1
|
Liu J, Gang H, Qin D, Wang H, Wang X, Shao K, Fu C, Hong J, Huo J. Carbon quantum dots from fallen leaves of Lonicera caerulea L.: An innovative plant growth promoter and fruit quality enhancer. ENVIRONMENTAL RESEARCH 2025; 274:121350. [PMID: 40064348 DOI: 10.1016/j.envres.2025.121350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
With increasing environmental pollution and resource wastage, utilizing waste for high-value applications has become crucial. This study explores the preparation of carbon dots (CDs) from blue honeysuckle leaves and their potential in enhancing plant photosynthesis. CDs derived from these leaves have a particle size of ∼2.6 nm and emit blue fluorescence under 365 nm UV light, making them suitable for foliar spraying. When applied, CDs enter leaf cells and impact chloroplasts, significantly improving photosystem II (PSII) performance and Rubisco enzyme activity. At an optimal concentration of 1000 mg/L, PSII electron transfer efficiency and Rubisco activity increased by 29.84% and 208.12%, respectively, boosting net photosynthetic rate by 60.4%. This treatment also enhanced blue honeysuckle yield and fruit quality, with higher levels of soluble solids, ascorbic acid, flavonoids, anthocyanins, and total phenolics. These improvements were linked to increased sucrose synthesis (up 25.99%) and leaf assimilative capacity (up 25%). Additionally, CDs enhanced post-harvest soil enzyme activity and microbial abundance, promoting nutrient cycling and soil utilization. This study demonstrates that preparing CDs from waste blue honeysuckle leaves not only mitigates environmental pollution but also offers a sustainable, high value use for plant resources. The findings highlight the potential of nanomaterials in improving agricultural productivity and provide a novel pathway for waste reuse.
Collapse
Affiliation(s)
- Jiale Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Huixin Gang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China.
| | - Dong Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Haoyu Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Xueting Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Kailin Shao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Chunlin Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Jingjing Hong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Yamashita R, Fujiki T, Horikawa K, Jitsuyama Y, Kasuga J, Ueno K, Suzuki T. Visualization of sucrose distribution biosynthesized in vitro from external [1- 13C]sorbitol in apple (Malus domestica) fruit utilizing MALDI-TOF MSI. Food Chem 2025; 469:142545. [PMID: 39729660 DOI: 10.1016/j.foodchem.2024.142545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/29/2024]
Abstract
To clarify the cause of graded distribution of sucrose in apple fruit flesh, a quarter cut of young apple fruit was cultured for 72 h on agar-solidified MS medium supplemented with 0.5 M [1-13C]sorbitol, with the longitudinal or horizontal cut face being attached with the medium, and distribution of 13C-labelled sucrose in a specimen obtained by slicing the fruit along with the cut face was visualized utilizing MALDI-TOF MSI. Heat map images on the distribution of the peaks of sorbitol containing 13C-atom indicated that external [1-13C]sorbitol had penetrated evenly into the tissue. In addition, the fact that a graded increase in the content of sucrose containing 13C-atom in a molecule was confirmed from the center to the outer areas of the fruit, indicates that sucrose biosynthetic ability might be higher at the cortex side of the receptacle than at the pith side in the fruit flesh.
