1
|
Tang G, Cheng X, Fan B, Jia Z, Liu K, Zhang S. ERD15 promotes peach and tomato ripening by activating polyamine catabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112515. [PMID: 40239842 DOI: 10.1016/j.plantsci.2025.112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/04/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Polyamine oxidase (PAO) is a key enzyme in polyamine (PA) catabolism and plays a vital role during fruit ripening. However, regulatory mechanisms that control PAO expression during maturation remain unclear. This study identifies the transcription factor PpeERD15 through yeast one-hybrid (Y1H) screening with the PpePAO1 promoter. ERD15 (early response to dehydration 15), a member of the early response to dehydration protein family, is known for its role in abiotic stress responses, but its function in fruit ripening remains largely unexplored. Subcellular localization analysis demonstrated that PpeERD15 was localized in both the nucleus and cytoplasm. Y1H and LUC assays confirmed that PpeERD15 directly binds the PpePAO1 promoter. Transient silencing of PpEDR15 in peach fruit downregulated PpePAO1 expression, promoted PA accumulation, inhibited ethylene production, increased fruit firmness, and delayed fruit ripening. Conversely, overexpression of PpeEDR15 upregulated PpePAO1, decreased PA content, promoted ethylene production, reduced fruit firmness, and accelerated fruit ripening. The role of homologous gene of ERD15 was also validated in tomato. This study discovered that PpeEDR15 regulates fruit ripening by promoting PA catabolism via PpePAO1 expression.
Collapse
Affiliation(s)
- Guangcai Tang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xin Cheng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Bingli Fan
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Zhiqi Jia
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Keke Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Shiwen Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Wang W, Chen Y, Jiang Y, Tang G, Guo L, Qiao G, Liu S, Tan B, Cheng J, Zhang L, Ye X, Wang X, Zhang H, Zheng X, Zhang S, Feng J. The basic helix-loop-helix transcription factor PpeUNE12 regulates peach ripening by promoting polyamine catabolism and anthocyanin synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109537. [PMID: 39862454 DOI: 10.1016/j.plaphy.2025.109537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in various plant developmental and biological processes. However, the precise mechanisms by which bHLH TFs regulate fruit ripening warrant further investigation. Polyamine oxidase (PAO) is crucial for polyamine (PA) catabolism and plays crucial roles in fruit ripening. However, the regulatory mechanism of PAO gene expression during fruit ripening remains largely unexplored. In this study, we identified a peach bHLH TF, PpeUNE12, which directly binds to and activates the promoter of PpePAO1. Silencing PpeUNE12 substantially increased PA accumulation and delayed peach fruit ripening, while overexpressing PpeUNE12 decreased PA accumulation and accelerated peach fruit ripening. Additionally, anthocyanin content decreased in PpeUNE12-silenced fruits but increased in PpeUNE12-overexpressing peach fruits compared to the control. RNA-seq and RT-qPCR analyses revealed that the majority of genes involved in anthocyanin biosynthesis, including PpeF3H, PpeCHS, PpeDFR, PpeUFGT and PpeMYB10.1 exhibited down-regulation in fruits with silenced PpeUNE12, while these genes were up-regulated in fruits overexpressing PpeUNE12. Although PpeUNE12 exhibited no direct binding to the promoters of PpeUFGT and PpeMYB10.1, it substantially activated their activity. This investigation is the first to provide evidence that bHLH regulates fruit maturation via promoting both PA catabolism and anthocyanin synthesis. It reveals a novel mechanism of bHLH in regulating fruit ripening and enhances our comprehension of the regulatory mechanism of PA catabolism and anthocyanin synthesis during fruit maturation.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yang Chen
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
| | - Yabo Jiang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
| | - Guangcai Tang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
| | - Luyue Guo
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
| | - Gaozheng Qiao
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
| | - Shihao Liu
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaobei Wang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haipeng Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiwen Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Liu T, Qu J, Fang Y, Yang H, Lai W, Pan L, Liu JH. Polyamines: The valuable bio-stimulants and endogenous signaling molecules for plant development and stress response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:582-595. [PMID: 39601632 DOI: 10.1111/jipb.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/29/2024]
Abstract
Polyamines (PAs) are nitrogenous and polycationic compounds containing more than two amine residues. Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and physiological processes. The PA balance, which may be affected by many environmental factors, is finely maintained by the pathways of PA biosynthesis and degradation (catabolism). In this review, the advances in PA transport and distribution and their roles in plants were summarized and discussed. In addition, the interplay between PAs and phytohormones, NO, and H2O2 were detailed during plant growth, senescence, fruit repining, as well as response to biotic and abiotic stresses. Moreover, it was elucidated how environmental signals such as light, temperature, and humidity modulate PA accumulation during plant development. Notably, PA has been shown to exert a potential role in shaping the domestication of rice. The present review comprehensively summarizes these latest advances, highlighting the importance of PAs as endogenous signaling molecules in plants, and as well proposes future perspectives on PA research.
Collapse
Affiliation(s)
- Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinyin Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenting Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Luyi Pan
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
4
|
Yang H, Fang Y, Liang Z, Qin T, Liu J, Liu T. Polyamines: pleiotropic molecules regulating plant development and enhancing crop yield and quality. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3194-3201. [PMID: 39024414 PMCID: PMC11500986 DOI: 10.1111/pbi.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Polyamines (PAs) are pleiotropic bioorganic molecules. Cellular PA contents are determined by a balance between PA synthesis and degradation. PAs have been extensively demonstrated to play vital roles in the modulation of plant developmental processes and adaptation to various environmental stresses. In this review, the latest advances on the diverse roles of PAs in a range of developmental processes, such as morphogenesis, organogenesis, growth and development, and fruit ripening, are summarized and discussed. Besides, the crosstalk between PAs and phytohormones or other signalling molecules, including H2O2 and NO, involved in these processes is dwelled on. In addition, the attempts made to improve the yield and quality of grain and vegetable crops through altering the PA catabolism are enumerated. Finally, several other vital questions that remain unanswered are proposed and discussed. These include the mechanisms underlying the cooperative regulation of developmental processes by PAs and their interplaying partners like phytohormones, H2O2 and NO; PA transport for maintaining homeostasis; and utilization of PA anabolism/catabolism for generating high-yield and good-quality crops. This review aims to gain new insights into the pleiotropic role of PAs in the modulation of plant growth and development, which provides an alternative approach for manipulating and engineering valuable crop varieties that can be used in the future.
