1
|
Yu H, Fu X, Li Z, He F, Qin S, Bi X, Li Y, Li Y, Hu F, Lyu Y. Integration of transcriptome, metabolome and high-throughput amplicon sequencing reveals potential mechanisms of antioxidant activity and environmental adaptation in the purple-leaf phenotype of Coffea cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:110015. [PMID: 40381364 DOI: 10.1016/j.plaphy.2025.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
To understand its potential in meeting the increasing market demand for high-quality and resistant coffee varieties., the study focused on evaluating a leaf color mutation in Coffea arabica L. (purple coffee) and comparing it with the control (Catimor). Analysis of antioxidant indices revealed that purple coffee exhibited significantly higher levels of TAC (total anthocyanin content), DPPH (2,2-dyphenyl-1-picrylhydrazyl), POD (peroxidase), and PPO (polyphenol oxidase) compared to Catimor, indicating stronger antioxidant activities. Multi-omics analysis was conducted to create metabolic profiles, genetic maps, and phyllosphere microbial communities of the two Coffea genotypes. The metabolome and transcriptome results showed higher levels of flavonoids and phenolic acids in purple coffee, along with different gene expression patterns. The up-regulation of key genes in the phenylpropanoid pathway was identified to result in a notable alteration in the accumulation of flavonoids and phenolic acids. The co-occurrence network analysis of bacterial communities identified 10 keystone OTUs (operational taxonomic units), including Methylobacterium-Methylorubrum, 1174-901-12, Massilia, Comamonas, Klenkia, and Salinicola, all of which are Proteobacteria. The results of the co-analysis demonstrated a strong correlation between keystone OTUs and both phenylpropanoid metabolism and antioxidant activity. Taken together, we hypothesize that the up-regulation of key genes in the phenylpropanoid metabolite pathway in purple coffee facilitates the synthesis of flavonoids and phenolic acids, which suppresses the abundance of microbial taxa and thus enhances antioxidant activity and environment adaptability. These findings provide valuable insights for future research on the environmental adaptation of coffee and hold potential in breeding high flavonoid content coffee leaf tea.
Collapse
Affiliation(s)
- Haohao Yu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China; Yunnan Key Laboratory of Coffee, Baoshan, 678000, Yunnan, China
| | - Xingfei Fu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China; Yunnan Key Laboratory of Coffee, Baoshan, 678000, Yunnan, China
| | - Zhongxian Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China
| | - Feifei He
- School of Agriculture, Yunnan University, Kunming, 650500, Yunnan, China
| | - Shiwen Qin
- School of Agriculture, Yunnan University, Kunming, 650500, Yunnan, China
| | - Xiaofei Bi
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China; Yunnan Key Laboratory of Coffee, Baoshan, 678000, Yunnan, China
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China; Yunnan Key Laboratory of Coffee, Baoshan, 678000, Yunnan, China
| | - Yaqi Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China; Yunnan Key Laboratory of Coffee, Baoshan, 678000, Yunnan, China
| | - Faguang Hu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China; Yunnan Key Laboratory of Coffee, Baoshan, 678000, Yunnan, China.
| | - Yulan Lyu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Baoshan, 678000, Yunnan, China; Yunnan Key Laboratory of Coffee, Baoshan, 678000, Yunnan, China.
| |
Collapse
|
2
|
Lv J, Wu Y, Huang R, Xu R, Zhang J, Liu Y, Luo L, Liu G, Liu P. Combined Analysis of the Leaf Metabolome, Lipidome, and Candidate Gene Function: Insights into Genotypic Variation in Phosphorus Utilization Efficiency in Stylosanthes guianensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2653-2668. [PMID: 39818859 DOI: 10.1021/acs.jafc.4c06927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Stylo (Stylosanthes guianensis) exhibits excellent tolerance to low-phosphate (Pi) availability, but the underlying mechanisms responsible for improving the phosphorus (P) utilization efficiency (PUE) remain unclear. This study employed metabolomics, lipidomics, and gene expression analyses to investigate the differential responses to low-Pi stress between the high-PUE genotype CF047827 and the cultivar Reyan No. 2. Results showed that CF047827 had higher expression levels of membrane lipid remodeling-related genes in its leaves compared to Reyan No. 2 under low-Pi conditions. This was accompanied by greater phospholipid degradation and non-P-containing lipid biosynthesis in the leaves of CF047827. Furthermore, the purple acid phosphatase gene SgPAP27a, which is more highly expressed in the leaves of CF047827 than in Reyan No. 2 under low-Pi conditions, was identified and functionally characterized. Its role in promoting phospholipid degradation and enhancing PUE was confirmed through heterologous expression in Arabidopsis. These findings provide insights and identify potential candidate genes for breeding high-PUE crop cultivars.