Collapse
Affiliation(s)
- Ruka Yamashita
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Takumi Fujiki
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kentaro Horikawa
- Kamikawa Agricultural Experiment Station, Hokkaido Research Organization, Pippu 078-0397, Japan
| | - Yutaka Jitsuyama
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Jun Kasuga
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Keiji Ueno
- Graduate School of Dairy Science, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Takashi Suzuki
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
3
|
Hao H, Wang S, Zhang C, Yang X, Xing C. Distribution characteristics of photoassimilates in walnut leaves to different organs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109225. [PMID: 39461055 DOI: 10.1016/j.plaphy.2024.109225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
The understanding of photoassimilate distribution serves as the fundamental basis for scientific regulation of fruit quality. Currently, there is a scarcity of research on whole-plant scale photoassimilate distribution in walnut. In order to clarify the characteristics of leaf photoassimilates translocation to various organs in 5-year-old 'Wen185' (J. regia 'Wen185') walnut during the growing season, this study used the 13C isotope pulse labeling technique to label the whole plant of walnut trees in the growing season, temporal variations of 13C abundance (δ13C), 13C partition rate (R13C), leaf source strength and fruit sink strength were analyzed in various organs at different days after tree flowering. The findings indicated that during the periods of 30-70 days and 90-110 days after flowering, there was a higher distribution of 13C in fruits and vegetative branches. However, at 110-130 days after flowering, the predominant allocation of 13C shifted towards main trunk and roots. In-depth study of source leaves and sink fruits showed that chlorophyll content in leaves increased significantly 30-50 days after anthesis, indicating that they gradually became mature functional leaves. The increase of net photosynthetic rate led to increase of source strength, and the retention of photoassimilates in leaves was higher at this time. From 30 to 70 days after flowering, the fresh weight and volume of fruit increased rapidly, which increased the capacity of the sink and enhanced the competition ability against photoassimilates. The recovery of photosynthetic capacity of leaves from 90 to 110 days promoted the output of photoassimilates. At this time, walnut entered the oil conversion period, and the demand for photoassimilates increased. All these factors jointly promoted the unloading of photoassimilates in fruit. In summary, maintaining adequate material conditions and optimizing tree structure at 30-70d and 90-110d after anthesis are important for more efficient distribution of photoassimilates to fruit.
Collapse
Affiliation(s)
- HongLong Hao
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - ShiWei Wang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - CuiFang Zhang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - XianAn Yang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - ChangJie Xing
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
4
|
Sun M, Wang C, Zhang G, Cao H, Wang F, Li M, Ge S. Melatonin mitigates root growth inhibition and carbon-nitrogen metabolism imbalance in apple rootstock M9T337 under high nitrogen stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1482351. [PMID: 39469052 PMCID: PMC11513380 DOI: 10.3389/fpls.2024.1482351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Nitrogen (N) is an essential element for plant growth, development, and metabolism. In apple production, the excessive use of N fertilizer may cause high N stress. Whether high N stress can be alleviated by regulating melatonin supply is unclear. The effects of melatonin on root morphology, antioxidant enzyme activity and 13C and 15N accumulation in apple rootstock M9T337 treated with high N were studied by soil culture. The results showed that correctly raising the melatonin supply level is helpful to root development of M9T337 rootstock under severe N stress. Compared with HN treatment, HN+MT treatment increased root and leaf growth by 11.38%, and 28.01%, respectively. Under high N conditions, appropriately increasing melatonin level can activate antioxidant enzyme activity, reduce lipid peroxidation in roots, protect root structural integrity, promote the transport of sorbitol and sucrose to roots, and promote further degradation and utilization of sorbitol and sucrose in roots, which is conducive to the accumulation of photosynthetic products, thereby reducing the inhibitory effect of high N treatment on root growth. Based on the above research results, we found that under high N stress, melatonin significantly promotes nitrate absorption, enhances N metabolism enzyme activity, and upregulates related gene expression, and regulate N uptake and utilization in the M9T337 rootstock. These results presented a fresh notion for improving N application and preserving carbon-nitrogen balance.
