1
|
Chicowski AS, Bredow M, Utiyama AS, Marcelino-Guimarães FC, Whitham SA. Soybean-Phakopsora pachyrhizi interactions: towards the development of next-generation disease-resistant plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:296-315. [PMID: 37883664 PMCID: PMC10826999 DOI: 10.1111/pbi.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/19/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
Soybean rust (SBR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is a devastating foliar disease threatening soybean production. To date, no commercial cultivars conferring durable resistance to SBR are available. The development of long-lasting SBR resistance has been hindered by the lack of understanding of this complex pathosystem, encompassing challenges posed by intricate genetic structures in both the host and pathogen, leading to a gap in the knowledge of gene-for-gene interactions between soybean and P. pachyrhizi. In this review, we focus on recent advancements and emerging technologies that can be used to improve our understanding of the P. pachyrhizi-soybean molecular interactions. We further explore approaches used to combat SBR, including conventional breeding, transgenic approaches and RNA interference, and how advances in our understanding of plant immune networks, the availability of new molecular tools, and the recent sequencing of the P. pachyrhizi genome could be used to aid in the development of better genetic resistance against SBR. Lastly, we discuss the research gaps of this pathosystem and how new technologies can be used to shed light on these questions and to develop durable next-generation SBR-resistant soybean plants.
Collapse
Affiliation(s)
- Aline Sartor Chicowski
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Melissa Bredow
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Alice Satiko Utiyama
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Londrina, Paraná, Brazil
- Department of Agronomy, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Steven A Whitham
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
2
|
Hao Q, Yang H, Chen S, Qu Y, Zhang C, Chen L, Cao D, Yuan S, Guo W, Yang Z, Huang Y, Shan Z, Chen H, Zhou X. RNA-Seq and Comparative Transcriptomic Analyses of Asian Soybean Rust Resistant and Susceptible Soybean Genotypes Provide Insights into Identifying Disease Resistance Genes. Int J Mol Sci 2023; 24:13450. [PMID: 37686258 PMCID: PMC10487414 DOI: 10.3390/ijms241713450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most destructive foliar diseases that affect soybeans. Developing resistant cultivars is the most cost-effective, environmentally friendly, and easy strategy for controlling the disease. However, the current understanding of the mechanisms underlying soybean resistance to P. pachyrhizi remains limited, which poses a significant challenge in devising effective control strategies. In this study, comparative transcriptomic profiling using one resistant genotype and one susceptible genotype was performed under infected and control conditions to understand the regulatory network operating between soybean and P. pachyrhizi. RNA-Seq analysis identified a total of 6540 differentially expressed genes (DEGs), which were shared by all four genotypes. The DEGs are involved in defense responses, stress responses, stimulus responses, flavonoid metabolism, and biosynthesis after infection with P. pachyrhizi. A total of 25,377 genes were divided into 33 modules using weighted gene co-expression network analysis (WGCNA). Two modules were significantly associated with pathogen defense. The DEGs were mainly enriched in RNA processing, plant-type hypersensitive response, negative regulation of cell growth, and a programmed cell death process. In conclusion, these results will provide an important resource for mining resistant genes to P. pachyrhizi infection and valuable resources to potentially pyramid quantitative resistance loci for improving soybean germplasm.
Collapse
Affiliation(s)
- Qingnan Hao
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Hongli Yang
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Shuilian Chen
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Yanhui Qu
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- The Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chanjuan Zhang
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Limiao Chen
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Dong Cao
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Songli Yuan
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Wei Guo
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Zhonglu Yang
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Yi Huang
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Zhihui Shan
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Haifeng Chen
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xinan Zhou
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China; (Q.H.); (H.Y.); (S.C.); (Y.Q.); (C.Z.); (L.C.); (D.C.); (S.Y.); (W.G.); (Z.Y.); (Y.H.); (X.Z.)
