1
|
Rab SO, Roopashree R, Altalbawy FMA, Kumar MR, Chahar M, Singh M, Kubaev A, Alamir HTA, Mohammed F, Kadhim AJ, Alhadrawi M. Phytochemicals and Their Nanoformulations for Targeting Hepatocellular Carcinoma: Exploring Potential and Targeting Strategies. Cell Biochem Funct 2024; 42:e70013. [PMID: 39521962 DOI: 10.1002/cbf.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Hepatocellular carcinoma (HCC) continues to pose a global health concern, necessitating the exploration of innovative therapeutic approaches. In the recent decade, targeting tumor stroma consisting of extracellular matrix (ECM), immune cells, vascular system, hypoxia, and also suppressive mechanisms in HCC has attracted interest in repressing tumor growth and metastasis. Phytochemicals have attained considerable attention because of their manifold biological effects and high capacity for anticancer activities. These chemical agents have shown the capability to modulate different cells and secretions within the stroma of malignancies. In recent years, the development of nanoformulations has further enhanced the therapeutic potential of phytochemicals by improving their solubility, bioavailability, and targeted delivery to tumor tissues. This review aims to provide an encyclopedic overview of the potential of phytochemicals and their nanoformulations as promising therapeutic strategies for targeting HCC. The review initially highlights the broad array of phytochemicals exhibiting potent anticancer properties, including flavonoids, alkaloids, terpenoids, and phenolic compounds, among others. Then, the nanoformulations and modification of these agents will be reviewed. Finally, we will review the latest experiments that have examined the modulation of HCC using adjuvant phytochemicals and their nanoformulations.
Collapse
Affiliation(s)
- Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Amarah, Maysan, Iraq
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Merwa Alhadrawi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Guo Y, Gong C, Cao B, Di T, Xu X, Dong J, Zhao K, Gao K, Su N. Blue Light Enhances Health-Promoting Sulforaphane Accumulation in Broccoli ( Brassica oleracea var. italica) Sprouts through Inhibiting Salicylic Acid Synthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3151. [PMID: 37687397 PMCID: PMC10490093 DOI: 10.3390/plants12173151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
As a vegetable with high nutritional value, broccoli (Brassica oleracea var. italica) is rich in vitamins, antioxidants and anti-cancer compounds. Glucosinolates (GLs) are one of the important functional components widely found in cruciferous vegetables, and their hydrolysate sulforaphane (SFN) plays a key function in the anti-cancer process. Herein, we revealed that blue light significantly induced the SFN content in broccoli sprouts, and salicylic acid (SA) was involved in this process. We investigated the molecular mechanisms of SFN accumulation with blue light treatment in broccoli sprouts and the relationship between SFN and SA. The results showed that the SFN accumulation in broccoli sprouts was significantly increased under blue light illumination, and the expression of SFN synthesis-related genes was particularly up-regulated by SA under blue light. Moreover, blue light considerably decreased the SA content compared with white light, and this decrease was more suppressed by paclobutrazol (Pac, an inhibitor of SA synthesis). In addition, the transcript level of SFN synthesis-related genes and the activity of myrosinase (MYR) paralleled the trend of SFN accumulation under blue light treatment. Overall, we concluded that SA participates in the SFN accumulation in broccoli sprouts under blue light.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.G.); (C.G.); (B.C.); (T.D.); (X.X.); (J.D.); (K.Z.); (K.G.)
| |
Collapse
|
3
|
Pecio Ł, Kozachok S, Saber FR, Garcia-Marti M, El-Amier Y, Mahrous EA, Świątek Ł, Boguszewska A, Skiba A, Elosaily AH, Skalicka-Woźniak K, Simal-Gandara J. Metabolic profiling of Ochradenus baccatus Delile. utilizing UHPLC-HRESIMS in relation to the in vitro biological investigations. Food Chem 2023; 412:135587. [PMID: 36739726 DOI: 10.1016/j.foodchem.2023.135587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/21/2022] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Ochradenus baccatus Delile (Resedaceae) is a desert plant with edible fruits native to the Middle East. Few investigators have reported antibacterial, antiparasitic and anti-cancer activities of the plant. Herein we evaluated the cytotoxic activity of O. baccatus using four cell lines and a zebrafish embryo model. Additionally, liquid chromatography coupled with mass spectroscopy was performed to characterize the extract's main constituents. The highest cytotoxicity was observed against human cervical adenocarcinoma (HeLa), with CC50 of 39.1 µg/mL and a selectivity index (SI) of 7.23 (p < 0.01). Metabolic analysis of the extract resulted in the annotation of 57 metabolites, including fatty acids, flavonoids, glucosinolates, nitrile glycosides, in addition to organic acids. The extract showed an abundance of hydroxylated fatty acids (16 peaks). Further, 3 nitrile glycosides have been identified for the first time in Ochradenus sp., in addition to 2 glucosinolates. These identified phytochemicals may partially explain the cytotoxic activity of the extract. We propose O. baccatus as a possible safe food source for further utilization to partially contribute to the increasing food demand specially in Saharan countries.