Collapse
Affiliation(s)
- Maoxiang Sun
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, School of Advanced Agricultural Sciences, Weifang University, Weifang, Shandong, China
| | - Chaoran Wang
- College of Agriculture & Forestry Technology, Weifang Vocational College, Weifang, Shandong, China
| | - Guowei Zhang
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, School of Advanced Agricultural Sciences, Weifang University, Weifang, Shandong, China
| | - Hui Cao
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, School of Advanced Agricultural Sciences, Weifang University, Weifang, Shandong, China
| | - Fen Wang
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, School of Advanced Agricultural Sciences, Weifang University, Weifang, Shandong, China
| | - Ming Li
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, School of Advanced Agricultural Sciences, Weifang University, Weifang, Shandong, China
| | - Shunfeng Ge
- Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
5
|
Xing Y, Feng ZQ, Zhang X, Cao HX, Liu CL, Qin HH, Jiang H, Zhu ZL, Ge SF, Jiang YM. Nitrogen reduces calcium availability by promoting oxalate biosynthesis in apple leaves. HORTICULTURE RESEARCH 2024; 11:uhae208. [PMID: 39372287 PMCID: PMC11450213 DOI: 10.1093/hr/uhae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/18/2024] [Indexed: 10/08/2024]
Abstract
N and Ca are essential nutrients for apple growth and development. Studies have found that Ca content was not low under high N conditions but was poorly available. However, the underlying physiological mechanism through which N regulates Ca availability remains unclear. In this study, apple plants were supplied with N and Ca to analyse the content, in situ distribution, and forms of Ca using noninvasive micro-test technique, electron probe microanalysis, Fourier transform infrared spectroscopy, and transcriptome analysis. A potential interaction was observed between N and Ca in apple leaves. The application of high N and Ca concentration led to a CaOx content of 12.51 g/kg, representing 93.54% of the total Ca in the apple leaves. Electron probe microanalysis revealed that Ca deposited in the phloem primarily existed as CaOx rhombus-shaped crystals. Additionally, high N positively regulated oxalate accumulation in the leaves, increasing it by 40.79 times compared with low N concentration. Specifically, N induced oxalate synthesis in apple leaves by upregulating the MdICL, MdOXAC, and MdMDH genes, while simultaneously inhibiting degradation through downregulation of the MdAAE3 gene. Transcriptome and correlation analyses further confirmed oxaloacetate as the precursor for the synthesis of CaOx crystals in the apple leaves, which were produced via the 'photosynthesis/glycolysis -oxaloacetate -oxalate -CaOx' pathway. WGCNA identified potential regulators of the CaOx biosynthesis pathway triggered by N. Overall, the results provide insights into the regulation of Ca availability by N in apple leaves and support the development of Ca efficient cultivation technique.
Collapse
Affiliation(s)
- Yue Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Zi-Quan Feng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Xin Zhang
- 421 laboratory, Xinlianxin Chemical Group Co., Ltd, Henan, China
| | - Hong-Xing Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Chun-Ling Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Han-Han Qin
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Han Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Zhan-Ling Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Shun-Feng Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Yuan-Mao Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| |
Collapse
|
6
|
Yu B, Xue X, Nie P, Lu N, Wang L. Fulvic acid alleviates cadmium-induced root growth inhibition by regulating antioxidant enzyme activity and carbon-nitrogen metabolism in apple seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1370637. [PMID: 38711608 PMCID: PMC11072189 DOI: 10.3389/fpls.2024.1370637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 05/08/2024]
Abstract
Introduction Substantial previous studies have reported that fulvic acid (FA) application plays an important role in Chinese agricultural production. However, little is known about the mechanisms for using FA to increase apple trees resistance to Cd toxicity. In order to clarify the mechanism underlying FA alleviation in Cd-induced growth inhibition in apple seedlings. Methods Herein, we treated M9T337 seedlings to either 0 or 30 µM/L Cd together with 0 or 0.2 g/L FA and analyzed the root growth, antioxidant enzyme activities, carbon (C) assimilation, nitrogen (N) metabolism, and C and N transport. Results The results presented that, compared with CK (without Cd addition or FA spraying application), Cd poisoning significantly inhibited the root growth of apple seedlings. However, this Cd-induced root growth inhibition was significantly alleviated by FA spraying relative to the Cd treatment (Cd addition alone). On the one hand, the mitigation of inhibition effects was due to the reduced oxidative damage by enhancing antioxdiant enzyme (SOD, POD, and CAT) activities in leaves and roots. On the other hand, this growth advantage demonstrated compared to the Cd treatment was found to be associated with the strengthen of photosynthetic performance and the elevation of C and N metabolism enzymes activities. Meanwhile, we also found that under Cd stress condition, the distribution of C and N nutrients in apple seedlings was optimised by FA spraying application relative to the Cd treatment, according to the results of 13C and 15N tracing. Conclusion Conclusively, our results suggested that the inhibitory effect of Cd on apple seedlings root growth was alleviated by FA through regulating antioxdiant capacities and C and N metabolism.