- Key Laboratory for Biological Sciences of Oil Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
3
|
Muhammad D, Alameldin HF, Oh S, Montgomery BL, Warpeha KM. Arogenate dehydratases: unique roles in light-directed development during the seed-to-seedling transition in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1220732. [PMID: 37600200 PMCID: PMC10433759 DOI: 10.3389/fpls.2023.1220732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023]
Abstract
The seed-to-seedling transition is impacted by changes in nutrient availability and light profiles, but is still poorly understood. Phenylalanine affects early seedling development; thus, the roles of arogenate dehydratases (ADTs), which catalyze phenylalanine formation, were studied in germination and during the seed-to-seedling transition by exploring the impact of light conditions and specific hormone responses in adt mutants of Arabidopsis thaliana. ADT gene expression was assessed in distinct tissues and for light-quality dependence in seedlings for each of the six-member ADT gene family. Mutant adt seedlings were evaluated relative to wild type for germination, photomorphogenesis (blue, red, far red, white light, and dark conditions), anthocyanin accumulation, and plastid development-related phenotypes. ADT proteins are expressed in a light- and tissue-specific manner in transgenic seedlings. Among the analyzed adt mutants, adt3, adt5, and adt6 exhibit significant defects in germination, hypocotyl elongation, and root development responses during the seed-to-seedling transition. Interestingly, adt5 exhibits a light-dependent disruption in plastid development, similar to a phyA mutant. These data indicate interactions between photoreceptors, hormones, and regulation of phenylalanine pools in the process of seedling establishment. ADT5 and ADT6 may play important roles in coordinating hormone and light signals for normal early seedling development.
Collapse
Affiliation(s)
- DurreShahwar Muhammad
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Hussien F. Alameldin
- MSU-DOE Plant Research Lab, Plant Biology Laboratories, East Lansing, MI, United States
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Sookyung Oh
- MSU-DOE Plant Research Lab, Plant Biology Laboratories, East Lansing, MI, United States
| | - Beronda L. Montgomery
- MSU-DOE Plant Research Lab, Plant Biology Laboratories, East Lansing, MI, United States
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Biology, Grinnell College, Grinnell, IA, United States
| | - Katherine M. Warpeha
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Chen L, Song B, Yu C, Zhang J, Zhang J, Bi R, Li X, Ren X, Zhu Y, Yao D, Song Y, Yang S, Zhao R. Identifying Soybean Pod Borer ( Leguminivora glycinivorella) Resistance QTLs and the Mechanism of Induced Defense Using Linkage Mapping and RNA-Seq Analysis. Int J Mol Sci 2022; 23:ijms231810910. [PMID: 36142822 PMCID: PMC9504297 DOI: 10.3390/ijms231810910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The soybean pod borer (Leguminivora glycinivorella) (SPB) is a major cause of soybean (Glycine max L.) yield losses in northeast Asia, thus it is desirable to elucidate the resistance mechanisms involved in soybean response to the SPB. However, few studies have mapped SPB-resistant quantitative trait loci (QTLs) and deciphered the response mechanism in soybean. Here, we selected two soybean varieties, JY93 (SPB-resistant) and K6 (SPB-sensitive), to construct F2 and F2:3 populations for QTL mapping and collected pod shells before and after SPB larvae chewed on the two parents to perform RNA-Seq, which can identify stable QTLs and explore the response mechanism of soybean to the SPB. The results show that four QTLs underlying SPB damage to seeds were detected on chromosomes 4, 9, 13, and 15. Among them, qESP-9-1 was scanned in all environments, hence it can be considered a stable QTL. All QTLs explained 0.79 to 6.09% of the phenotypic variation. Meanwhile, 2298 and 3509 DEGs were identified for JY93 and K6, respectively, after the SPB attack, and most of these genes were upregulated. Gene Ontology enrichment results indicated that the SPB-induced and differently expressed genes in both parents are involved in biological processes such as wound response, signal transduction, immune response, and phytohormone pathways. Interestingly, secondary metabolic processes such as flavonoid synthesis were only significantly enriched in the upregulated genes of JY93 after SPB chewing compared with K6. Finally, we identified 18 candidate genes related to soybean pod borer resistance through the integration of QTL mapping and RNA-Seq analysis. Seven of these genes had similar expression patterns to the mapping parents in four additional soybean germplasm after feeding by the SPB. These results provide additional knowledge of the early response and induced defense mechanisms against the SPB in soybean, which could help in breeding SPB-resistant soybean accessions.
Collapse
Affiliation(s)
- Liangyu Chen
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Baixing Song
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Cheng Yu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun 130118, China
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Department Biology, University of British Columbia-Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Rui Bi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xueying Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiaobo Ren
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yanyu Zhu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yang Song
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Songnan Yang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (S.Y.); (R.Z.)
| | - Rengui Zhao
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (S.Y.); (R.Z.)