Collapse
Affiliation(s)
- Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; Department of Natural Products Chemistry, Medical University of Lublin, Lublin 20-093, Poland.
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland.
| | - Fatema R Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Maria Garcia-Marti
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| | - Yasser El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Engy A Mahrous
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, Poland.
| | | | - Adrianna Skiba
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin 20-093, Poland.
| | - Ahmed H Elosaily
- Department of Pharmacognosy, Faculty of Pharmacy, Ahram Canadian University, Giza 12573, Egypt
| | | | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
4
|
Wei Q, Xie K, Wang H, Shao X, Wei Y, Chen Y, Jiang S, Cao M, Chen J, Xu F. Calcium Involved in the Enrichment of γ-Aminobutyric Acid (GABA) in Broccoli Sprouts under Fructose Treatment. PLANTS (BASEL, SWITZERLAND) 2023; 12:224. [PMID: 36678938 PMCID: PMC9866455 DOI: 10.3390/plants12020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The effect of fructose on γ-aminobutyric acid (GABA) content and its metabolic pathway in broccoli sprouts was investigated. The results demonstrated that the fructose treatment not only significantly increased the fresh weight, GABA, and glutamate contents in sprouts, but also promoted the activity of glutamic acid decarboxylase (GAD) and the expressions of BoGAD1 and BoGAD2. Meanwhile, fructose treatment inhibited the stem length of broccoli sprouts and enhanced the abscisic acid (ABA) production in comparison with the control. Ca2+, CaM contents, and BoCaM2 expression in broccoli sprouts were also stimulated after fructose treatment. Exogenous fructose increased inositol trisphosphate (IP3) content and activated the activity of phosphatidylinositol-specific phospholipase C (PI-PLC) and the expression of BoPLC2, contributing to Ca2+ influx into the cells. These results suggested that Ca2+ played an essential role in GABA enrichment under fructose treatment, which may be associated with GAD and PI-PLC.
Collapse
Affiliation(s)
- Qinling Wei
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Keqin Xie
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Hongfei Wang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Xingfeng Shao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yingying Wei
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yi Chen
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Shu Jiang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Mengze Cao
- Seymour College, Glen Osmond, SA 5064, Australia
| | - Jisuan Chen
- Haitong Food Group Co., Ltd., Ningbo 315100, China
| | - Feng Xu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Zeng W, Yang J, Yan G, Zhu Z. CaSO 4 Increases Yield and Alters the Nutritional Contents in Broccoli ( Brassica oleracea L. Var. italica) Microgreens under NaCl Stress. Foods 2022; 11:3485. [PMID: 36360098 PMCID: PMC9656751 DOI: 10.3390/foods11213485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Broccoli (Brassica oleracea L. Var. italica) microgreens are rich in various nutrients, especially sulforaphane. NaCl application is an effective method to reduce nitrate content, and to improve sulforaphane content; however, NaCl application is associated with a risk in productivity reduction. Ca application is a well-known approach to cope with salt stress. Thus, we hypothesized that adding CaSO4 may mitigate the adverse effects of NaCl stress, and enhance the quality of broccoli microgreens. In this study, we conducted an experiment to investigate the effects of a combined treatment of NaCl and CaSO4 on the fresh yield, glucosinolates (GS), sulforaphane, nitrate, and mineral element contents of broccoli microgreens. The results showed that the incorporation of CaSO4 into NaCl solution unexpectedly increased the yield of the leaf area. Moreover, the addition of CaSO4 ameliorated the decline in GS under NaCl stress, and induced the accumulation of Ca and S. The nitrate content decreased more than three times, and sulforaphane content also decreased in the combined treatment of NaCl and CaSO4. This study proposes that the incorporation of CaSO4 into NaCl solution increases the yield, and alleviates the unfavorable effects induced by NaCl stress on the quality of broccoli microgreens. This study provides a novel approach for microgreens production.