Collapse
Affiliation(s)
- Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Yinyin Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Zhiman Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Tian Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Ji‐Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
5
|
Polyamine Oxidase-Generated Reactive Oxygen Species in Plant Development and Adaptation: The Polyamine Oxidase-NADPH Oxidase Nexus. Antioxidants (Basel) 2022; 11:antiox11122488. [PMID: 36552696 PMCID: PMC9774701 DOI: 10.3390/antiox11122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolism and regulation of cellular polyamine levels are crucial for living cells to maintain their homeostasis and function. Polyamine oxidases (PAOs) terminally catabolize polyamines or catalyse the back-conversion reactions when spermine is converted to spermidine and Spd to putrescine. Hydrogen peroxide (H2O2) is a by-product of both the catabolic and back-conversion processes. Pharmacological and genetic approaches have started to uncover the roles of PAO-generated H2O2 in various plant developmental and adaptation processes such as cell differentiation, senescence, programmed cell death, and abiotic and biotic stress responses. Many of these studies have revealed that the superoxide-generating Respiratory Burst Oxidase Homolog (RBOH) NADPH oxidases control the same processes either upstream or downstream of PAO action. Therefore, it is reasonable to suppose that the two enzymes co-ordinately control the cellular homeostasis of reactive oxygen species. The intricate relationship between PAOs and RBOHs is also discussed, posing the hypothesis that these enzymes indirectly control each other's abundance/function via H2O2.
Collapse
|
6
|
Cao X, Wen Z, Shang C, Cai X, Hou Q, Qiao G. Copper Amine Oxidase (CuAO)-Mediated Polyamine Catabolism Plays Potential Roles in Sweet Cherry (Prunus avium L.) Fruit Development and Ripening. Int J Mol Sci 2022; 23:ijms232012112. [PMID: 36292969 PMCID: PMC9603101 DOI: 10.3390/ijms232012112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Copper amine oxidases (CuAOs) play important roles in PA catabolism, plant growth and development, and abiotic stress response. In order to better understand how PA affects cherry fruit, four potential PavCuAO genes (PavCuAO1–PavCuAO4) that are dispersed over two chromosomes were identified in the sweet cherry genome. Based on phylogenetic analysis, they were classified into three subclasses. RNA-seq analysis showed that the PavCuAO genes were tissue-specific and mostly highly expressed in flowers and young leaves. Many cis-elements associated with phytohormones and stress responses were predicted in the 2 kb upstream region of the promoter. The PavCuAOs transcript levels were increased in response to abscisic acid (ABA) and gibberellin 3 (GA3) treatments, as well as abiotic stresses (NaCl, PEG, and cold). Quantitative fluorescence analysis and high-performance liquid chromatography confirmed that the Put content fell, and the PavCuAO4 mRNA level rose as the sweet cherry fruit ripened. After genetically transforming Arabidopsis with PavCuAO4, the Put content in transgenic plants decreased significantly, and the expression of the ABA synthesis gene NCED was also significantly increased. At the same time, excessive H2O2 was produced in PavCuAO4 transiently expressed tobacco leaves. The above results strongly proved that PavCuAO4 can decompose Put and may promote fruit ripening by increasing the content of ABA and H2O2 while suppressing total free PA levels in the fruit.
Collapse
Affiliation(s)
- Xuejiao Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Chunqiong Shang
- Institute for Forest Resources & Environment of Guizhou/College of Forestry, Guizhou University, Guiyang 550025, China
| | - Xiaowei Cai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- Correspondence: or
| |
Collapse
|
7
|
Cheng X, Pang F, Tian W, Tang X, Wu L, Hu X, Zhu H. Transcriptome analysis provides insights into the molecular mechanism of GhSAMDC 1 involving in rapid vegetative growth and early flowering in tobacco. Sci Rep 2022; 12:13612. [PMID: 35948667 PMCID: PMC9365820 DOI: 10.1038/s41598-022-18064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
In previous study, ectopic expression of GhSAMDC1 improved vegetative growth and early flowering in tobacco, which had been explained through changes of polyamine content, polyamines and flowering relate genes expression. To further disclose the transcript changes of ectopic expression of GhSAMDC1 in tobacco, the leaves from wild type and two transgenic lines at seedling (30 days old), bolting (60 days old) and flowering (90 days old) stages were performed for transcriptome analysis. Compared to wild type, a total of 938 differentially expressed genes (DEGs) were found to be up- or down-regulated in the two transgenic plants. GO and KEGG analysis revealed that tobacco of wild-type and transgenic lines were controlled by a complex gene network, which regulated multiple metabolic pathways. Phytohormone detection indicate GhSAMDC1 affect endogenous phytohormone content, ABA and JA content are remarkably increased in transgenic plants. Furthermore, transcript factor analysis indicated 18 transcript factor families, including stress response, development and flowering related transcript factor families, especially AP2-EREBP, WRKY, HSF and Tify are the most over-represented in those transcript factor families. In conclusion, transcriptome analysis provides insights into the molecular mechanism of GhSAMDC1 involving rapid vegetative growth and early flowering in tobacco.