Collapse
Affiliation(s)
- Bo Yu
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaomin Xue
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Peixian Nie
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Ninglin Lu
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Laiping Wang
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| |
Collapse
|
7
|
Liu C, Zhou G, Qin H, Guan Y, Wang T, Ni W, Xie H, Xing Y, Tian G, Lyu M, Liu J, Wang F, Xu X, Zhu Z, Jiang Y, Ge S. Metabolomics combined with physiology and transcriptomics reveal key metabolic pathway responses in apple plants exposure to different selenium concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132953. [PMID: 37952334 DOI: 10.1016/j.jhazmat.2023.132953] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Selenium (Se) can be absorbed by plants, thereby affects plant physiological activity, interferes gene expression, alters metabolite content and influences plant growth. However, the molecular mechanism underlying the plant response to Se remains unclear. In this study, apple plants were exposed to Se at concentrations of 0, 3, 6, 9, 12, 24, and 48 μM. Low concentrations of Se promoted plant growth, while high Se concentrations (≥24 μM) reduced photosynthesis, disturbed carbon and nitrogen metabolism, damaged the antioxidant system, and ultimately inhibited plant growth. The transcriptome and metabolome revealed that Se mainly affected three pathways, namely the 'biosynthesis of amino acids', 'starch and sucrose metabolism', and 'phenylpropanoid biosynthesis' pathways. 9 μM Se improved the synthesis, catabolism and utilization of amino acids and sugars, ultimately promoted plant growth. However, 24 μM Se up-regulated the related genes expression of PK, GPT, P5CS, SUS, SPS and CYP98A, and accumulated a large number of osmoregulation substances, such as citric acid, L-proline, D-sucrose and chlorogenic acid in the roots, ultimately affected the balance between plant growth and defense. In conclusion, this study reveals new insights into the key metabolic pathway in apple plants responses to Se.
Collapse
Affiliation(s)
- Chunling Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Guangjin Zhou
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Hanhan Qin
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Yafei Guan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Tianyu Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Wei Ni
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Hongmei Xie
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Yue Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Ge Tian
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Mengxue Lyu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Jingquan Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Fen Wang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang 261061, China
| | - Xinxiang Xu
- Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Zhanling Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Yuanmao Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China
| | - Shunfeng Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; Apple Technology Innovation Center of Shandong Province, Taian 271018, China.
| |
Collapse
|
8
|
Yu B, Wang L, Zhang J, Lyu D. Natural Grass Cultivation Management Improves Apple Fruit Quality by Regulating Soil Mineral Nitrogen Content and Carbon-Nitrogen Metabolism. Metabolites 2023; 13:925. [PMID: 37623869 PMCID: PMC10456723 DOI: 10.3390/metabo13080925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Orchard grass cultivation management is an effective measure to safeguard the sustainable development of the fruit industry in China. However, details of the influence of natural sod culture management on carbon (C)-nitrogen (N) nutrition of trees and fruit quality in Hanfu apple orchards are lacking. Therefore, a field experiment was conducted, which consisted of two treatments: clean tillage (CT) and natural grass cultivation (NG). Results revealed that NG treatment contributed to the increases in soil organic matter (SOM), total N, and soil NH4+-N at depths of 0-20 cm and 20-40 cm, while the soil NO3--N concentration under NG treatment was significantly decreased at the same depth, within the range of 0-200 cm of the soil profile, compared with CT. NG treatment also significantly promoted leaf photosynthesis and enhanced leaf N and fruit sugar metabolism. The results of isotope labeling showed that NG treatment obviously elevated the 13C accumulation and distribution rate in fruits, as well as the 15N accumulation in the whole tree, whereas the 15N accumulation in fruits decreased. Furthermore, NG treatment significantly increased the fruit anthocyanin content. These results provide theoretical references for the feasibility of natural sod culture management to improve fruit quality in Hanfu apple orchards.