Collapse
Affiliation(s)
- Wenjing Zeng
- College of Environmental and Resource Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Jing Yang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Guochao Yan
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Li R, Chen S, Li Y, Chen X, Ye BC. Development of a "Turn off-on" whole-cell biosensor for sulforaphane detection based on the ultrasensitive activator HrpRS. Biotechnol Appl Biochem 2022; 70:798-810. [PMID: 36070874 DOI: 10.1002/bab.2400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/13/2022] [Indexed: 11/09/2022]
Abstract
Sulforaphane (SFN), a defense secondary metabolite, can be used to predict the health status of plants and also has pharmacological effects, including anticancer, antioxidant, and anti-inflammatory properties. The detection of SFN is therefore of great significance for the prevention and treatment of diseases. In this study, a "Turn off" whole-cell biosensor that can rapidly and robustly respond to the presence of SFN was constructed based on the orthogonal genetic components (hrpR, hrpS, and PhrpL ) of Pseudomonas syringae (PS). The final optimized biosensor, p114(30R-30S), was able to inhibit 91.7% of the fluorescence intensity in the presence of 100-μM SFN. Subsequently, a HrpRS-regulated OFF-ON genetic switch was designed by reconstituting a reverse σ70 promoter on the σ54 -PhrpL promoter sequence; this was coupled with dual-color reporter genes to construct a "Turn off-on" whole-cell SFN biosensor. The PhrpLB variant increased the expression of green fluorescence a factor of 11.9 and reduced the expression of red fluorescence by 85.8% compared with the system in the absence of SFN. Thus, a robust switching of signal output from "turn off" to "turn on" was realized. In addition, the biosensor showed good linearity in the SFN concentration ranges of 0.1-10 μM (R2 = 0.99429) and 10-100 μM (R2 = 0.99465) and a detection limit of ⁓0.1 μM. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Renjie Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Shengyan Chen
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Yangguang Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Xuan Chen
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Bang-Ce Ye
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.,Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.,Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Exogenous Selenium Treatment Promotes Glucosinolate and Glucoraphanin Accumulation in Broccoli by Activating Their Biosynthesis and Transport Pathways. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplementation using selenium (Se) on plants is an effective and widely used approach. It can not only be converted to more Se rich compounds but promote the accumulation of glucosinolates (GSLs) with anti-carcinogenic properties. However, the molecular mechanism of Se in regulating GSLs synthesis remains unclear. In the present study, we analyzed the effects of Se treatment (50 μM sodium selenite) on GSLs, glucoraphanin (4MSOB), and sulforaphane compounds in broccoli tissues. The transcript levels of genes involved in sulfur absorption and transport, GSLs biosynthesis, translocation, and degradation pathways were also evaluated. The study showed that Se treatment remarkably promoted the accumulation of total sulfur and total Se contents and increased Trp-derived GSLs levels in roots by 2 times. The 4MSOB concentration and sulforaphane content in fresh leaves was increased by 67% and 30% after Se treatment, respectively. For genes expressions, some genes involved in sulfate uptake and transporters, GSLs biosynthesis, and transporters were induced strongly upon Se exposure. Results revealed that exogenous Se treatment promotes the overaccumulation of GSLs and 4MSOB content in broccoli by activating the transcript levels of genes involved in sulfur absorption, GSLs biosynthesis, and translocation pathways.