| |
Collapse
|
5
|
Bueno TV, Fontes PP, Abe VY, Utiyama AS, Senra RL, Oliveira LS, Brombini Dos Santos A, Ferreira EGC, Darben LM, de Oliveira AB, Abdelnoor RV, Whitham SA, Fietto LG, Marcelino-Guimarães FC. A Phakopsora pachyrhizi Effector Suppresses PAMP-Triggered Immunity and Interacts with a Soybean Glucan Endo-1,3-β-Glucosidase to Promote Virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:779-790. [PMID: 35617509 DOI: 10.1094/mpmi-12-21-0301-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asian soybean rust, caused by the fungus Phakopsora pachyrhizi, is one of the most important diseases affecting soybean production in tropical areas. During infection, P. pachyrhizi secretes proteins from haustoria that are transferred into plant cells to promote virulence. To date, only one candidate P. pachyrhizi effector protein has been characterized in detail to understand the mechanism by which it suppresses plant defenses to enhance infection. Here, we aimed to extend understanding of the pathogenic mechanisms of P. pachyrhizi based on the discovery of host proteins that interact with the effector candidate Phapa-7431740. We demonstrated that Phapa-7431740 suppresses pathogen-associated molecular pattern-triggered immunity (PTI) and that it interacts with a soybean glucan endo-1,3-β-glucosidase (GmβGLU), a pathogenesis-related (PR) protein belonging to the PR-2 family. Structural and phylogenetic characterization of the PR-2 protein family predicted in the soybean genome and comparison to PR-2 family members in Arabidopsis thaliana and cotton, demonstrated that GmβGLU is a type IV β-1,3-glucanase. Transcriptional profiling during an infection time course showed that the GmβGLU mRNA is highly induced during the initial hours after infection, coinciding with peak of expression of Phapa-7431740. The effector was able to interfere with the activity of GmβGLU in vitro, with a dose-dependent inhibition. Our results suggest that Phapa-7431740 may suppress PTI by interfering with glucan endo-1,3-β-glucosidase activity. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Thays V Bueno
- Department of Agronomy, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Patrícia P Fontes
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Valeria Y Abe
- Embrapa soja, Plant Biotechnology, Londrina, Paraná, CEP 70770-901, Brazil
| | - Alice Satiko Utiyama
- Department of Agronomy, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Renato L Senra
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Liliane S Oliveira
- Embrapa soja, Plant Biotechnology, Londrina, Paraná, CEP 70770-901, Brazil
- Department of Computer Science, Federal University of Technology - Paraná (UTFPR), Cornélio Procópio, Paraná 86300-000, Brazil
| | | | | | | | | | | | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Luciano G Fietto
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | | |
Collapse
|
6
|
Firneno TJ, Ramesh B, Maldonado JA, Hernandez-Briones AI, Emery AH, Roelke CE, Fujita MK. Transcriptomic analysis reveals potential candidate pathways and genes involved in toxin biosynthesis in true toads. J Hered 2022; 113:311-324. [PMID: 35325156 DOI: 10.1093/jhered/esac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Synthesized chemical defenses have broadly evolved across countless taxa and are important in shaping evolutionary and ecological interactions within ecosystems. However, the underlying genomic mechanisms by which these organisms synthesize and utilize their toxins are relatively unknown. Herein, we use comparative transcriptomics to uncover potential toxin synthesizing genes and pathways, as well as interspecific patterns of toxin synthesizing genes across ten species of North American true toads (Bufonidae). Upon assembly and annotation of the ten transcriptomes, we explored patterns of relative gene expression and possible protein-protein interactions across the species to determine what genes and/or pathways may be responsible for toxin synthesis. We also tested our transcriptome dataset for signatures of positive selection to reveal how selection may be acting upon potential toxin producing genes. We assembled high quality transcriptomes of the bufonid parotoid gland, a tissue not often investigated in other bufonid related RNAseq studies. We found several genes involved in metabolic and biosynthetic pathways (e.g. steroid biosynthesis, terpenoid backbone biosynthesis, isoquinoline biosynthesis, glucosinolate biosynthesis) that were functionally enriched and/or relatively expressed across the ten focal species that may be involved in the synthesis of alkaloid and steroid toxins, as well as other small metabolic compounds that cause distastefulness in bufonids. We hope that our study lays a foundation for future studies to explore the genomic underpinnings and specific pathways of toxin synthesis in toads, as well as at the macroevolutionary scale across numerous taxa that produce their own defensive toxins.