Collapse
Affiliation(s)
| | | | | | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (B.Y.); (L.W.); (J.Z.)
| |
Collapse
|
9
|
Garrido A, Conde A, Serôdio J, De Vos RCH, Cunha A. Fruit Photosynthesis: More to Know about Where, How and Why. PLANTS (BASEL, SWITZERLAND) 2023; 12:2393. [PMID: 37446953 DOI: 10.3390/plants12132393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Not only leaves but also other plant organs and structures typically considered as carbon sinks, including stems, roots, flowers, fruits and seeds, may exhibit photosynthetic activity. There is still a lack of a coherent and systematized body of knowledge and consensus on the role(s) of photosynthesis in these "sink" organs. With regard to fruits, their actual photosynthetic activity is influenced by a range of properties, including fruit anatomy, histology, physiology, development and the surrounding microclimate. At early stages of development fruits generally contain high levels of chlorophylls, a high density of functional stomata and thin cuticles. While some plant species retain functional chloroplasts in their fruits upon subsequent development or ripening, most species undergo a disintegration of the fruit chloroplast grana and reduction in stomata functionality, thus limiting gas exchange. In addition, the increase in fruit volume hinders light penetration and access to CO2, also reducing photosynthetic activity. This review aimed to compile information on aspects related to fruit photosynthesis, from fruit characteristics to ecological drivers, and to address the following challenging biological questions: why does a fruit show photosynthetic activity and what could be its functions? Overall, there is a body of evidence to support the hypothesis that photosynthesis in fruits is key to locally providing: ATP and NADPH, which are both fundamental for several demanding biosynthetic pathways (e.g., synthesis of fatty acids); O2, to prevent hypoxia in its inner tissues including seeds; and carbon skeletons, which can fuel the biosynthesis of primary and secondary metabolites important for the growth of fruits and for spreading, survival and germination of their seed (e.g., sugars, flavonoids, tannins, lipids). At the same time, both primary and secondary metabolites present in fruits and seeds are key to human life, for instance as sources for nutrition, bioactives, oils and other economically important compounds or components. Understanding the functions of photosynthesis in fruits is pivotal to crop management, providing a rationale for manipulating microenvironmental conditions and the expression of key photosynthetic genes, which may help growers or breeders to optimize development, composition, yield or other economically important fruit quality aspects.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - João Serôdio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ric C H De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research Centre (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
10
|
Dynamic Changes of Endogenous Hormones in Different Seasons of Idesia polycarpa Maxim. Life (Basel) 2023; 13:life13030788. [PMID: 36983943 PMCID: PMC10053573 DOI: 10.3390/life13030788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Idesia polycarpa Maxim is a native dioecious tree from East Asia cultivated for its fruits and as an ornamental plant throughout temperate regions. Given the economic potential, comparative studies on cultivated genotypes are of current interest. This study aims to discover the dynamic changes and potential functions of endogenous hormones in I. polycarpa, as well as the differences in endogenous hormone contents in different growth stages among different I. polycarpa provenances. We used High-Performance Liquid Chromatography (HPLC) to measure and compare the levels of abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin A3 (GA3), and trans-Zeatin-riboside (tZR) in the leaves, flowers, and fruits of I. polycarpa from various provenances between April and October. Our findings indicated that changes in the ABA and GA3 content of plants from Jiyuan and Tokyo were minimal from April to October. However, the levels of these two hormones in Chengdu plants vary greatly at different stages of development. The peak of IAA content in the three plant materials occurred primarily during the early fruit stage and the fruit expansion stage. The concentration of tZR in the three plant materials varies greatly. Furthermore, we discovered that the contents of endogenous hormones in I. polycarpa leaves, flowers, and fruits from Chengdu provenances were slightly higher than those from Tokyo and Jiyuan provenances. The content of IAA was higher in male flowers than in female flowers, and the content of ABA, GA3, and tZR was higher in female flowers than in male flowers. According to the findings, the contents of these four endogenous hormones in I. polycarpa are primarily determined by the genetic characteristics of the trees and are less affected by cultivation conditions. The gender of I. polycarpa had a great influence on these four endogenous hormones. The findings of this study will provide a theoretical foundation and practical guidance for artificially regulating the flowering and fruiting of I. polycarpa.