Collapse
|
8
|
Yin Y, Liu Y, Cheng C, Yang Z, Luo Z, Fang W. iTRAQ-based proteomic and physiological analyses of broccoli sprouts in response to exogenous melatonin with ZnSO 4 stress. RSC Adv 2021; 11:12336-12347. [PMID: 35423784 PMCID: PMC8696995 DOI: 10.1039/d1ra00696g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 11/21/2022] Open
Abstract
Exogenous melatonin (10 μM) enhances ZnSO4 (4 mM) stress tolerance and regulates the isothiocyanate content of broccoli sprouts. Nevertheless, the molecular mechanism underlying the role of melatonin in isothiocyanate metabolism under ZnSO4 stress is unclear. The effects of exogenous melatonin on growth and isothiocyanate metabolism in broccoli sprouts under ZnSO4 stress during germination were investigated by physio-biochemical methods, quantification of relative gene expression levels, and the isobaric tags for the relative and absolute quantitation (iTRAQ) labelling technique. Compared with sprouts under ZnSO4 stress alone, sprout length, fresh weight and free calcium content increased significantly in sprouts under ZnSO4 stress plus melatonin treatment while electrolyte leakage and malonaldehyde content decreased. The glucosinolate content and myrosinase activity also significantly increased in sprouts under ZnSO4 stress plus melatonin treatment compared with the control, and thus the isothiocyanate and sulforaphane content increased markedly. Meanwhile, the expression of glucoraphanin biosynthesis genes, such as MYB28, CYP83A1, AOP2, BoSAT1, and BoHMT1 was significantly induced by melatonin in sprouts under ZnSO4 stress. Furthermore, compared with sprouts under ZnSO4 stress alone, a total of 145 proteins in broccoli sprouts under ZnSO4 stress plus melatonin treatment showed differential relative abundances. These proteins were divided into 13 functional classes and revealed that pathways for sulfur metabolism, glucosinolate biosynthesis, selenocompound metabolism, biosynthesis of secondary metabolites and peroxisome were significantly enriched. The present study indicates that exogenous melatonin alleviates the adverse effects of ZnSO4 stress on sprout growth and promotes glucoraphanin biosynthesis and the hydrolysis of glucoraphanin to form isothiocyanates in broccoli sprouts.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Yin Liu
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Chao Cheng
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Zhenlan Luo
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| |
Collapse
|
9
|
Luang-In V, Saengha W, Karirat T, Buranrat B, Matra K, Deeseenthum S, Katisart T. Effect of cold plasma and elicitors on bioactive contents, antioxidant activity and cytotoxicity of Thai rat-tailed radish microgreens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1685-1698. [PMID: 33275790 DOI: 10.1002/jsfa.10985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Raphanus sativus var. caudatus or Thai rat-tailed radish (RTR) contains glucosinolates and isothiocyanates with chemopreventive effects; however, only mature plants have been investigated to date. Thus, the present study aimed to determine isothiocyanates, phenolic compounds and flavonoid compounds, antioxidant activity, cytotoxicity, and antiproliferative activity of RTR microgreens grown from seeds treated with cold plasma (21 kV for 5 min), organic elicitor (160 mmol L-1 NaCl, 10 mmol L-1 CaCl2 or 176 mmol L-1 sucrose) or both in combination. Seeds were germinated on vermiculite and sprayed with deionized water or elicitor for 7 days before harvest. RESULTS Cold plasma had insignificant effect on growth, whereas NaCl and CaCl2 increased fresh weight. Plasma with CaCl2 led to the highest total isothiocyanate (ITC) content [1.99 g kg-1 dry weight (DW)] in RTR microgreens containing raphasatin as the only ITC detected. Plasma treatment gave the highest total phenolic content (7.56 mg gallic acid equivalents g-1 DW), antioxidant activity from a 2,2-diphenyl-1-picrylhydrazyl assay (7.70 mg trolox equivalents g-1 DW) and ferric reducing antioxidant power assay (21.72 mg Fe2+ g-1 DW). Microgreen extracts from plasma showed an IC50 value of 29.28 and 13.83 μg mL-1 towards MCF-7 and HepG2, respectively, with inhibitory properties on matrix metalloproteinase (MMP)-2 and MMP-9 proteins. Plasma enhanced Bax and Caspase-3 gene expression but reduced Bcl-2 and MMP-9 expression, indicating activation of apoptosis. CONCLUSION Cold plasma shows promise as an innovative tool to enhance bioactive compounds with chemopreventive benefits in microgreens. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| | - Worachot Saengha
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| | - Thipphiya Karirat
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| | | | - Khanit Matra
- Department of Electrical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Sirirat Deeseenthum
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| | - Teeraporn Katisart
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| |
Collapse
|
10
|
Wang W, Yang J, Zhang J, Liu YX, Tian C, Qu B, Gao C, Xin P, Cheng S, Zhang W, Miao P, Li L, Zhang X, Chu J, Zuo J, Li J, Bai Y, Lei X, Zhou JM. An Arabidopsis Secondary Metabolite Directly Targets Expression of the Bacterial Type III Secretion System to Inhibit Bacterial Virulence. Cell Host Microbe 2020; 27:601-613.e7. [PMID: 32272078 DOI: 10.1016/j.chom.2020.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
Abstract