Collapse
Affiliation(s)
- Jinhui Lv
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuanhang Wu
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Rui Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ranran Xu
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianyu Zhang
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yu Liu
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lijuan Luo
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
| | - Guodao Liu
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Pandao Liu
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
3
|
Yin J, Zhao J, Wang Z, Fang Z, Guo H, Cheng H, Li J, Shen J, Yin M, Su X, Yan S. Preparation of Multifunctional Nano-Protectants for High-Efficiency Green Control of Anthracnose. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410585. [PMID: 39556712 DOI: 10.1002/advs.202410585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/19/2024] [Indexed: 11/20/2024]
Abstract
Nanomaterials cannot only act as active ingredients (AIs), but also adjuvants to encapsulate or attach AIs to improve their fungicidal activity. Herein, a hydrophilic and lipophilic diblock polymer (HLDP) is designed and synthesized to prepare a series of HLDP nano-protectants to explore the best HLDP nano-protectant for anthracnose management. These results demonstrate that the HLDP-CS nano-protectant displays the best control effects on mango anthracnose via the direct pathogen inhibition and amplified plant immune responses. The HLDP can be spontaneously conjugated with CS into nanoscale spherical particles through hydrophobic interaction. The complexation of CS with HLDP remarkably improves the deposition and adhesion of CS droplets on mango leaves. The HLDP can interact with mycelium via electrostatic interaction to damage the cell wall/membrane, which can act as an AI to directly suppress the spore germination and mycelial growth. Meanwhile, HLDP can be applied as an adjuvant for CS to amplify the plant immune responses via accelerating the biosynthesis of secondary metabolites and plant hormones. This work reports the multiple missions for nanomaterials in pathogen control, which proposes a novel strategy for designing nano-protectant with dual-synergistic mechanism.
Collapse
Affiliation(s)
- Jiaming Yin
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Jiajia Zhao
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Zeng Wang
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhen Fang
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Huiming Guo
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Hongmei Cheng
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Jie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Shen
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaofeng Su
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Shuo Yan
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
4
|
Zhang S, Xu Y, Wang F, Yang L, Luo L, Jiang L. Transcriptomic and Physiological Analysis of the Effects of Exogenous Phloretin and Pterostilbene on Resistance Responses of Stylosanthes against Anthracnose. Int J Mol Sci 2024; 25:2701. [PMID: 38473948 DOI: 10.3390/ijms25052701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Anthracnose caused by Colletotrichum gloeosporioides is a destructive disease of Stylosanthes (stylo). Combination treatment of phloretin and pterostilbene (PP) has been previously shown to effectively inhibit the conidial germination and mycelial growth of C. gloeosporioides in vitro. In this study, the effects of PP treatment on the growth of C. gloeosporioides in vivo and the biocontrol mechanisms were investigated. We found that exogenous PP treatment could limit the growth of C. gloeosporioides and alleviate the damage of anthracnose in stylo. Comparative transcriptome analysis revealed that 565 genes were up-regulated and 239 genes were down-regulated upon PP treatment during the infection by C. gloeosporioides. The differentially expressed genes were mainly related to oxidative stress and chloroplast organization. Further physiological analysis revealed that application of PP after C. gloeosporioides inoculation significantly reduced the accumulation of O2•- level and increased the accumulation of antioxidants (glutathione, ascorbic acid and flavonoids) as well as the enzyme activity of total antioxidant capacity, superoxide dismutase, catalase, glutathione reductase, peroxidase and ascorbate peroxidase. PP also reduced the decline of chlorophyll a + b and increased the content of carotenoid in response to C. gloeosporioides infection. These results suggest that PP treatment alleviates anthracnose by improving antioxidant capacity and reducing the damage of chloroplasts, providing insights into the biocontrol mechanisms of PP on the stylo against anthracnose.