Collapse
Affiliation(s)
- Thomas J Firneno
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Balan Ramesh
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Jose A Maldonado
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | | | - Alyson H Emery
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Corey E Roelke
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas, Arlington, Texas, 76019-0498, USA
| |
Collapse
|
7
|
Costa JH, Roque ALM, Aziz S, Dos Santos CP, Germano TA, Batista MC, Thiers KLL, da Cruz Saraiva KD, Arnholdt-Schmitt B. Genome-wide identification of ascorbate-glutathione cycle gene families in soybean (Glycine max) reveals gene duplication events and specificity of gene members linked to development and stress conditions. Int J Biol Macromol 2021; 187:528-543. [PMID: 34302870 DOI: 10.1016/j.ijbiomac.2021.07.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022]
Abstract
Ascorbate-glutathione (AsA-GSH) cycle plays an important role in tuning beneficial ROS accumulation for intracellular signals and imparts plant tolerance to oxidative stress by detoxifying excess of ROS. Here, we present genome-wide identification of AsA-GSH cycle genes (APX, MDHAR, DHAR, and GR) in several leguminous species and expression analyses in G. max during stress, germination and tissue development. Our data revealed 24 genes in Glycine genus against the maximum of 15 in other leguminous species, which was due to 9 pars of duplicated genes mostly originated from sub/neofunctionalization. Cytosolic APX and MDHAR genes were highly expressed in different tissues and physiological conditions. Germination induced genes encoding AsA-GSH proteins from different cell compartments, whereas vegetative phase (leaves) stimulated predominantly genes related to chloroplast/mitochondria proteins. Moreover, cytosolic APX-1, 2, MDHAR-1a, 1b and GR genes were the primary genes linked to senescence and biotic stresses, while stAPX-a, b and GR (from organelles) were the most abiotic stress related genes. Biotic and abiotic stress tolerant genotypes generally showed increased MDHAR, DHAR and/or GR mRNA levels compared to susceptible genotypes. Overall, these data clarified evolutionary events in leguminous plants and point to the functional specificity of duplicated genes of the AsA-GSH cycle in G. max.
Collapse
Affiliation(s)
- José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal.
| | - André Luiz Maia Roque
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Shahid Aziz
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Clesivan Pereira Dos Santos
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Thais Andrade Germano
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Mathias Coelho Batista
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Federal Institute of Education, Science and Technology, Paraíba, Brazil
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| |
Collapse
|
8
|
Saito H, Yamashita Y, Sakata N, Ishiga T, Shiraishi N, Usuki G, Nguyen VT, Yamamura E, Ishiga Y. Covering Soybean Leaves With Cellulose Nanofiber Changes Leaf Surface Hydrophobicity and Confers Resistance Against Phakopsora pachyrhizi. FRONTIERS IN PLANT SCIENCE 2021; 12:726565. [PMID: 34539719 PMCID: PMC8448067 DOI: 10.3389/fpls.2021.726565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/03/2021] [Indexed: 05/08/2023]
Abstract
Asian soybean rust (ASR) caused by Phakopsora pachyrhizi, an obligate biotrophic fungal pathogen, is the most devastating soybean production disease worldwide. Currently, timely fungicide application is the only means to control ASR in the field. We investigated cellulose nanofiber (CNF) application on ASR disease management. CNF-treated leaves showed reduced lesion number after P. pachyrhizi inoculation compared to control leaves, indicating that covering soybean leaves with CNF confers P. pachyrhizi resistance. We also demonstrated that formation of P. pachyrhizi appressoria, and also gene expression related to these formations, such as chitin synthases (CHSs), were significantly suppressed in CNF-treated soybean leaves compared to control leaves. Moreover, contact angle measurement revealed that CNF converts soybean leaf surface properties from hydrophobic to hydrophilic. These results suggest that CNF can change soybean leaf surface hydrophobicity, conferring resistance against P. pachyrhizi, based on the reduced expression of CHSs, as well as reduced formation of pre-infection structures. This is the first study to investigate CNF application to control field disease.
Collapse
Affiliation(s)
- Haruka Saito
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuji Yamashita
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nanami Sakata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takako Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nanami Shiraishi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Giyu Usuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Viet Tru Nguyen
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Western Highlands Agriculture and Forestry Science Institute, Buon Ma Thuot, Vietnam
| | - Eiji Yamamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
dos Santos IMO, Abe VY, de Carvalho K, Barazetti AR, Simionato AS, de Almeida Pega GE, Matis SH, Cano BG, Cely MVT, Marcelino-Guimarães FC, Chryssafidis AL, Andrade G. Secondary Metabolites of Pseudomonas aeruginosa LV Strain Decrease Asian Soybean Rust Severity in Experimentally Infected Plants. PLANTS 2021; 10:plants10081495. [PMID: 34451540 PMCID: PMC8400991 DOI: 10.3390/plants10081495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Asian Soybean Rust (ASR), a disease caused by Phakopsora pachyrhizi, causing yield losses up to 90%. The control is based on the fungicides which may generate resistant fungi. The activation of the plant defense system, should help on ASR control. In this study, secondary metabolites of Pseudomonas aeruginosa LV strain were applied on spore germination and the expression of defense genes in infected soybean plants. The F4A fraction and the pure metabolites were used. In vitro, 10 µg mL−1 of F4A reduced spore germination by 54%, while 100 µg mL−1 completely inhibited. Overexpression of phenylalanine ammonia lyase (PAL), O-methyltransferase (OMT) and pathogenesis related protein-2 (PR-2; glucanases) defense-related genes were detected 24 and 72 h after soybean sprouts were sprayed with an organocopper antimicrobial compound (OAC). Under greenhouse conditions, the best control was observed in plants treated with 60 µg mL−1 of PCA, which reduced ASR severity and lesion frequency by 75% and 43%, respectively. Plants sprayed with 2 and 20 µg mL−1 of F4A also decreased severity (41%) and lesion frequency (32%). The significant reduction in spore germination ASR in plant suggested that the strain of these metabolites are effective against P. pachyrhizi, and they can be used for ASR control.