Collapse
|
11
|
Tian G, Liu C, Xu X, Xing Y, Liu J, Lyu M, Feng Z, Zhang X, Qin H, Jiang H, Zhu Z, Jiang Y, Ge S. Effects of Magnesium on nitrate uptake and sorbitol synthesis and translocation in apple seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:139-151. [PMID: 36706693 DOI: 10.1016/j.plaphy.2023.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Both magnesium (Mg) and nitrogen (N) play many important roles in plant physiological and biochemical processes. Plants usually exhibit low nitrogen utilization efficiency (NUE) under Mg deficiency conditions, but the mechanisms by which Mg regulates NUE are not well understood. Herein, we investigated biomass, nutrient uptake, sorbitol and sucrose transport, and relative gene expression in apple seedlings under various concentrations of Mg and N treatments in hydroponic cultures. We first observed that low Mg supply significantly limited plant growth and N, Mg concentrations. Increasing the supply of N, but not Mg, partially alleviated the inhibition of plant growth under low Mg stress, which indicated that Mg deficiency had a negative impact on plant growth because it inhibits N absorption. Moreover, we found that the expression of nitrate transporter genes MdNRT2.1 and MdNRT2.4 was significantly downregulated by low Mg stress, and sufficient Mg significantly promoted sucrose and sorbitol synthesis and transport from leaves to roots by regulating relevant enzyme activity and genes expression. Further experiments showed that exogenous sorbitol could rapidly restore MdNRT2.1/2.4 expression and nitrate uptake under low Mg availability without increasing internal Mg level, suggesting that Mg may regulate MdNRT2.1/2.4 expression by regulating more sorbitol transport to roots, the effect of Mg on N was indirect, sorbitol played a key role during this process. Taken together, Mg promoted sorbitol synthesis and transport into roots, thus upregulating the expression of MdNRT2.1/2.4 and increasing the absorption of nitrate.
Collapse
Affiliation(s)
- Ge Tian
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chunling Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xinxiang Xu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yue Xing
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jingquan Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Mengxue Lyu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ziquan Feng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuelin Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hanhan Qin
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Han Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhanling Zhu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Yuanmao Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Shunfeng Ge
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
12
|
Tian G, Qin H, Liu C, Xing Y, Feng Z, Xu X, Liu J, Lyu M, Jiang H, Zhu Z, Jiang Y, Ge S. Magnesium improved fruit quality by regulating photosynthetic nitrogen use efficiency, carbon-nitrogen metabolism, and anthocyanin biosynthesis in 'Red Fuji' apple. FRONTIERS IN PLANT SCIENCE 2023; 14:1136179. [PMID: 36909439 PMCID: PMC9995890 DOI: 10.3389/fpls.2023.1136179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Both nitrogen (N) and magnesium (Mg) play important roles in biochemical and physiological processes in plants. However, the application of excessive N and insufficient Mg may be the factor leading to low nitrogen utilization rate (NUE) and fruit quality degradation in apple production. METHODS In this study, we analyzed the effects of different application rates of Mg (0, 50, 100, 150, 200 kg/ha) on the photosynthetic nitrogen use efficiency (PNUE), the accumulation and distribution of carbon (C), N metabolism, anthocyanin biosynthesis and fruit quality of the 'Red Fuji' apple in 2018 and 2019. RESULTS The results showed that the application of Mg significantly increased the 15NUE and increased the allocation rate of 15N in the leaves whereas the 15N allocation rate in the perennial organs and fruits was decreased. With the increase in Mg supply, the activities of N metabolism enzymes (NiR, GS, and GOGAT) were significantly promoted and the content of intermediate products in N metabolism ( NO 2 - , NH 4 + , and free amino acid) was significantly decreased. Furthermore, an appropriate rate of Mg significantly promoted the net photosynthetic rate (Pn) and photosynthetic nitrogen use efficiency (PNUE), enhanced the enzyme activities of C metabolism (SS, SPS, S6PDH), and increased the contents of sorbitol and sucrose in leaves. In addition, Mg upregulated the gene expression of sugar transporters (MdSOT1, MdSOT3, MdSUT1, and MdSUT4) in fruit stalk and fruit fresh; 13C isotope tracer technology also showed that Mg significantly increased the 13C allocation in the fruits. Mg also significantly increased the expression of anthocyanin biosynthesis genes (MdCHS and MdF3H) and transcription factors (MdMYB1 and MdbZIP44) and the content of anthocyanin in apple peel. CONCLUSION The comprehensive analysis showed that the appropriate application of Mg (150 kg/ha) promoted PNUE, C-N metabolism, and anthocyanin biosynthesis in apple trees.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhanling Zhu