Collapse
Affiliation(s)
- Shizi Zhang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yunfeng Xu
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Fang Wang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Liyun Yang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Lijuan Luo
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Lingyan Jiang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| |
Collapse
|
5
|
Wang L, Wang W, Miao Y, Peters M, Schultze-Kraft R, Liu G, Chen Z. Development of transgenic composite Stylosanthes plants to study root growth regulated by a β-expansin gene, SgEXPB1, under phosphorus deficiency. PLANT CELL REPORTS 2023; 42:575-585. [PMID: 36624204 DOI: 10.1007/s00299-023-02978-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
A highly efficient transformation procedure to generate transgenic Stylosanthes roots was established. SgEXPB1 is involved in Stylosanthes root growth under phosphorus deficiency. Stylo (Stylosanthes spp.) is an important forage legume widely applied in agricultural systems in the tropics. Due to the recalcitrance of stylo genetic transformation, functional characterization of candidate genes involved in stylo root growth is limited. This study established an efficient procedure for Agrobacterium rhizogenes-mediated transformation for generating transgenic composite plants of S. guianensis cultivar 'Reyan No. 5'. Results showed that composite stylo plants with transgenic hairy roots were efficiently generated by A. rhizogenes strains K599 and Arqual, infecting the residual hypocotyl at 1.0 cm of length below the cotyledon leaves of 9-d-old seedlings, leading to a high transformation efficiency of > 95% based on histochemical β-glucuronidase (GUS) staining. Notably, 100% of GUS staining-positive hairy roots can be achieved per composite stylo plant. Subsequently, SgEXPB1, a β-expansin gene up-regulated by phosphorus (P) deficiency in stylo roots, was successfully overexpressed in hairy roots. Analysis of hairy roots showed that root growth and P concentration in the transgenic composite plants were increased by SgEXPB1 overexpression under low-P treatment. Taken together, a highly efficient A. rhizogenes-mediated transformation procedure for generating composite stylo plants was established to study the function of SgEXPB1, revealing that this gene is involved in stylo root growth during P deficiency.
Collapse
Affiliation(s)
- Linjie Wang
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- College of Tropical Crops, Hainan University, Haikou, 570110, China
| | - Wenqiang Wang
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ye Miao
- College of Tropical Crops, Hainan University, Haikou, 570110, China
| | - Michael Peters
- Alliance of Bioversity International and International Center for Tropical Agriculture, Cali, 763537, Colombia
| | - Rainer Schultze-Kraft
- Alliance of Bioversity International and International Center for Tropical Agriculture, Cali, 763537, Colombia
| | - Guodao Liu
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Zhijian Chen
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
6
|
Zheng XR, Zhang MJ, Qiao YH, Li R, Alkan N, Chen JY, Chen FM. Cyclocarya paliurus Reprograms the Flavonoid Biosynthesis Pathway Against Colletotrichum fructicola. FRONTIERS IN PLANT SCIENCE 2022; 13:933484. [PMID: 35845688 PMCID: PMC9280340 DOI: 10.3389/fpls.2022.933484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/26/2022] [Indexed: 05/20/2023]
Abstract
Cyclocarya paliurus is an endemic Chinese tree species with considerable medicinal, timber, and horticultural value. The anthracnose disease of C. paliurus is caused by the fungal pathogen Colletotrichum fructicola, which results in great losses in yield and quality. Here, resistance evaluation of six cultivars of C. paliurus exhibited varying degrees of resistance to C. fructicola infection, where Wufeng was the most resistant and Jinggangshan was the most susceptive. Physiological measurements and histochemical staining assays showed that the Wufeng cultivar exhibits intense reactive oxygen species accumulation and defense capabilities. A multiomics approach using RNA sequencing and metabolome analyses showed that resistance in C. paliurus (Wufeng) is related to early induction of reprogramming of the flavonoid biosynthesis pathway. In vitro antifungal assays revealed that the flavonoid extracts from resistant cultivars strongly inhibited C. fructicola hyphal growth than susceptible cultivars. Relative gene expression analysis further demonstrated the pivotal antifungal role of C. paliurus flavonoids in targeting Colletotrichum appressorium formation. Together, these results represent a novel resistance mechanism of C. paliurus against anthracnose through the reprogramming of flavonoids, which will lay a foundation for breeding anthracnose-resistant varieties and the application of flavonoid extraction of C. paliurus as a natural antifungal treatment.