Collapse
Affiliation(s)
- Igor Matheus Oliveira dos Santos
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, PR, Brazil; (I.M.O.d.S.); (A.R.B.); (A.S.S.); (G.E.d.A.P.); (S.H.M.); (B.G.C.)
| | - Valéria Yukari Abe
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina 86057-970, PR, Brazil; (V.Y.A.); (K.d.C.); (F.C.M.-G.)
| | - Kenia de Carvalho
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina 86057-970, PR, Brazil; (V.Y.A.); (K.d.C.); (F.C.M.-G.)
| | - André Riedi Barazetti
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, PR, Brazil; (I.M.O.d.S.); (A.R.B.); (A.S.S.); (G.E.d.A.P.); (S.H.M.); (B.G.C.)
| | - Ane Stéfano Simionato
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, PR, Brazil; (I.M.O.d.S.); (A.R.B.); (A.S.S.); (G.E.d.A.P.); (S.H.M.); (B.G.C.)
| | - Guilherme E. de Almeida Pega
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, PR, Brazil; (I.M.O.d.S.); (A.R.B.); (A.S.S.); (G.E.d.A.P.); (S.H.M.); (B.G.C.)
| | - Sergio Henrique Matis
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, PR, Brazil; (I.M.O.d.S.); (A.R.B.); (A.S.S.); (G.E.d.A.P.); (S.H.M.); (B.G.C.)
| | - Barbara Gionco Cano
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, PR, Brazil; (I.M.O.d.S.); (A.R.B.); (A.S.S.); (G.E.d.A.P.); (S.H.M.); (B.G.C.)
| | - Martha Viviana Torres Cely
- Agricultural and Environmental Sciences Institute, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil;
| | | | | | - Galdino Andrade
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, PR, Brazil; (I.M.O.d.S.); (A.R.B.); (A.S.S.); (G.E.d.A.P.); (S.H.M.); (B.G.C.)
- Correspondence: ; Tel.: +55-43-999-175-758
| |
Collapse
|
10
|
Silva E, Perez da Graça J, Porto C, Martin do Prado R, Nunes E, Corrêa Marcelino-Guimarães F, Conrado Meyer M, Jorge Pilau E. Untargeted Metabolomics Analysis by UHPLC-MS/MS of Soybean Plant in a Compatible Response to Phakopsora pachyrhizi Infection. Metabolites 2021; 11:metabo11030179. [PMID: 33808519 PMCID: PMC8003322 DOI: 10.3390/metabo11030179] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 01/11/2023] Open
Abstract
Phakopsora pachyrhizi is a biotrophic fungus, causer of the disease Asian Soybean Rust, a severe crop disease of soybean and one that demands greater investment from producers. Thus, research efforts to control this disease are still needed. We investigated the expression of metabolites in soybean plants presenting a resistant genotype inoculated with P. pachyrhizi through the untargeted metabolomics approach. The analysis was performed in control and inoculated plants with P. pachyrhizi using UHPLC-MS/MS. Principal component analysis (PCA) and the partial least squares discriminant analysis (PLS-DA), was applied to the data analysis. PCA and PLS-DA resulted in a clear separation and classification of groups between control and inoculated plants. The metabolites were putative classified and identified using the Global Natural Products Social Molecular Networking platform in flavonoids, isoflavonoids, lipids, fatty acyls, terpenes, and carboxylic acids. Flavonoids and isoflavonoids were up-regulation, while terpenes were down-regulated in response to the soybean–P. pachyrhizi interaction. Our data provide insights into the potential role of some metabolites as flavonoids and isoflavonoids in the plant resistance to ASR. This information could result in the development of resistant genotypes of soybean to P. pachyrhizi, and effective and specific products against the pathogen.