Collapse
Affiliation(s)
- Xinqi Cheng
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Fangqin Pang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Wengang Tian
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinxin Tang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Lan Wu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Xiaoming Hu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China. .,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China.
| |
Collapse
|
8
|
Upadhyay RK, Fatima T, Handa AK, Mattoo AK. Differential Association of Free, Conjugated, and Bound Forms of Polyamines and Transcript Abundance of Their Biosynthetic and Catabolic Genes During Drought/Salinity Stress in Tomato ( Solanum lycopersicum L.) Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:743568. [PMID: 34721469 PMCID: PMC8555666 DOI: 10.3389/fpls.2021.743568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
Polyamines have been implicated in ameliorating the detrimental effects of drought and saline conditions on plant growth and development. The independent impact of these two abiotic stresses on polyamine (PA) biosynthesis, catabolism, and homeostasis, as well as on their transcript abundance in tomato leaves, is presented here. We show that the total levels of putrescine (PUT), spermidine (SPD), and spermine (SPM) increase up to 72 h during drought and up to 48 h during salinity stress before their precipitable drop thereafter. Thus, tomato plants maintain survivability to drought as well as salinity stress for up to 3 and 2 days, respectively. Independent multivariant analyses of drought and salinity stress kinetic data separately showed a closer association with levels of free, conjugated, and bound forms of SPD and SPM, but not with free or bound PUT. However, combined multivariant analyses showed a closer association of free SPD, conjugated SPD, and bound SPD with both stresses; SPD-bound and SPM conjugated with drought; and free SPM and conjugated PUT with salinity stress, respectively. PA biosynthesis genes, ARG1, SPDS1, and SAMDc3, segregated with drought and SPDS2 with salinity stress. PA catabolic genes CuAO4-like and PAO4 were associated with drought and salinity stresses, respectively, suggesting differential involvement of PA biosynthesis and catabolic genes in drought and salinity stresses. Pearson correlation indicated mostly positive correlations between the levels of free, conjugated, and bound forms of PUT, SPD, and SPM under drought and salinity stress. However, negative correlations were mostly seen between the levels of various forms of the PAs and their biosynthesis/catabolic genes. Levels of different PA forms had a twofold higher negative correlation during drought as compared to salinity stress (66 vs. 32) and with transcript levels of PA biosynthesis and catabolic genes. Transcripts of light-harvesting chlorophyll a/b-binding genes were generally positively associated with different forms of PAs but negatively to carbon flow genes. Most of the PA biosynthesis genes were coordinately regulated under both stresses. Collectively, these results indicate that PAs are distinctly regulated under drought and salinity stress with different but specific homologs of PA biosynthesis and catabolic genes contributing to the accumulation of free, conjugated, and bound forms of PAs.
Collapse
Affiliation(s)
- Rakesh K Upadhyay
- Sustainable Agricultural Systems Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Tahira Fatima
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Avtar K Handa
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
9
|
Kamiab F, Tavassolian I, Hosseinifarahi M. Biologia futura: the role of polyamine in plant science. Biol Futur 2021; 71:183-194. [PMID: 34554509 DOI: 10.1007/s42977-020-00027-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 06/10/2020] [Indexed: 12/27/2022]
Abstract
Polyamines (PAs) are positively charged amines such as putrescine, spermidine and spermine that ubiquitously exist in all organisms. They have been considered as a new type of plant biostimulants, with pivotal roles in many physiological processes. Polyamine levels are controlled by intricate regulatory feedback mechanisms. PAs are directly or indirectly regulated through interaction with signaling metabolites (H202, NO), aminobutyric acid (GABA), phytohormones (abscisic acid, gibberellins, ethylene, cytokinins, auxin, jasmonic acid and brassinosteroids) and nitrogen metabolism (maintaining the balance of C:N in plants). Exogenous applications of PAs enhance the stress resistance, flowering and fruit set, synthesis of bioactive compounds and extension of agricultural crops shelf life. Up-regulation of PAs biosynthesis by genetic manipulation can be a novel strategy to increase the productivity of agricultural crops. Recently, the role of PAs in symbiosis relationships between plants and beneficial microorganisms has been confirmed. PA metabolism has also been targeted to design new harmless fungicides.
Collapse
Affiliation(s)
- Fereshteh Kamiab
- Department of Horticulture, Faculty of Agriculture, Rafsanjan Branch, Islamic Azad University, Rafsanjan, Iran.
| | - Iraj Tavassolian
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran.,Department of Horticulture, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Hosseinifarahi
- Department of Horticultural Science, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| |
Collapse
|
10
|
Gao F, Mei X, Li Y, Guo J, Shen Y. Update on the Roles of Polyamines in Fleshy Fruit Ripening, Senescence, and Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:610313. [PMID: 33664757 PMCID: PMC7922164 DOI: 10.3389/fpls.2021.610313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/19/2021] [Indexed: 05/17/2023]
Abstract
Ripening of fleshy fruits involves complex physiological, biochemical, and molecular processes that coincide with various changes of the fruit, including texture, color, flavor, and aroma. The processes of ripening are controlled by ethylene in climacteric fruits and abscisic acid (ABA) in non-climacteric fruits. Increasing evidence is also uncovering an essential role for polyamines (PAs) in fruit ripening, especially in climacteric fruits. However, until recently breakthroughs have been made in understanding PA roles in the ripening of non-climacteric fruits. In this review, we compare the mechanisms underlying PA biosynthesis, metabolism, and action during ripening in climacteric and non-climacteric fruits at the physiological and molecular levels. The PA putrescine (Put) has a role opposite to that of spermidine/spermine (Spd/Spm) in cellular metabolism. Arginine decarboxylase (ADC) is crucial to Put biosynthesis in both climacteric and non-climacteric fruits. S-adenosylmethionine decarboxylase (SAMDC) catalyzes the conversion of Put to Spd/Spm, which marks a metabolic transition that is concomitant with the onset of fruit ripening, induced by Spd in climacteric fruits and by Spm in non-climacteric fruits. Once PA catabolism is activated by polyamine oxidase (PAO), fruit ripening and senescence are facilitated by the coordination of mechanisms that involve PAs, hydrogen peroxide (H2O2), ABA, ethylene, nitric oxide (NO), and calcium ions (Ca2+). Notably, a signal derived from PAO5-mediated PA metabolism has recently been identified in strawberry, a model system for non-climacteric fruits, providing a deeper understanding of the regulatory roles played by PAs in fleshy fruit ripening.