Collapse
Affiliation(s)
- Xiang-Rong Zheng
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Mao-Jiao Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yu-Hang Qiao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Noam Alkan
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jie-Yin Chen,
| | - Feng-Mao Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Feng-Mao Chen,
| |
Collapse
|
7
|
Jiang L, Wu P, Yang L, Liu C, Guo P, Wang H, Wang S, Xu F, Zhuang Q, Tong X, Liu P, Luo L. Transcriptomics and metabolomics reveal the induction of flavonoid biosynthesis pathway in the interaction of Stylosanthes-Colletotrichum gloeosporioides. Genomics 2021; 113:2702-2716. [PMID: 34111523 DOI: 10.1016/j.ygeno.2021.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Colletotrichum, a hemibiotrophic fungal pathogen with a broad host range, causes a yield-limiting disease called anthracnose. Stylo (Stylosanthes) is a dominant pasture legume in tropics and subtropics, and anthracnose is one of its most destructive disease. Resistance mechanisms against anthracnose in stylo are poorly understood, thus hindering the development of resistant varieties. We performed time-resolved leaf transcriptomics, metabolomics and in vitro inhibition assay to investigate the defense responses against Colletotrichum gloeosporioides in stylo. Transcriptomics demonstrated that flavonoid biosynthetic genes were significantly induced during the infection. Consistently, metabolomics also showed the increased accumulation of flavonoid compounds. In vitro assays showed that phloretin and naringenin inhibited the mycelial growth, and apigenin, daidzein, quercetin and kaempferol suppressed conidial germination of Colletotrichum strains. Together, our results suggest that stylo plants cope with C. gloeosporioides by up-regulation of genes and compounds in flavonoid biosynthesis pathway, providing potential targets for resistance breeding.
Collapse
Affiliation(s)
- Lingyan Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Pengpeng Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Liyun Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Chun Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Pengfei Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Hui Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Shaocai Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Fupeng Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Qiwang Zhuang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Xinzhuo Tong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China
| | - Pandao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan 570228, PR China
| | - Lijuan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Hainan 570228, PR China.
| |
Collapse
|
8
|
Javed S, Javaid A, Hanif U, Bahadur S, Sultana S, Shuaib M, Ali S. Effect of necrotrophic fungus and PGPR on the comparative histochemistry of Vigna radiata by using multiple microscopic techniques. Microsc Res Tech 2021; 84:2737-2748. [PMID: 34028133 DOI: 10.1002/jemt.23836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Rapid advances in the field of pathogen detection have opened new opportunities and better understanding for their management approaches. Aim of this study was to elucidate histopathological observations of different tissues affected by Macrophomina phaseolina and to observe the defense responses of plant growth promoting rhizobacteria (PGPR) in mungbean plants. Sections of the stem and root were prepared and stained with ferric chloride, Lugol's iodine and Wiesner's reagent and were then observed under multiple microscopic techniques. Results revealed that both pathogen and PGPR produce responses on the plant that include colonization of xylem vessels by hyphae and sclerotia, hypertrophy and hyperplasia of the cells, destruction of xylem fibers and amyloplasts in parenchymatous cells; and production of gels by the plant were observed. There was a significant increase in lignin and phenolic compounds deposition in stem and root sections of PGPR treated and non-treated mungbean plants. Whereas the soil amended with PGPR showed very less to no starch production. Moreover, production of gels and gums were also observed in both stem and root sections. Compared to light microscopy, scanning electron microscope provided greater depth of focus and resolution of the pathogen attack on plant tissues, associated bacteria. As a whole, the data demonstrated that inoculation of PGPR can be an effective strategy to stimulate plant growth and they could significantly activate disease resistance against M. phaseolina.