Collapse
Affiliation(s)
- Evandro Silva
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá 87020-080, PR, Brazil; (E.S.); (C.P.); (R.M.d.P.)
| | - José Perez da Graça
- Brazilian Agricultural Research Corporation Soybean, Carlos João Strass Rd, Londrina 86001-970, PR, Brazil; (J.P.d.G.); (F.C.M.-G.); (M.C.M.)
| | - Carla Porto
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá 87020-080, PR, Brazil; (E.S.); (C.P.); (R.M.d.P.)
- MsBioscience, Quintino Bocaiúva 298, Street, Maringá 87020-160, PR, Brazil
| | - Rodolpho Martin do Prado
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá 87020-080, PR, Brazil; (E.S.); (C.P.); (R.M.d.P.)
| | - Estela Nunes
- Brazilian Agricultural Research Corporation Swine & Poultry, BR-153, Km 110 Rd, Concórdia 89715-899, SC, Brazil;
| | | | - Mauricio Conrado Meyer
- Brazilian Agricultural Research Corporation Soybean, Carlos João Strass Rd, Londrina 86001-970, PR, Brazil; (J.P.d.G.); (F.C.M.-G.); (M.C.M.)
| | - Eduardo Jorge Pilau
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá 87020-080, PR, Brazil; (E.S.); (C.P.); (R.M.d.P.)
- Correspondence:
| |
Collapse
|
11
|
Li J, Lu Z, Yang Y, Hou J, Yuan L, Chen G, Wang C, Jia S, Feng X, Zhu S. Transcriptome Analysis Reveals the Symbiotic Mechanism of Ustilago esculenta-Induced Gall Formation of Zizania latifolia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:168-185. [PMID: 33400553 DOI: 10.1094/mpmi-05-20-0126-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zizania latifolia is a perennial aquatic vegetable, whose symbiosis with the fungus Ustilago esculenta (member of Basidiomycota, class Ustilaginaceae) results in the establishment of swollen gall formations. Here, we analyzed symbiotic relations of Z. latifolia and U. esculenta, using a triadimefon (TDF) treatment and transcriptome sequencing (RNA-seq). Specifically, accurately identify the whole growth cycle of Z. latifolia. Microstructure observations showed that the presence of U. esculenta could be clearly observed after gall formation but was absent after the TDF treatment. A total of 17,541 differentially expressed genes (DEGs) were identified, based on the transcriptome. According to gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway results, plant hormone signal transduction, and cell wall-loosening factors were all significantly enriched due to U. esculenta infecting Z. latifolia; relative expression levels of hormone-related genes were identified, of which downregulation of indole 3-acetic acid (IAA)-related DEGs was most pronounced in JB_D versus JB_B. The ultra-high performance liquid chromatography analysis revealed that IAA, zeatin+trans zeatin riboside, and gibberellin 3 were increased under U. esculenta infection. Based on our results, we proposed a hormone-cell wall loosening model to study the symbiotic mechanism of gall formation after U. esculenta infects Z. latifolia. Our study thus provides a new perspective for studying the physiological and molecular mechanisms of U. esculenta infection of Z. latifolia causing swollen gall formations as well as a theoretical basis for enhancing future yields of cultivated Z. latifolia.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. 2021.
Collapse
Affiliation(s)
- Jie Li
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Zhiyuan Lu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Yang Yang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Jinfeng Hou
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Lingyun Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Chenggang Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Shaoke Jia
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Xuming Feng
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Shidong Zhu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| |
Collapse
|
12
|
Sekiya A, Marques FG, Leite TF, Cataldi TR, de Moraes FE, Pinheiro ALM, Labate MTV, Labate CA. Network Analysis Combining Proteomics and Metabolomics Reveals New Insights Into Early Responses of Eucalyptus grandis During Rust Infection. FRONTIERS IN PLANT SCIENCE 2021; 11:604849. [PMID: 33488655 PMCID: PMC7817549 DOI: 10.3389/fpls.2020.604849] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/10/2020] [Indexed: 05/19/2023]
Abstract
Eucalyptus rust is caused by the biotrophic fungus, Austropuccinia psidii, which affects commercial plantations of Eucalyptus, a major raw material for the pulp and paper industry in Brazil. In this manuscript we aimed to uncover the molecular mechanisms involved in rust resistance and susceptibility in Eucalyptus grandis. Epifluorescence microscopy was used to follow the fungus development inside the leaves of two contrasting half-sibling genotypes (rust-resistance and rust-susceptible), and also determine the comparative time-course of changes in metabolites and proteins in plants inoculated with rust. Within 24 h of complete fungal invasion, the analysis of 709 metabolomic features showed the suppression of many metabolites 6 h after inoculation (hai) in the rust-resistant genotype, with responses being induced after 12 hai. In contrast, the rust-susceptible genotype displayed more induced metabolites from 0 to 18 hai time-points, but a strong suppression occurred at 24 hai. Multivariate analyses of genotypes and time points were used to select 16 differential metabolites mostly