1
|
Liang J, Guan P, Liu Z, Wang Y, Xing J, Hu J. The VvSUPERMAN-like Gene Is Differentially Expressed between Bicarpellate and Tricarpellate Florets of Vitis vinifera L. Cv. 'Xiangfei' and Its Heterologous Expression Reduces Carpel Number in Tomato. PLANT & CELL PHYSIOLOGY 2020; 61:1760-1774. [PMID: 32761091 DOI: 10.1093/pcp/pcaa103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Multicarpellate fruits are larger and produce more seeds than mono- or bicarpellate fruits, enhancing the reproductive capacity of the plant. To identify the phenotypic and molecular differences among florets of different carpel types, we studied carpel formation and fusion in the grapevine (Vitis vinifera) cultivar 'Xiangfei', which produces a high proportion of multicarpellate fruit. We also determined the function of VvSUPERMAN-like (VvSUP-like) and explored its relationship with VvWUS (VvWUSCHEL) and VvAG1 (VvAGAMOUS), which is related to the formation of carpel primordia. We showed that carpel formation and fusion were largely consistent between bicarpellate and tricarpellate ovaries, which both involve congenital fusion; rather, the differences between these ovary types arose from variation in carpel primordia number and location. Transgenic tomato (Solanum lycopersicum) plants expressing VvSUP-like produced significantly fewer carpels and other floral organs than the wild type. Moreover, transcriptome sequencing results indicate that VvSUP-like was more highly expressed in bicarpellate than in tricarpellate 'Xiangfei' florets. Luciferase reporter assays indicated that VvSUP-like inhibits the expression of VvAG1 and VvWUS by directly binding to their promoters, and VvWUS promotes VvAG1 expression by directly binding to its promoter. VvSUP-like inhibits the feedback signaling between VvWUS and VvAG1. Together, these results suggest that VvSUP-like negatively regulates the number of carpels that develop by inhibiting VvAG1 and VvWUS expression.
Collapse
Affiliation(s)
- Jinjun Liang
- College of Horticulture, China Agriculture University, Beijing 100094, China
| | - Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Zhenhua Liu
- College of Horticulture, China Agriculture University, Beijing 100094, China
| | - Yan Wang
- College of Horticulture, China Agriculture University, Beijing 100094, China
| | - Jiayi Xing
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jianfang Hu
- College of Horticulture, China Agriculture University, Beijing 100094, China
| |
Collapse
|
2
|
Yuan C, Shi J, Zhao L. The CmbZIP1 transcription factor of chrysanthemum negatively regulates shoot branching. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:69-76. [PMID: 32200192 DOI: 10.1016/j.plaphy.2020.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
The basic region/leucine zipper (bZIP) transcription factors play key roles in regulating diverse biological processes in plants. However, their participation in shoot branching has been rarely reported. Here, we isolated a CmbZIP1 transcription factor gene, a member of the bZIP family, from chrysanthemum. Subcellular localization analysis indicated that CmbZIP1 is a nuclear protein. Tissue-specific expression analysis indicated that CmbZIP1 was principally expressed in apical bud and axillary bud. Expression patterns analysis results showed that CmbZIP1 expression was suppressed in axillary buds in response to decapitation but increased in response to shade. Overexpression of CmbZIP1 in Arabidopsis inhibits its shoot branching. In addition, expression of auxin efflux protein PIN-FORMED 1 (PIN1) and auxin signaling components AUXIN RESISTANT 1/3 (AXR1, AXR3) were significantly up-regulated in overexpressing plants in comparison with wild type plants. Moreover, the transcript expression of BRANCHED 2 (AtBRC2) was also significantly up-regulated in overexpressing plants compared with the wild type. Altogether, these results suggest important and negative roles of CmbZIP1 in shoot branching. Our study extends the understanding of the function of bZIP transcription factors in plants and provides valuable gene resources for improving the architectural traits of ornamental plants.
Collapse
Affiliation(s)
- Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Jingtian Shi
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Liangjun Zhao
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Li Y, Zhu FL, Zheng XW, Hu ML, Dong C, Diao Y, Wang YW, Xie KQ, Hu ZL. Comparative population genomics reveals genetic divergence and selection in lotus, Nelumbo nucifera. BMC Genomics 2020; 21:146. [PMID: 32046648 PMCID: PMC7014656 DOI: 10.1186/s12864-019-6376-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/08/2019] [Indexed: 12/26/2022] Open
Abstract
Background Lotus (Nelumbo nucifera) is an aquatic plant with important agronomic, horticulture, art and religion values. It was the basal eudicot species occupying a critical phylogenetic position in flowering plants. After the domestication for thousands of years, lotus has differentiated into three cultivated types -flower lotus, seed lotus and rhizome lotus. Although the phenotypic and genetic differentiations based on molecular markers have been reported, the variation on whole-genome level among the different lotus types is still ambiguous. Results In order to reveal the evolution and domestication characteristics of lotus, a total of 69 lotus accessions were selected, including 45 cultivated accessions, 22 wild sacred lotus accessions, and 2 wild American lotus accessions. With Illumina technology, the genomes of these lotus accessions were resequenced to > 13× raw data coverage. On the basis of these genomic data, 25 million single-nucleotide polymorphisms (SNPs) were identified in lotus. Population analysis showed that the rhizome and seed lotus were monophyletic and genetically homogeneous, whereas the flower lotus was biphyletic and genetically heterogeneous. Using population SNP data, we identified 1214 selected regions in seed lotus, 95 in rhizome lotus, and 37 in flower lotus. Some of the genes in these regions contributed to the essential domestication traits of lotus. The selected genes of seed lotus mainly affected lotus seed weight, size and nutritional quality. While the selected genes were responsible for insect resistance, antibacterial immunity and freezing and heat stress resistance in flower lotus, and improved the size of rhizome in rhizome lotus, respectively. Conclusions The genome differentiation and a set of domestication genes were identified from three types of cultivated lotus- flower lotus, seed lotus and rhizome lotus, respectively. Among cultivated lotus, flower lotus showed the greatest variation. The domestication genes may show agronomic importance via enhancing insect resistance, improving seed weight and size, or regulating lotus rhizome size. The domestication history of lotus enhances our knowledge of perennial aquatic crop evolution, and the obtained dataset provides a basis for future genomics-enabled breeding.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Feng-Lin Zhu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xing-Wen Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.,Guangchang Research School of White Lotus, Guangchang, 344900, People's Republic of China
| | - Man-Li Hu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chen Dong
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Ying Diao
- College of Landscape Architecture and Life Science / Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
| | - You-Wei Wang
- Institute of Traditional Chinese Medicine and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ke-Qiang Xie
- Guangchang Research School of White Lotus, Guangchang, 344900, People's Republic of China.