Collapse
Affiliation(s)
- Sidra Javed
- Institute of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| | - Arshad Javaid
- Department of Botany, Government College University, Lahore, Pakistan
| | - Uzma Hanif
- Department of Botany, Government College University, Lahore, Pakistan
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou, China
| | - Shazia Sultana
- Department of Plant Sciences, Quaid-I-Azam University Islamabad, Pakistan
| | - Muhammad Shuaib
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Sajjad Ali
- Department of Botany, Bacha Khan University, Charsadda, Pakistan
| |
Collapse
|
9
|
He M, Tian Z, Liu Q, Guo Y. Trichoderma asperellum promotes cadmium accumulation within maize seedlings. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1997155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Mengting He
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qianqian Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuqi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
10
|
Jia Y, Li X, Liu Q, Hu X, Li J, Dong R, Liu P, Liu G, Luo L, Chen Z. Physiological and transcriptomic analyses reveal the roles of secondary metabolism in the adaptive responses of Stylosanthes to manganese toxicity. BMC Genomics 2020; 21:861. [PMID: 33272205 PMCID: PMC7713027 DOI: 10.1186/s12864-020-07279-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022] Open
Abstract
Background As a heavy metal, manganese (Mn) can be toxic to plants. Stylo (Stylosanthes) is an important tropical legume that exhibits tolerance to high levels of Mn. However, little is known about the adaptive responses of stylo to Mn toxicity. Thus, this study integrated both physiological and transcriptomic analyses of stylo subjected to Mn toxicity. Results Results showed that excess Mn treatments increased malondialdehyde (MDA) levels in leaves of stylo, resulting in the reduction of leaf chlorophyll concentrations and plant dry weight. In contrast, the activities of enzymes, such as peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO), were significantly increased in stylo leaves upon treatment with increasing Mn levels, particularly Mn levels greater than 400 μM. Transcriptome analysis revealed 2471 up-regulated and 1623 down-regulated genes in stylo leaves subjected to Mn toxicity. Among them, a set of excess Mn up-regulated genes, such as genes encoding PAL, cinnamyl-alcohol dehydrogenases (CADs), chalcone isomerase (CHI), chalcone synthase (CHS) and flavonol synthase (FLS), were enriched in secondary metabolic processes based on gene ontology (GO) analysis. Numerous genes associated with transcription factors (TFs), such as genes belonging to the C2H2 zinc finger transcription factor, WRKY and MYB families, were also regulated by Mn in stylo leaves. Furthermore, the C2H2 and MYB transcription factors were predicted to be involved in the transcriptional regulation of genes that participate in secondary metabolism in stylo during Mn exposure. Interestingly, the activation of secondary metabolism-related genes probably resulted in increased levels of secondary metabolites, including total phenols, flavonoids, tannins and anthocyanidins. Conclusions Taken together, this study reveals the roles of secondary metabolism in the adaptive responses of stylo to Mn toxicity, which is probably regulated by specific transcription factors. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07279-2.
Collapse
Affiliation(s)
- Yidan Jia
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570110, China
| | - Xinyong Li
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qin Liu
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Xuan Hu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jifu Li
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570110, China
| | - Rongshu Dong
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Pandao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Guodao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Lijuan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570110, China.
| | - Zhijian Chen
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570110, China.
| |
Collapse
|
11
|
Lai JL, Luo XG. High-efficiency antioxidant system, chelating system and stress-responsive genes enhance tolerance to cesium ionotoxicity in Indian mustard (Brassica juncea L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:491-498. [PMID: 31229839 DOI: 10.1016/j.ecoenv.2019.06.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/15/2019] [Accepted: 06/15/2019] [Indexed: 05/10/2023]
Abstract
Indian mustard (Brassica juncea L.) was more tolerance to Cs than some sensitive plants, such as Arabidopsis thaliana and Vicia faba, and may have a special detoxification mechanism. In this study, the effects on reactive oxygen species (ROS) content, the antioxidant enzyme system and chelation system in Indian mustard were studied by observing different plant physiological responses. In addition, we focused on the analysis of gene regulatory networks related to ROS formation, ROS scavenging system, and other stress-response genes to Cs exposure using a transcriptome-sequencing database. The results showed that ROS and malonaldehyde content in seedlings increased significantly in Cs-treatment groups. The enzyme activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase were increased, and the synthesis of antioxidants glutathione, phytochelatin and metallothionein also increased under Cs treatment. Further analysis showed that ROS formation pathways were primarily the photosynthetic electron transport chain process and photorespiration process in the peroxisome. Antioxidant enzyme systems and the respiratory burst oxidase homolog protein-mediated signal transduction pathway played a key role in ROS scavenging. In summary, one of the mechanisms of tolerance and detoxification of Indian mustard to Cs was that it enhanced the scavenging ability of antioxidant enzymes to ROS, chelated free Cs ions in cells and regulated the expression of related disease-resistant genes.
Collapse
Affiliation(s)
- Jin-Long Lai
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|