classified as phenylpropanoid-related compounds. Applying the Weighted Gene Co-Expression Network Analysis (WGCNA), rust-resistant and rust-susceptible genotypes had, respectively, 871 and 852 proteins grouped into 5 and 6 modules, of which 5 and 4 of them were significantly correlated to the selected metabolites. Functional analyses revealed roles for photosynthesis and oxidative-dependent responses leading to temporal activity of metabolites and related enzymes after 12 hai in rust-resistance; while the initial over-accumulation of those molecules and suppression of supporting mechanisms at 12 hai caused a lack of progressive metabolite-enzyme responses after 12 hai in rust-susceptible genotype. This study provides some insights on how E. grandis plants are functionally modulated to integrate secondary metabolites and related enzymes from phenylpropanoid pathway and lead to temporal divergences of resistance and susceptibility responses to rust.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carlos Alberto Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética – Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
13
|
Comparative RNA-Seq profiling of a resistant and susceptible peanut ( Arachis hypogaea) genotypes in response to leaf rust infection caused by Puccinia arachidis. 3 Biotech 2020; 10:284. [PMID: 32550103 DOI: 10.1007/s13205-020-02270-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022] Open
Abstract
The goal of this study was to identify differentially expressed genes (DEGs) responsible for peanut plant (Arachis hypogaea) defence against Puccinia arachidis (causative agent of rust disease). Genes were identified using a high-throughput RNA-sequencing strategy. In total, 86,380,930 reads were generated from RNA-Seq data of two peanut genotypes, JL-24 (susceptible), and GPBD-4 (resistant). Gene Ontology (GO) and KEGG analysis of DEGs revealed essential genes and their pathways responsible for defence response to P. arachidis. DEGs uniquely upregulated in resistant genotype included pathogenesis-related (PR) proteins, MLO such as protein, ethylene-responsive factor, thaumatin, and F-box, whereas, other genes down-regulated in susceptible genotype were Caffeate O-methyltransferase, beta-glucosidase, and transcription factors (WRKY, bZIP, MYB). Moreover, various genes, such as Chitinase, Cytochrome P450, Glutathione S-transferase, and R genes such as NBS-LRR were highly up-regulated in the resistant genotype, indicating their involvement in the plant defence mechanism. RNA-Seq analysis data were validated by RT-qPCR using 15 primer sets derived from DEGs producing high correlation value (R 2 = 0.82). A total of 4511 EST-SSRs were identified from the unigenes, which can be useful in evaluating genetic diversity among genotypes, QTL mapping, and plant variety improvement through marker-assisted breeding. These findings will help to understand the molecular defence mechanisms of the peanut plant in response to P. arachidis infection.
Collapse
|
14
|
Zhang K, Lu H, Wan C, Tang D, Zhao Y, Luo K, Li S, Wang J. The Spread and Transmission of Sweet Potato Virus Disease (SPVD) and Its Effect on the Gene Expression Profile in Sweet Potato. PLANTS 2020; 9:plants9040492. [PMID: 32290324 PMCID: PMC7238082 DOI: 10.3390/plants9040492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/22/2023]
Abstract
Sweet potato virus disease (SPVD) is the most devastating viral disease in sweet potato (Ipomoea batatas (L.) Lam.), causing substantial yield losses worldwide. We conducted a systemic investigation on the spread, transmission, and pathogenesis of SPVD. Field experiments conducted over two years on ten sweet potato varieties showed that SPVD symptoms first occurred in newly developed top leaves, and spread from adjacent to distant plants in the field. The SPVD incidence was mainly (but not only) determined by the resistance of the varieties planted, and each variety exhibited a characteristic subset of SPVD symptoms. SPVD was not robustly transmitted through friction inoculation, but friction of the main stem might contribute to a higher SPVD incidence rate compared to friction of the leaf and branch tissues. Furthermore, our results suggested that SPVD might be latent in the storage root. Therefore, using virus-free storage roots and cuttings, purposeful monitoring for SPVD according to variety-specific symptoms, and swiftly removing infected plants (especially during the later growth stages) would help control and prevent SPVD during sweet potato production. Comparative transcriptome analysis revealed that numerous genes involved in photosynthesis, starch and sucrose metabolism, flavonoid biosynthesis, and carotenoid biosynthesis were downregulated following SPVD, whereas those involved in monolignol biosynthesis, zeatin biosynthesis, trehalose metabolism, and linoleic acid metabolism were upregulated. Notably, critical genes involved in pathogenesis and plant defense were significantly induced or suppressed following SPVD. These data provide insights into the molecular changes of sweet potato in response to SPVD and elucidate potential SPVD pathogenesis and defense mechanisms in sweet potato. Our study provides important information that can be used to tailor sustainable SPVD control strategies and guide the molecular breeding of SPVD-resistant sweet potato varieties.