| | - Zhong-Li Hu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
4
|
Xu K, Wang L, Liu N, Xie X, Zhu Y. Characterization of a SUPERMAN-like Gene, MdSUP11, in apple (Malus × domestica Borkh.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:136-142. [PMID: 29448155 DOI: 10.1016/j.plaphy.2017.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/03/2017] [Accepted: 12/03/2017] [Indexed: 06/08/2023]
Abstract
Arabidopsis SUPERMAN and its family members of its family play important roles in plant growth and floral organ development; yet much less is known about their functions expanding in apple tree development. Previous work has identified 12 SUP-like genes in the apple (Malus × domestica Borkh.) genome, and the MdSUP11 which is expressed in both vegetative and reproductive organs of apple. However, the function of MdSUP11 remains obscure. In this study, the β-glucuronidase expression driven by the MdSUP11 native promoter was detected in roots, young leaves, and floral organs of transgenic Arabidopsis. In transgenic tobacco, overexpression of MdSUP11 lead to dwarfism, aberrant leaf shapes, and morphological changes of floral organs. Endogenous concentrations of auxin (indole-3-acetic acid), abscisic acid, isopentenyl adenosine and zeatin riboside were significantly higher in young MdSUP11-transformed tobacco plants than in non-transformed plants. Gene expression analysis using real-time quantitative PCR showed up-regulation of NtDFR2 and NtANS1 expression in unopened transgenic flowers, whereas NtCHS expression was not changed significantly. Together, these results suggest that MdSUP11 is associated with apple's vegetative and reproductive development. Its overexpression in tobacco affects leaf and flower organ development and plant height; potentially by changing NtDFR2 and NtANS1 expression and endogenous levels of indole-3-acetic acid, cytokinins and abscisic acid.
Collapse
Affiliation(s)
- Ke Xu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China.
| | - LiMin Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China.
| | - Na Liu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China.
| | - Xuan Xie
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China.
| | - YuanDi Zhu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
5
|
Han M, Jin X, Yao W, Kong L, Huang G, Tao Y, Li L, Wang X, Wang Y. A Mini Zinc-Finger Protein (MIF) from Gerbera hybrida Activates the GASA Protein Family Gene, GEG, to Inhibit Ray Petal Elongation. FRONTIERS IN PLANT SCIENCE 2017; 8:1649. [PMID: 29018462 PMCID: PMC5615213 DOI: 10.3389/fpls.2017.01649] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/08/2017] [Indexed: 05/19/2023]
Abstract
Petal appearance is an important horticultural trail that is generally used to evaluate the ornamental value of plants. However, knowledge of the molecular regulation of petal growth is mostly derived from analyses of Arabidopsis thaliana, and relatively little is known about this process in ornamental plants. Previously, GEG (Gerbera hybrida homolog of the gibberellin [GA]-stimulated transcript 1 [GAST1] from tomato), a gene from the GA stimulated Arabidopsis (GASA) family, was reported to be an inhibitor of ray petal growth in the ornamental species, G. hybrida. To explore the molecular regulatory mechanism of GEG in petal growth inhibition, a mini zinc-finger protein (MIF) was identified using yeast one-hybrid (Y1H) screen. The direct binding of GhMIF to the GEG promoter was verified by using an electrophoretic mobility shift assay and a dual-luciferase assay. A yeast two-hybrid (Y2H) revealed that GhMIF acts as a transcriptional activator. Transient transformation assay indicated that GhMIF is involved in inhibiting ray petal elongation by activating the expression of GEG. Spatiotemporal expression analyses and hormone treatment assay showed that the expression of GhMIF and GEG is coordinated during petal development. Taken together, these results suggest that GhMIF acts as a direct transcriptional activator of GEG, a gene from the GASA protein family to regulate the petal elongation.
Collapse
Affiliation(s)
- Meixiang Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal UniversityGuangzhou, China
| | - Xuefeng Jin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal UniversityGuangzhou, China
| | - Wei Yao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal UniversityGuangzhou, China
| | - Lingjie Kong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal UniversityGuangzhou, China
| | - Gan Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal UniversityGuangzhou, China
| | - Yujin Tao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal UniversityGuangzhou, China
| | - Lingfei Li
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of SciencesShenzhen, China
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal UniversityGuangzhou, China
| | - Yaqin Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal UniversityGuangzhou, China
- *Correspondence: Yaqin Wang,
| |
Collapse
|