Plants deploy a variety of secondary metabolites to fend off pathogen attack. Although defense compounds are generally considered toxic to microbes, the exact mechanisms are often unknown. Here, we show that the Arabidopsis defense compound sulforaphane (SFN) functions primarily by inhibiting Pseudomonas syringae type III secretion system (TTSS) genes, which are essential for pathogenesis. Plants lacking the aliphatic glucosinolate pathway, which do not accumulate SFN, were unable to attenuate TTSS gene expression and exhibited increased susceptibility to P. syringae strains that cannot detoxify SFN. Chemoproteomics analyses showed that SFN covalently modified the cysteine at position 209 of HrpS, a key transcription factor controlling TTSS gene expression. Site-directed mutagenesis and functional analyses further confirmed that Cys209 was responsible for bacterial sensitivity to SFN in vitro and sensitivity to plant defenses conferred by the aliphatic glucosinolate pathway. Collectively, these results illustrate a previously unknown mechanism by which plants disarm a pathogenic bacterium.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian Zhang
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yong-Xin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Caiping Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Baoyuan Qu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Chulei Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shujing Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei Miao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xiaoguang Lei
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Zhuang L, Xu K, Zhu Y, Wang F, Xiao J, Guo L. Calcium affects glucoraphanin metabolism in broccoli sprouts under ZnSO 4 stress. Food Chem 2020; 334:127520. [PMID: 32693332 DOI: 10.1016/j.foodchem.2020.127520] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/23/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
CaCl2, Ca2+ chelator (EGTA) and Ca2+ channel blocker (verapamil) were used to investigate mechanism of glucoraphanin metabolism in broccoli sprouts under ZnSO4 stress. CaCl2 treatment promoted sprout growth, reduced MDA (malonaldehyde) content and electrolyte leakage in sprouts under ZnSO4 stress. The highest MDA content and electrolyte leakage were obtained in ZnSO4 plus verapamil-treated sprouts. In addition, ZnSO4 plus CaCl2 treatment significantly enhanced glucoraphanin content and sulforaphane formation, while an opposite result was observed after ZnSO4 plus EGTA treatment; which were further supported by expression of glucoraphanin biosynthetic and hydrolytic genes as well as myrosinase (MYR) and epithiospecifier protein (ESP) activities. These results indicated that exogenous and endogenous calcium promoted glucoraphanin biosynthesis and the conversion rate of glucoraphanin into sulforaphane. Verapamil treatment also stimulated glucoraphanin biosynthesis, but exerted an adverse influence on sulforaphane formation from the hydrolysis of glucoraphanin because of much higher ESP expression and ESP activity than ZnSO4 treatment.
Collapse
Affiliation(s)
- Li Zhuang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China
| | - Kexin Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Yinglian Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China
| | - Fengwu Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China.
| | - Liping Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China.
| |
Collapse
|
12
|
Sikorska-Zimny K, Beneduce L. The glucosinolates and their bioactive derivatives in Brassica: a review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Crit Rev Food Sci Nutr 2020; 61:2544-2571. [PMID: 32584172 DOI: 10.1080/10408398.2020.1780193] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study is a systematic review of the scientific literature reporting content, composition and biosynthesis of glucosinolates (GLS), and their derivative compounds in Brassica family. An amended classification of brassica species, varieties and their GLS content, organized for the different plant organs and in uniformed concentration measure unit, is here reported for the first time in a harmonized and comparative manner. In the last years, the studies carried out on the effect of processing on vegetables and the potential benefits for human health has increased rapidly and consistently the knowledge on the topic. Therefore, there was the need for an updated revision of the scientific literature of pre- and post-harvest modifications of GLS content, along with the role of gut microbiota in influencing their bioavailability once they are ingested. After analyzing and standardizing over 100 articles and the related data, the highest GLS content in Brassica, was declared in B. nigra (L.) W. D. J. Koch (201.95 ± 53.36 µmol g-1), followed by B. oleracea Alboglabra group (180.9 ± 70.3 µmol g-1). The authors also conclude that food processing can influence significantly the final content of GLS, considering the most popular methods: boiling, blanching, steaming, the latter can be considered as the most favorable to preserve highest level of GLS and their deriviatives. Therefore, a mild-processing strategic approach for GLS or their derivatives in food is recommended, in order to minimize the loss of actual bioactive impact. Finally, the human gut microbiota is influenced by Brassica-rich diet and can contribute in certain conditions to the increasing of GLS bioavailability but further studies are needed to assess the actual role of microbiomes in the bioavailability of healthy glucosinolate derivatives.