Collapse
Affiliation(s)
- Kai Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
- Correspondence: (K.Z.);
(J.W.); Tel.: +86-6825-1264 (K.Z.); +86-6825-1264 (J.W.)
| | - Huixiang Lu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Chuanfang Wan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
| | - Daobin Tang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Yong Zhao
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Kai Luo
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- The Agricultural Science Research Institute of Liupanshui, Guizhou 553001, China
| | - Shixi Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
| | - Jichun Wang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
- Correspondence: (K.Z.);
(J.W.); Tel.: +86-6825-1264 (K.Z.); +86-6825-1264 (J.W.)
| |
Collapse
|
15
|
Silva E, da Graça JP, Porto C, Martin do Prado R, Hoffmann-Campo CB, Meyer MC, de Oliveira Nunes E, Pilau EJ. Unraveling Asian Soybean Rust metabolomics using mass spectrometry and Molecular Networking approach. Sci Rep 2020; 10:138. [PMID: 31924833 PMCID: PMC6954191 DOI: 10.1038/s41598-019-56782-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/13/2019] [Indexed: 02/08/2023] Open
Abstract
Asian Soybean Rust (ASR), caused by the biotrophic fungus Phakopsora pachyrhizi, is a devastating disease with an estimated crop yield loss of up to 90%. Yet, there is a nerf of information on the metabolic response of soybean plants to the pathogen Untargeted metabolomics and Global Natural Products Social Molecular Networking platform approach was used to explore soybean metabolome modulation to P. pachyrhizi infection. Soybean plants susceptible to ASR was inoculated with P. pachyrhizi spore suspension and non-inoculated plants were used as controls. Leaves from both groups were collected 14 days post-inoculation and extracted using different extractor solvent mixtures. The extracts were analyzed on an ultra-high performance liquid chromatography system coupled to high-definition electrospray ionization-mass spectrometry. There was a significant production of defense secondary metabolites (phenylpropanoids, terpenoids and flavonoids) when P. pachyrhizi infected soybean plants, such as putatively identified liquiritigenin, coumestrol, formononetin, pisatin, medicarpin, biochanin A, glyoceollidin I, glyoceollidin II, glyoceollin I, glyoceolidin II, glyoceolidin III, glyoceolidin IV, glyoceolidin VI. Primary metabolites (amino acids, peptides and lipids) also were putatively identified. This is the first report using untargeted metabolomics and GNPS-Molecular Networking approach to explore ASR in soybean plants. Our data provide insights into the potential role of some metabolites in the plant resistance to ASR, which could result in the development of resistant genotypes of soybean to P. pachyrhizi, and effective and specific products against the pathogen.
Collapse
Affiliation(s)
- Evandro Silva
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá, PR, 87020-080, Brazil
| | - José Perez da Graça
- Brazilian Agricultural Research Corporation Soybean, Carlos João Strass Rd, Londrina, PR, 86001-970, Brazil
| | - Carla Porto
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá, PR, 87020-080, Brazil
- Master in Science, Technology and Food Safety, Cesumar Institute of Science, Technology and Innovation - ICETI, University Center of Maringá - UNICESUMAR, 1610, Guedner Av, Maringá, PR, 87050-900, Brazil
| | - Rodolpho Martin do Prado
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá, PR, 87020-080, Brazil
- Department of Animal Science, State University of Maringá, 5790, Colombo Av, Maringá, PR, 87020-080, Brazil
| | | | - Mauricio Conrado Meyer
- Brazilian Agricultural Research Corporation Soybean, Carlos João Strass Rd, Londrina, PR, 86001-970, Brazil
| | - Estela de Oliveira Nunes
- Brazilian Agricultural Research Corporation Soybean, Carlos João Strass Rd, Londrina, PR, 86001-970, Brazil
- Brazilian Agricultural Research Corporation Swine and Poultry, BR-153, Km 110 Distrito de Tamanduá, SC, 89715-899, Brazil
| | - Eduardo Jorge Pilau
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá, PR, 87020-080, Brazil.
| |
Collapse
|