Collapse
Affiliation(s)
- Fan Gao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Resources and Environment, Beijing University of Agriculture, Beijing, China
| | - Xurong Mei
- Water Resources and Dryland Farming Laboratory, Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuzhong Li
- Water Resources and Dryland Farming Laboratory, Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxuan Guo
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Resources and Environment, Beijing University of Agriculture, Beijing, China
- *Correspondence: Jiaxuan Guo,
| | - Yuanyue Shen
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Resources and Environment, Beijing University of Agriculture, Beijing, China
- Yuanyue Shen, ;
| |
Collapse
|
11
|
Donatti Leão Alvarenga P, Mileib Vasconcelos C, de São José JFB. Application of Ultrasound Combined with Acetic Acid and Peracetic Acid: Microbiological and Physicochemical Quality of Strawberries. Molecules 2020; 26:molecules26010016. [PMID: 33375142 PMCID: PMC7792923 DOI: 10.3390/molecules26010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
This work evaluated the application of organic acids (acetic and peracetic acid) and ultrasound as alternative sanitization methods for improving the microbiological and physicochemical qualities of strawberries. A reduction of up to 2.48 log CFU/g aerobic mesophiles and between 0.89 and 1.45 log CFU/g coliforms at 35 °C was found. For molds and yeasts, significant differences occurred with different treatments and storage time (p < 0.05). Ultrasound treatments in combination with peracetic acid and acetic acid allowed a decimal reduction in molds and yeasts (p < 0.05). All evaluated treatments promoted a significant reduction in the Escherichia coli count (p < 0.05). Scanning electron microscopy revealed fragmented E. coli cells due to treatment with acetic acid and ultrasound. Storage time significantly affected pH, total titratable acidity, total soluble solids and the ratio of the total titratable acidity to the total soluble solids (p < 0.05). Anthocyanin content did not change with treatment or time and generally averaged 13.47 mg anthocyanin/100 g of strawberries on fresh matter. Mass loss was not significantly affected by the applied treatments (p > 0.05). The combination of ultrasound and peracetic acid may be an alternative to chlorine-based compounds to ensure microbiological safety without causing significant changes in the physicochemical characteristics of strawberries.
Collapse
Affiliation(s)
- Priscila Donatti Leão Alvarenga
- Postgraduate Program in Nutrition and Health, Federal University of Espírito Santo, Marechal Campos Avenue, Vitória, Espírito Santo 28630, Brazil;
| | - Christiane Mileib Vasconcelos
- Food Biotechnology Laboratory, Vila Velha University, Comissário José Dantas de Melo Avenue, Vila Velha, Espírito Santo 28630, Brazil;
| | - Jackline Freitas Brilhante de São José
- Department of Integrated Health Education, Federal University of Espírito Santo, Marechal Campos Avenue, Vitória, Espírito Santo 28630, Brazil
- Correspondence: ; Tel.: +55–27–3335–7223
| |
Collapse
|
12
|
Zhu H, Tian W, Zhu X, Tang X, Wu L, Hu X, Jin S. Ectopic expression of GhSAMDC 1 improved plant vegetative growth and early flowering through conversion of spermidine to spermine in tobacco. Sci Rep 2020; 10:14418. [PMID: 32879344 PMCID: PMC7468128 DOI: 10.1038/s41598-020-71405-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/14/2020] [Indexed: 01/11/2023] Open
Abstract
Polyamines play essential roles in plant development and various stress responses. In this study, one of the cotton S-adenosylmethionine decarboxylase (SAMDC) genes, GhSAMDC1, was constructed in the pGWB17 vector and overexpressed in tobacco. Leaf area and plant height increased 25.9-36.6% and 15.0-27.0%, respectively, compared to the wild type, and flowering time was advanced by 5 days in transgenic tobacco lines. Polyamine and gene expression analyses demonstrated that a decrease in spermidine and an increase in total polyamines and spermine might be regulated by NtSPDS4 and NtSPMS in transgenic plants. Furthermore, exogenous spermidine, spermine and spermidine synthesis inhibitor dicyclohexylamine were used for complementary tests, which resulted in small leaves and dwarf plants, big leaves and early flowering, and big leaves and dwarf plants, respectively. These results indicate that spermidine and spermine are mainly involved in the vegetative growth and early flowering stages, respectively. Expression analysis of flowering-related genes suggested that NtSOC1, NtAP1, NtNFL1 and NtFT4 were upregulated in transgenic plants. In conclusion, ectopic GhSAMDC1 is involved in the conversion of spermidine to spermine, resulting in rapid vegetative growth and early flowering in tobacco, which could be applied to genetically improve plants.
Collapse
Affiliation(s)
- Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China.