Collapse
Affiliation(s)
- Kalina Sikorska-Zimny
- Fruit and Vegetables Storage and Processing Department, Storage and Postharvest Physiology of Fruit and Vegetables Laboratory, Research Institute of Horticulture, Skierniewice, Poland.,Stefan Batory State University, Skierniewice, Poland
| | - Luciano Beneduce
- Department of the Sciences of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| |
Collapse
|
13
|
Menopause-Associated Lipid Metabolic Disorders and Foods Beneficial for Postmenopausal Women. Nutrients 2020; 12:nu12010202. [PMID: 31941004 PMCID: PMC7019719 DOI: 10.3390/nu12010202] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Menopause is clinically diagnosed as a condition when a woman has not menstruated for one year. During the menopausal transition period, there is an emergence of various lipid metabolic disorders due to hormonal changes, such as decreased levels of estrogens and increased levels of circulating androgens; these may lead to the development of metabolic syndromes including cardiovascular diseases and type 2 diabetes. Dysregulation of lipid metabolism affects the body fat mass, fat-free mass, fatty acid metabolism, and various aspects of energy metabolism, such as basal metabolic ratio, adiposity, and obesity. Moreover, menopause is also associated with alterations in the levels of various lipids circulating in the blood, such as lipoproteins, apolipoproteins, low-density lipoproteins (LDLs), high-density lipoproteins (HDL) and triacylglycerol (TG). Alterations in lipid metabolism and excessive adipose tissue play a key role in the synthesis of excess fatty acids, adipocytokines, proinflammatory cytokines, and reactive oxygen species, which cause lipid peroxidation and result in the development of insulin resistance, abdominal adiposity, and dyslipidemia. This review discusses dietary recommendations and beneficial compounds, such as vitamin D, omega-3 fatty acids, antioxidants, phytochemicals—and their food sources—to aid the management of abnormal lipid metabolism in postmenopausal women.
Collapse
|
14
|
McKenzie M, Matich A, Hunter D, Esfandiari A, Trolove S, Chen R, Lill R. Selenium Application During Radish ( Raphanus sativus) Plant Development Alters Glucosinolate Metabolic Gene Expression and Results in the Production of 4-(methylseleno)but-3-enyl glucosinolate. PLANTS 2019; 8:plants8100427. [PMID: 31635372 PMCID: PMC6843385 DOI: 10.3390/plants8100427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 01/06/2023]
Abstract
Selenium (Se) is an essential micronutrient for human health, entering the diet mainly through the consumption of plant material. Members of the Brassicaceae are Se-accumulators that can accumulate up to 1g Se kg−1 dry weight (DW) from the environment without apparent ill effect. The Brassicaceae also produce glucosinolates (GSLs), sulfur (S)-rich compounds that benefit human health. Radish (Raphanussativus) has a unique GSL profile and is a Se-accumulating species that is part of the human diet as sprouts, greens and roots. In this report we describe the effects of Se-fertilisation on GSL production in radish during five stages of early development (from seed to mature salad greens) and on the transcript abundance of eight genes encoding enzymes involved in GSL metabolism. We tentatively identified (by tandem mass spectrometry) the selenium-containing glucosinolate, 4-(methylseleno)but-3-enyl glucosinolate, with the double bond geometry not resolved. Two related isothiocyanates were tentatively identified by Gas Chromatography-Mass Spectrometry as (E/Z?) isomers of 4-(methylseleno)but-3-enyl isothiocyanate. Se fertilisation of mature radish led to the presence of selenoglucosinolates in the seed. While GSL concentration generally reduced during radish development, GSL content was generally not affected by Se fertilisation, aside from the indole GSL, indol-3-ylmethyl glucosinolate, which increased on Se treatment, and the Se-GSLs, which significantly increased during development. The transcript abundance of genes involved in aliphatic GSL biosynthesis declined with Se treatment while that of genes involved in indole GSL biosynthesis tended to increase. APS kinase transcript abundance increased significantly in three of the four developmental stages following Se treatment. The remaining genes investigated were not significantly changed following Se treatment. We hypothesise that increased APS kinase expression in response to Se treatment is part of a general protection mechanism controlling the uptake of S and the production of S-containing compounds such as GSLs. The upregulation of genes encoding enzymes involved in indole GSL biosynthesis and a decrease in those involved in aliphatic GSL biosynthesis may be part of a similar mechanism protecting the plant’s GSL complement whilst limiting the amount of Se-GSLs produced.
