in rice and identify several genes that may be important players in the tolerant response.
Collapse
Affiliation(s)
- Elena Baldoni
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy.
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
| | - Paolo Bagnaresi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, Italy
| | - Franca Locatelli
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy
| | - Monica Mattana
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy
| | - Annamaria Genga
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy.
| |
Collapse
|
11
|
Galbiati F, Chiozzotto R, Locatelli F, Spada A, Genga A, Fornara F. Hd3a, RFT1 and Ehd1 integrate photoperiodic and drought stress signals to delay the floral transition in rice. PLANT, CELL & ENVIRONMENT 2016; 39:1982-93. [PMID: 27111837 DOI: 10.1111/pce.12760] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/10/2016] [Indexed: 05/20/2023]
Abstract
Plants show a high degree of developmental plasticity in response to external cues, including day length and environmental stress. Water scarcity in particular can interfere with photoperiodic flowering, resulting in the acceleration of the switch to reproductive growth in several species, a process called drought escape. However, other strategies are possible and drought stress can also delay flowering, albeit the underlying mechanisms have never been addressed at the molecular level. We investigated these interactions in rice, a short day species in which drought stress delays flowering. A protocol that allows the synchronization of drought with the floral transition was set up to profile the transcriptome of leaves subjected to stress under distinct photoperiods. We identified clusters of genes that responded to drought differently depending on day length. Exposure to drought stress under floral-inductive photoperiods strongly reduced transcription of EARLY HEADING DATE 1 (Ehd1), HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1), primary integrators of day length signals, providing a molecular connection between stress and the photoperiodic pathway. However, phenotypic and transcriptional analyses suggested that OsGIGANTEA (OsGI) does not integrate drought and photoperiodic signals as in Arabidopsis, highlighting molecular differences between long and short day model species.
Collapse
Affiliation(s)
- Francesca Galbiati
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Remo Chiozzotto
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133, Milan, Italy
| | - Franca Locatelli
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133, Milan, Italy
| | - Alberto Spada
- Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Annamaria Genga
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133, Milan, Italy
| | - Fabio Fornara
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
12
|
Jin J, Kong J, Qiu J, Zhu H, Peng Y, Jiang H. High level of microsynteny and purifying selection affect the evolution of WRKY family in Gramineae. Dev Genes Evol 2016; 226:15-25. [PMID: 26754485 DOI: 10.1007/s00427-015-0523-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022]
Abstract
The WRKY gene family, which encodes proteins in the regulation processes of diverse developmental stages, is one of the largest families of transcription factors in higher plants. In this study, by searching for interspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found 35 chromosomal segments of subgroup I genes of WRKY family (WRKY I) in four Gramineae species (Brachypodium, rice, sorghum, and maize) formed eight orthologous groups. After a stepwise gene-by-gene reciprocal comparison of all the protein sequences in the WRKY I gene flanking areas, highly conserved regions of microsynteny were found in the four Gramineae species. Most gene pairs showed conserved orientation within syntenic genome regions. Furthermore, tandem duplication events played the leading role in gene expansion. Eventually, environmental selection pressure analysis indicated strong purifying selection for the WRKY I genes in Gramineae, which may have been followed by gene loss and rearrangement. The results presented in this study provide basic information of Gramineae WRKY I genes and form the foundation for future functional studies of these genes. High level of microsynteny in the four grass species provides further evidence that a large-scale genome duplication event predated speciation.
Collapse
Affiliation(s)
- Jing Jin
- Key Laboratory of Crop Biology of Anhui Province, Collaborative Innovation Center of Anhui Grain Crops, Anhui Agricultural University, Hefei, China
| | - Jingjing Kong
- Key Laboratory of Crop Biology of Anhui Province, Collaborative Innovation Center of Anhui Grain Crops, Anhui Agricultural University, Hefei, China
| | - Jianle Qiu
- Key Laboratory of Crop Biology of Anhui Province, Collaborative Innovation Center of Anhui Grain Crops, Anhui Agricultural University, Hefei, China
| | - Huasheng Zhu
- Key Laboratory of Crop Biology of Anhui Province, Collaborative Innovation Center of Anhui Grain Crops, Anhui Agricultural University, Hefei, China
| | - Yuancheng Peng
- Key Laboratory of Crop Biology of Anhui Province, Collaborative Innovation Center of Anhui Grain Crops, Anhui Agricultural University, Hefei, China
| | - Haiyang Jiang
- Key Laboratory of Crop Biology of Anhui Province, Collaborative Innovation Center of Anhui Grain Crops, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
13
|
Barilli E, Rubiales D, Amalfitano C, Evidente A, Prats E. BTH and BABA induce resistance in pea against rust (Uromyces pisi) involving differential phytoalexin accumulation. PLANTA 2015; 242:1095-106. [PMID: 26059606 DOI: 10.1007/s00425-015-2339-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/21/2015] [Indexed: 05/22/2023]
Abstract
MAIN CONCLUSION Systemic acquired resistance elicitors, BTH and BABA, reduce rust penetration in pea through phytoalexins pathway but differing in their mode of action. It has been previously shown that rust (Uromyces pisi) infection can be reduced in pea (Pisum sativum) by exogenous applications of systemic acquired resistance elicitors such as BTH and BABA. This protection is known to be related with the induction of the phenolic pathway but the particular metabolites involved have not been determined yet. In this work, we tackled the changes induced in phytoalexin content by BTH and BABA treatments in the context of the resistance responses to pea rust. Detailed analysis through high-performance liquid chromatography (HPLC) showed qualitative and quantitative differences in the content, as well as in the distribution of phytoalexins. Thus, following BTH treatment, we observed an increase in scopoletin, pisatin and medicarpin contents in all, excreted, soluble and cell wall-bound fraction. This suggests fungal growth impairment by both direct toxic effect as well as plant cell wall reinforcement. The response mediated by BTH was genotype-dependent, since coumarin accumulation was observed only in the resistant genotype whereas treatment by BABA primed phytoalexin accumulation in both genotypes equally. Exogenous application to the leaves of scopoletin, medicarpin and pisatin lead to a reduction of the different fungal growth stages, confirming a role for these phytoalexins in BTH- and BABA-induced resistance against U. pisi hampering pre- and postpenetration fungal stages.
Collapse
Affiliation(s)
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| | | | - Antonio Evidente
- Department of Chemical Science, University of Naples Federico II, Naples, Italy
| | - Elena Prats
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| |
Collapse
|