| | - Wengang Tian
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xuefeng Zhu
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinxin Tang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Lan Wu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Xiaoming Hu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, 438000, Huanggang, Hubei, China
| | - Shuangxia Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
13
|
Upadhyay RK, Fatima T, Handa AK, Mattoo AK. Polyamines and Their Biosynthesis/Catabolism Genes Are Differentially Modulated in Response to Heat Versus Cold Stress in Tomato Leaves ( Solanum lycopersicum L.). Cells 2020; 9:cells9081749. [PMID: 32707844 PMCID: PMC7465501 DOI: 10.3390/cells9081749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Polyamines (PAs) regulate growth in plants and modulate the whole plant life cycle. They have been associated with different abiotic and biotic stresses, but little is known about the molecular regulation involved. We quantified gene expression of PA anabolic and catabolic pathway enzymes in tomato (Solanum lycopersicum cv. Ailsa Craig) leaves under heat versus cold stress. These include arginase1 and 2, arginine decarboxylase 1 and 2, agmatine iminohydrolase/deiminase 1, N-carbamoyl putrescine amidase, two ornithine decarboxylases, three S-adenosylmethionine decarboxylases, two spermidine synthases; spermine synthase; flavin-dependent polyamine oxidases (SlPAO4-like and SlPAO2) and copper dependent amine oxidases (SlCuAO and SlCuAO-like). The spatiotemporal transcript abundances using qRT-PCR revealed presence of their transcripts in all tissues examined, with higher transcript levels observed for SAMDC1, SAMDC2 and ADC2 in most tissues. Cellular levels of free and conjugated forms of putrescine and spermidine were found to decline during heat stress while they increased in response to cold stress, revealing their differential responses. Transcript levels of ARG2, SPDS2, and PAO4-like increased in response to both heat and cold stresses. However, transcript levels of ARG1/2, AIH1, CPA, SPDS1 and CuAO4 increased in response to heat while those of ARG2, ADC1,2, ODC1, SAMDC1,2,3, PAO2 and CuPAO4-like increased in response to cold stress, respectively. Transcripts of ADC1,2, ODC1,2, and SPMS declined in response to heat stress while ODC2 transcripts declined under cold stress. These results show differential expression of PA metabolism genes under heat and cold stresses with more impairment clearly seen under heat stress. We interpret these results to indicate a more pronounced role of PAs in cold stress acclimation compared to that under heat stress in tomato leaves.
Collapse
Affiliation(s)
- Rakesh K. Upadhyay
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA;
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907, USA; (T.F.); (A.K.H.)
| | - Tahira Fatima
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907, USA; (T.F.); (A.K.H.)
| | - Avtar K. Handa
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907, USA; (T.F.); (A.K.H.)
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA;
- Correspondence: ; Tel.: +1-301-504-6622
| |
Collapse
|
14
|
Adhikari S, Adhikari A, Ghosh S, Roy D, Azahar I, Basuli D, Hossain Z. Assessment of ZnO-NPs toxicity in maize: An integrative microRNAomic approach. CHEMOSPHERE 2020; 249:126197. [PMID: 32087455 DOI: 10.1016/j.chemosphere.2020.126197] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Rapid expansion of nanotechnology and indiscriminate discharge of metal oxide nanoparticles (NPs) into the environment pose a serious hazard to the ecological receptors including plants. To better understand the role of miRNAs in ZnO-NPs stress adaptation, two small RNA libraries were prepared from control and ZnO-NPs (800 ppm, <50 nm particle size) stressed maize leaves. Meager performance of ZnO-NPs treated seedlings was associated with elevated tissue zinc accumulation, enhanced ROS generation, loss of root cell viability, increased foliar MDA content, decrease in chlorophyll and carotenoids contents. Deep sequencing identified 3 (2 known and 1 novel) up- and 77 (73 known and 4 novel) down-regulated miRNAs from ZnO-NPs challenged leaves. GO analysis reveals that potential targets of ZnO-NPs responsive miRNAs regulate diverse biological processes viz. plant growth and development (miR159f-3p, zma_18), ROS homeostasis (miR156b, miR166l), heavy metal transport and detoxification (miR444a, miR167c-3p), photosynthesis (miR171b) etc. Up-regulation of SCARECROW 6 in ZnO-NPs treated leaves might be responsible for suppression of chlorophyll biosynthesis leading to yellowing of leaves. miR156b.1 mediated up-regulation of CALLOSE SYNTHASE also does not give much protection against ZnO-NPs treatment. Taken together, the findings shed light on the miRNA-guided stress regulatory networks involved in plant adaptive responses to ZnO-NPs stress.
Collapse
Affiliation(s)
- Sinchan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Ayan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Supriya Ghosh
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Doyel Roy
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Ikbal Azahar
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Debapriya Basuli
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Zahed Hossain
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
15
|
Mo A, Xu T, Bai Q, Shen Y, Gao F, Guo J. FaPAO5 regulates Spm/Spd levels as a signaling during strawberry fruit ripening. PLANT DIRECT 2020; 4:e00217. [PMID: 32355906 PMCID: PMC7189608 DOI: 10.1002/pld3.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 05/24/2023]
Abstract
Polyamines are important for non-climacteric fruit ripening according to an analysis of the model plant strawberry. However, the molecular mechanism underlying the polyamine accumulation during ripening has not been fully elucidated. In this study, an examination of our proteome data related to strawberry fruit ripening revealed a putative polyamine oxidase 5, FaPAO5, which was localized in the cytoplasm and nucleus. Additionally, FaPAO5 expression levels as well as the abundance of the encoded protein continually decreased during ripening. Inhibiting FaPAO5 expression by RNAi promoted Spd, Spm, and ABA accumulation while inhibited H2O2 production, which ultimately enhanced ripening as evidenced by the ripening-related events and corresponding gene expression changes. The opposite effects were observed in FaPAO5-overexpressing transgenic fruits. Analyses of the binding affinity and enzymatic activity of FaPAO5 with Spm, Spd, and Put uncovered a special role for FaPAO5 in the terminal catabolism of Spm and Spd, with a K d of 0.21 and 0.29 µM, respectively. Moreover, FaPAO5 expression was inhibited by ABA and promoted by Spd and Spm. Furthermore, the RNA-seq analysis of RNAi and control fruits via differentially expressed genes (DEGs) indicated the six most enriched pathways among the differentially expressed genes were related to sugar, abscisic acid, ethylene, auxin, gibberellin, and Ca2+. Among four putative PAO genes in the strawberry genome, only FaPAO5 was confirmed to influence fruit ripening. In conclusion, FaPAO5 is a negative regulator of strawberry fruit ripening and modulates Spm/Spd levels as a signaling event, in which ABA plays a central role.