- *Correspondence: Zhanling Zhu, ; Yuanmao Jiang, ; Shunfeng Ge,
| | - Yuanmao Jiang
- *Correspondence: Zhanling Zhu, ; Yuanmao Jiang, ; Shunfeng Ge,
| | - Shunfeng Ge
- *Correspondence: Zhanling Zhu, ; Yuanmao Jiang, ; Shunfeng Ge,
| |
Collapse
|
13
|
Liu J, Lyu M, Xu X, Liu C, Qin H, Tian G, Zhu Z, Ge S, Jiang Y. Exogenous sucrose promotes the growth of apple rootstocks under high nitrate supply by modulating carbon and nitrogen metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:196-206. [PMID: 36244192 DOI: 10.1016/j.plaphy.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 05/12/2023]
Abstract
Excessive nitrogen (N) supply often leads to an imbalance of carbon (C) and N metabolism and inhibits plant growth. Sucrose, an important source and signaling substance of C in plants, is closely linked to N metabolism. However, it is not clear whether exogenous sucrose can mitigate the inhibitory effect of high N on plant growth by regulating C and N metabolism. In this study, we investigated the effects of exogenous sucrose on the growth, N metabolism, and C assimilation in the apple rootstock M26 seedlings under normal (5 mM NO3-, NN) and high (30 mM NO3-, HN) NO3- concentrations. Our results showed that high NO3- supply reduced plant growth, photosynthesis, and chlorophyll fluorescence, but spraying with 1% sucrose (HN + 1% Sucrose) significantly alleviated this inhibition. Application of 1% sucrose increased sucrose and sorbitol contents as well as sucrose-phosphate synthase and sucrose synthase activities in the plants under HN treatment and promoted the distribution of 13C photoassimilation products to the root. In addition, spraying with 1% sucrose alleviated the inhibition of N metabolizing enzyme activities by high NO3- supply, reduced NO3- accumulation and N content, increased free amino acid content, and promoted 15N distribution to the aboveground parts. However, spraying with 1% sucrose under the NN treatment negatively affected plant photosynthesis and carbon assimilation. In conclusion, exogenous sucrose increased the C level in plants in the presence of excess N, promoted the balance of C and N metabolism, and alleviated the inhibitory effect of high N on the apple plant growth.
Collapse
Affiliation(s)
- Jingquan Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Mengxue Lyu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xinxiang Xu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chunling Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hanhan Qin
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ge Tian
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhanling Zhu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Shunfeng Ge
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Yuanmao Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
14
|
Wang J, Ma T, Wang L, Lan T, Fang Y, Sun X. Research on the Consumption Trend, Nutritional Value, Biological Activity Evaluation, and Sensory Properties of Mini Fruits and Vegetables. Foods 2021; 10:foods10122966. [PMID: 34945517 PMCID: PMC8700999 DOI: 10.3390/foods10122966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Mini fruits and vegetables (MFV) are pocket fruits and vegetables whose shape and volume are significantly smaller than those widely sold and well-known normal fruits and vegetables (NFV) on the market. Through the research on the market status and consumption trends of MFV, it was found that MFV have recently become a new market favorite. However, compared with NFV, there was found to be no relevant data on sensory quality, nutritional value, safety, etc. of MFV; this could indicate low consumer awareness of MFV, which in turn affects their planting and sales choices, as well as the market scale remaining small. In this context, six MFV with high degree of marketization were selected and compared with their corresponding NFV to evaluate the nutritional value, biological activity, and sensory properties. The results showed the nutritional value of MFV to be mainly related to their species. The nutritional value of MFV derived from immature, tender vegetables was generally lower than that of mature NFV. For example, the content of zeaxanthin in normal maize was 0.43 mg/kg, which was about 2.87 times that of mini maize (0.15 mg/kg). For newly cultivated mini varieties, their nutritional value often had different trends and rules compared with NFV. The nutritional value obtained by consuming MFV is not equal to that obtained by consuming the corresponding NFV of the same weight.
Collapse
|