Collapse
Affiliation(s)
- Marian McKenzie
- The New Zealand Institute for Plant and Food Research, Ltd., Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Adam Matich
- The New Zealand Institute for Plant and Food Research, Ltd., Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Donald Hunter
- The New Zealand Institute for Plant and Food Research, Ltd., Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Azadeh Esfandiari
- The New Zealand Institute for Plant and Food Research, Ltd., Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Stephen Trolove
- The New Zealand Institute for Plant and Food Research, Ltd., Private Bag 1401, Havelock North 4157, New Zealand.
| | - Ronan Chen
- The New Zealand Institute for Plant and Food Research, Ltd., Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Ross Lill
- The New Zealand Institute for Plant and Food Research, Ltd., Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand.
| |
Collapse
|
15
|
Wu Q, Wang J, Mao S, Xu H, Wu Q, Liang M, Yuan Y, Liu M, Huang K. Comparative transcriptome analyses of genes involved in sulforaphane metabolism at different treatment in Chinese kale using full-length transcriptome sequencing. BMC Genomics 2019; 20:377. [PMID: 31088374 PMCID: PMC6518776 DOI: 10.1186/s12864-019-5758-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/02/2019] [Indexed: 12/21/2022] Open
Abstract
Background Sulforaphane is a natural isothiocyanate available from cruciferous vegetables with multiple characteristics including antioxidant, antitumor and anti-inflammatory effect. Single-molecule real-time (SMRT) sequencing has been used for long-read de novo assembly of plant genome. Here, we investigated the molecular mechanism related to glucosinolates biosynthesis in Chinese kale using combined NGS and SMRT sequencing. Results SMRT sequencing produced 185,134 unigenes, higher than 129,325 in next-generation sequencing (NGS). NaCl (75 mM), methyl jasmonate (MeJA, 40 μM), selenate (Se, sodium selenite 100 μM), and brassinolide (BR, 1.5 μM) treatment induced 6893, 13,287, 13,659 and 11,041 differentially expressed genes (DEGs) in Chinese kale seedlings comparing with control. These genes were associated with pathways of glucosinolates biosynthesis, including phenylalanine, tyrosine and tryptophan biosynthesis, cysteine and methionine metabolism, and glucosinolate biosynthesis. We found NaCl decreased sulforaphane and glucosinolates (indolic and aliphatic) contents and downregulated expression of cytochrome P45083b1 (CYP83b1), S-alkyl-thiohydroximatelyase or carbon–sulfur lyase (SUR1) and UDP-glycosyltransferase 74B1 (UGT74b1). MeJA increased sulforaphane and glucosinolates contents and upregulated the expression of CYP83b1, SUR1 and UGT74b1; Se increased sulforaphane; BR increased expression of CYP83b1, SUR1 and UGT74b1, and increased glucosinolates contents. The desulfoglucosinolate sulfotransferases ST5a_b_c were decreased by all treatments. Conclusions We confirmed that NaCl inhibited the biosynthesis of both indolic and aliphatic glucosinolates, while MeJA and BR increased them. MeJA and BR treatments, conferred the biosynthesis of glucosinolates, and Se and MeJA contributed to sulforaphane in Chinese kale via regulating the expression of CYP83b1, SUR1 and UGT74b1. Electronic supplementary material The online version of this article (10.1186/s12864-019-5758-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiuyun Wu
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Junwei Wang
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Shuxiang Mao
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Haoran Xu
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Qi Wu
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Mantian Liang
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Yiming Yuan
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Mingyue Liu
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Ke Huang
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China.
| |
Collapse
|