Collapse
Affiliation(s)
- Aowai Mo
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Tian Xu
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Qian Bai
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
- Bei Jing Bei Nong Enterprise Management Co., LtdBeijingChina
| | - Yaunyue Shen
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Fan Gao
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Jiaxuan Guo
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| |
Collapse
|
16
|
Tsafouros A, Roussos PA. The possible bottleneck effect of polyamines' catabolic enzymes in efficient adventitious rooting of two stone fruit rootstocks. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:152999. [PMID: 31805419 DOI: 10.1016/j.jplph.2019.152999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Adventitious rooting is an important plant physiological response utilized in cutting propagation, a procedure with high financial significance. Many endogenous factors are involved, such as plant growth regulators, carbohydrates, minerals, polyamines etc. The objective of the present study was to investigate the role of polyamines and polyamine catabolic enzymes in the bases of softwood cuttings of two Prunus rootstocks, during the early phases of rhizogenesis. An easy-to-root and a difficult-to-root rootstock were studied, concerning their polyamine content (in free, soluble conjugate and insoluble bound form), polyamine catabolic enzyme activities (polyamine oxidase, PAO and diamine oxidase, DAO) and catalase activity, with and without the effect of indole-3-butyric acid as rooting hormone, during the early phases of rhizogenesis. Putrescine, spermine and their catabolic product, H2O2, were applied to test their function to rescue the rooting percentage of the recalcitrant species. Spermine was not detected in the difficult to root rootstock, which exhibited higher titer of putrescine and spermidine, PAO and catalase activity, but lower DAO activity compared to the easy-to-root one. The rooting percentage of the recalcitrant species was doubled under spermine and H2O2 application. The results obtained, highlighted the role of polyamine catabolic enzymes and indirectly the role of the polyamine catabolic product H2O2 as more significant than the polyamine content per se in adventitious rooting of the specific stone fruit rootstocks.
Collapse
Affiliation(s)
- Athanasios Tsafouros
- Agricultural University of Athens, Department of Crop Science, Laboratory of Pomology, Iera Odos 75, Athens 118 55, Greece.
| | - Peter A Roussos
- Agricultural University of Athens, Department of Crop Science, Laboratory of Pomology, Iera Odos 75, Athens 118 55, Greece.
| |
Collapse
|
17
|
Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP, Lutts S. Tomato Fruit Development and Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:1554. [PMID: 31850035 PMCID: PMC6895250 DOI: 10.3389/fpls.2019.01554] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 05/20/2023]
Abstract
Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family and is the second most important fruit or vegetable crop next to potato (Solanum tuberosum L.). It is cultivated for fresh fruit and processed products. Tomatoes contain many health-promoting compounds including vitamins, carotenoids, and phenolic compounds. In addition to its economic and nutritional importance, tomatoes have become the model for the study of fleshy fruit development. Tomato is a climacteric fruit and dramatic metabolic changes occur during its fruit development. In this review, we provide an overview of our current understanding of tomato fruit metabolism. We begin by detailing the genetic and hormonal control of fruit development and ripening, after which we document the primary metabolism of tomato fruits, with a special focus on sugar, organic acid, and amino acid metabolism. Links between primary and secondary metabolic pathways are further highlighted by the importance of pigments, flavonoids, and volatiles for tomato fruit quality. Finally, as tomato plants are sensitive to several abiotic stresses, we briefly summarize the effects of adverse environmental conditions on tomato fruit metabolism and quality.
Collapse
Affiliation(s)
- Muriel Quinet
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Rémi Blanchard-Gros
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Servane Bigot
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Tsaniklidis G, Pappi P, Tsafouros A, Charova SN, Nikoloudakis N, Roussos PA, Paschalidis KA, Delis C. Polyamine homeostasis in tomato biotic/abiotic stress cross-tolerance. Gene 2019; 727:144230. [PMID: 31743771 DOI: 10.1016/j.gene.2019.144230] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
Abstract
Adverse conditions and biotic strain can lead to significant losses and impose limitations on plant yield. Polyamines (PAs) serve as regulatory molecules for both abiotic/biotic stress responses and cell protection in unfavourable environments. In this work, the transcription pattern of 24 genes orchestrating PA metabolism was investigated in Cucumber Mosaic Virus or Potato Virus Y infected and cold stressed tomato plants. Expression analysis revealed a differential/pleiotropic pattern of gene regulation in PA homeostasis upon biotic, abiotic or combined stress stimuli, thus revealing a discrete response specific to diverse stimuli: (i) biotic stress-influenced genes, (ii) abiotic stress-influenced genes, and (iii) concurrent biotic/abiotic stress-regulated genes. The results support different roles for PAs against abiotic and biotic stress. The expression of several genes, significantly induced under cold stress conditions, is mitigated by a previous viral infection, indicating a possible priming-like mechanism in tomato plants pointing to crosstalk among stress signalling. Several genes and resulting enzymes of PA catabolism were stimulated upon viral infection. Hence, we suggest that PA catabolism resulting in elevated H2O2 levels could mediate defence against viral infection. However, after chilling, the activities of enzymes implicated in PA catabolism remained relatively stable or slightly reduced. This correlates to an increase in free PA content, designating a per se protective role of these compounds against abiotic stress.
Collapse
Affiliation(s)
- Georgios Tsaniklidis
- Institute of Olive Tree, Subtropical Plants and Viticulture, Laboratory of Vegetable Crops, Heraklion, Greece
| | - Polyxeni Pappi
- Institute of Olive Tree, Subtropical Plants and Viticulture, Laboratory of Vegetable Crops, Heraklion, Greece
| | - Athanasios Tsafouros
- Agricultural University of Athens, Department of Crop Science, Laboratory of Pomology, Iera Odos 75, Athens 118 55, Greece
| | - Spyridoula N Charova
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | - Nikolaos Nikoloudakis
- Cyprus University of Technology, Department of Agricultural Science, Biotechnology and Food Science, Athinon and Anexartisias 57, Limassol, Cyprus
| | - Petros A Roussos
- Agricultural University of Athens, Department of Crop Science, Laboratory of Pomology, Iera Odos 75, Athens 118 55, Greece
| | - Konstantinos A Paschalidis
- Hellenic Mediterranean University, Department of Agriculture, 71004, Estavromenos, Heraklion, Crete, Greece
| | - Costas Delis
- University of Peloponnese, Department of Agriculture, Antikalamos, Kalamata, 24100, Greece.
| |
Collapse
|
19
|
Lokesh V, Manjunatha G, Hegde NS, Bulle M, Puthusseri B, Gupta KJ, Neelwarne B. Polyamine Induction in Postharvest Banana Fruits in Response to NO Donor SNP Occurs via l-Arginine Mediated Pathway and Not via Competitive Diversion of S-Adenosyl-l-Methionine. Antioxidants (Basel) 2019; 8:antiox8090358. [PMID: 31480617 PMCID: PMC6769871 DOI: 10.3390/antiox8090358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/10/2019] [Accepted: 08/22/2019] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO) is known to antagonize ethylene by various mechanisms; one of such mechanisms is reducing ethylene levels by competitive action on S-adenosyl-L-methionine (SAM)—a common precursor for both ethylene and polyamines (PAs) biosynthesis. In order to investigate whether this mechanism of SAM pool diversion by NO occur towards PAs biosynthesis in banana, we studied the effect of NO on alterations in the levels of PAs, which in turn modulate ethylene levels during ripening. In response to NO donor sodium nitroprusside (SNP) treatment, all three major PAs viz. putrescine, spermidine and spermine were induced in control as well as ethylene pre-treated banana fruits. However, the gene expression studies in two popular banana varieties of diverse genomes, Nanjanagudu rasabale (NR; AAB genome) and Cavendish (CAV; AAA genome) revealed the downregulation of SAM decarboxylase, an intermediate gene involved in ethylene and PA pathway after the fifth day of NO donor SNP treatment, suggesting that ethylene and PA pathways do not compete for SAM. Interestingly, arginine decarboxylase belonging to arginine-mediated route of PA biosynthesis was upregulated several folds in response to the SNP treatment. These observations revealed that NO induces PAs via l-arginine-mediated route and not via diversion of SAM pool.
Collapse
Affiliation(s)
- Veeresh Lokesh
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India
| | - Girigowda Manjunatha
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India
| | - Namratha S Hegde
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India
| | - Mallesham Bulle
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bijesh Puthusseri
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India
| | | | - Bhagyalakshmi Neelwarne
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
20
|
The Interplay among Polyamines and Nitrogen in Plant Stress Responses. PLANTS 2019; 8:plants8090315. [PMID: 31480342 PMCID: PMC6784213 DOI: 10.3390/plants8090315] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022]
Abstract
The interplay between polyamines (PAs) and nitrogen (N) is emerging as a key factor in plant response to abiotic and biotic stresses. The PA/N interplay in plants connects N metabolism, carbon (C) fixation, and secondary metabolism pathways. Glutamate, a pivotal N-containing molecule, is responsible for the biosynthesis of proline (Pro), arginine (Arg) and ornithine (Orn) and constitutes a main common pathway for PAs and C/N assimilation/incorporation implicated in various stresses. PAs and their derivatives are important signaling molecules, as they act largely by protecting and preserving the function/structure of cells in response to stresses. Use of different research approaches, such as generation of transgenic plants with modified intracellular N and PA homeostasis, has helped to elucidate a plethora of PA roles, underpinning their function as a major player in plant stress responses. In this context, a range of transgenic plants over-or under-expressing N/PA metabolic genes has been developed in an effort to decipher their implication in stress signaling. The current review describes how N and PAs regulate plant growth and facilitate crop acclimatization to adverse environments in an attempt to further elucidate the N-PAs interplay against abiotic and biotic stresses, as well as the mechanisms controlling N-PA genes/enzymes and metabolites.
Collapse
|
21
|
Yu Z, Jia D, Liu T. Polyamine Oxidases Play Various Roles in Plant Development and Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2019; 8:E184. [PMID: 31234345 PMCID: PMC6632040 DOI: 10.3390/plants8060184] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Polyamines not only play roles in plant growth and development, but also adapt to environmental stresses. Polyamines can be oxidized by copper-containing diamine oxidases (CuAOs) and flavin-containing polyamine oxidases (PAOs). Two types of PAOs exist in the plant kingdom; one type catalyzes the back conversion (BC-type) pathway and the other catalyzes the terminal catabolism (TC-type) pathway. The catabolic features and biological functions of plant PAOs have been investigated in various plants in the past years. In this review, we focus on the advance of PAO studies in rice, Arabidopsis, and tomato, and other plant species.
Collapse
Affiliation(s)
- Zhen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Dongyu Jia
- Department of Biology, Georgia Southern University, Statesboro, GA 30460-8042, USA.
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Wang W, Paschalidis K, Feng JC, Song J, Liu JH. Polyamine Catabolism in Plants: A Universal Process With Diverse Functions. FRONTIERS IN PLANT SCIENCE 2019; 10:561. [PMID: 31134113 PMCID: PMC6513885 DOI: 10.3389/fpls.2019.00561] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/12/2019] [Indexed: 05/18/2023]
Abstract
Polyamine (PA) catabolic processes are performed by copper-containing amine oxidases (CuAOs) and flavin-containing PA oxidases (PAOs). So far, several CuAOs and PAOs have been identified in many plant species. These enzymes exhibit different subcellular localization, substrate specificity, and functional diversity. Since PAs are involved in numerous physiological processes, considerable efforts have been made to explore the functions of plant CuAOs and PAOs during the recent decades. The stress signal transduction pathways usually lead to increase of the intracellular PA levels, which are apoplastically secreted and oxidized by CuAOs and PAOs, with parallel production of hydrogen peroxide (H2O2). Depending on the levels of the generated H2O2, high or low, respectively, either programmed cell death (PCD) occurs or H2O2 is efficiently scavenged by enzymatic/nonenzymatic antioxidant factors that help plants coping with abiotic stress, recruiting different defense mechanisms, as compared to biotic stress. Amine and PA oxidases act further as PA back-converters in peroxisomes, also generating H2O2, possibly by activating Ca2+ permeable channels. Here, the new research data are discussed on the interconnection of PA catabolism with the derived H2O2, together with their signaling roles in developmental processes, such as fruit ripening, senescence, and biotic/abiotic stress reactions, in an effort to elucidate the mechanisms involved in crop adaptation/survival to adverse environmental conditions and to pathogenic infections.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Konstantinos Paschalidis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Heraklion, Greece
| | - Jian-Can Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jie Song
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Fortes AM, Agudelo-Romero P. Polyamine Metabolism in Climacteric and Non-Climacteric Fruit Ripening. Methods Mol Biol 2018; 1694:433-447. [PMID: 29080186 DOI: 10.1007/978-1-4939-7398-9_36] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polyamines are small aliphatic amines that are found in both prokaryotic and eukaryotic organisms. These growth regulators have been implicated in abiotic and biotic stresses as well as plant development and morphogenesis. Several studies have also suggested a key role of polyamines during fruit set and early development. Polyamines have also been linked to fruit ripening and in the regulation of fruit quality-related traits.Recent studies indicate that during ripening of both climacteric and non-climacteric fruits, a decline in total polyamine contents is observed together with an increased catabolism of these growth regulators.In this review, we explore the current knowledge on polyamine biosynthesis and catabolism during fruit set and ripening. The study of the role of polyamine metabolism in fruit ripening indicates the possible application of these natural polycations to control ripening and postharvest decay as well as to improve fruit quality traits.
Collapse
Affiliation(s)
- Ana Margarida Fortes
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Patricia Agudelo-Romero
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
24
|
Genome-wide identification, phylogenetic analysis, and expression profiling of polyamine synthesis gene family members in tomato. Gene 2018; 661:1-10. [DOI: 10.1016/j.gene.2018.03.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 11/22/2022]
|
25
|
Krysenko S, Okoniewski N, Kulik A, Matthews A, Grimpo J, Wohlleben W, Bera A. Gamma-Glutamylpolyamine Synthetase GlnA3 Is Involved in the First Step of Polyamine Degradation Pathway in Streptomyces coelicolor M145. Front Microbiol 2017; 8:726. [PMID: 28487688 PMCID: PMC5403932 DOI: 10.3389/fmicb.2017.00726] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/07/2017] [Indexed: 12/26/2022] Open
Abstract
Streptomyces coelicolor M145 was shown to be able to grow in the presence of high concentrations of polyamines, such as putrescine, cadaverine, spermidine, or spermine, as a sole nitrogen source. However, hardly anything is known about polyamine utilization and its regulation in streptomycetes. In this study, we demonstrated that only one of the three proteins annotated as glutamine synthetase-like protein, GlnA3 (SCO6962), was involved in the catabolism of polyamines. Transcriptional analysis revealed that the expression of glnA3 was strongly induced by exogenous polyamines and repressed in the presence of ammonium. The ΔglnA3 mutant was shown to be unable to grow on defined Evans agar supplemented with putrescine, cadaverine, spermidine, and spermine as sole nitrogen source. HPLC analysis demonstrated that the ΔglnA3 mutant accumulated polyamines intracellularly, but was unable to degrade them. In a rich complex medium supplemented with a mixture of the four different polyamines, the ΔglnA3 mutant grew poorly showing abnormal mycelium morphology and decreased life span in comparison to the parental strain. These observations indicated that the accumulation of polyamines was toxic for the cell. An in silico analysis of the GlnA3 protein model suggested that it might act as a gamma-glutamylpolyamine synthetase catalyzing the first step of polyamine degradation. GlnA3-catalyzed glutamylation of putrescine was confirmed in an enzymatic in vitro assay and the GlnA3 reaction product, gamma-glutamylputrescine, was detected by HPLC/ESI-MS. In this work, the first step of polyamine utilization in S. coelicolor has been elucidated and the putative polyamine utilization pathway has been deduced based on the sequence similarity and transcriptional analysis of homologous genes expressed in the presence of polyamines.
Collapse
Affiliation(s)
- Sergii Krysenko
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Nicole Okoniewski
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Arne Matthews
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Jan Grimpo
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Agnieszka Bera
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| |
Collapse
|
26
|
Tavladoraki P, Cona A, Angelini R. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development. FRONTIERS IN PLANT SCIENCE 2016; 7:824. [PMID: 27446096 PMCID: PMC4923165 DOI: 10.3389/fpls.2016.00824] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/26/2016] [Indexed: 05/18/2023]
Abstract
Plant polyamines are catabolized by two classes of amine oxidases, the copper amine oxidases (CuAOs) and the flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). These enzymes differ to each other in substrate specificity, catalytic mechanism and subcellular localization. CuAOs and PAOs contribute to several physiological processes both through the control of polyamine homeostasis and as sources of biologically-active reaction products. CuAOs and PAOs have been found at high level in the cell-wall of several species belonging to Fabaceae and Poaceae families, respectively, especially in tissues fated to undertake extensive wall loosening/stiffening events and/or in cells undergoing programmed cell death (PCD). Apoplastic CuAOs and PAOs have been shown to play a key role as a source of H2O2 in light- or developmentally-regulated differentiation events, thus influencing cell-wall architecture and maturation as well as PCD. Moreover, growing evidence suggests a key role of intracellular CuAOs and PAOs in several facets of plant development. Here, we discuss recent advances in understanding the contribution of different CuAOs/PAOs, as well as their cross-talk with different intracellular and apoplastic metabolic pathways, in tissue differentiation and organ development.
Collapse
|