1
|
Shi H, Wan K, Dou B, Ren Y, Huo L, Zhang C, Yue S, Li Z, Guo H, Dai J. Genome-wide identification and expression analysis of the glutathione transferase gene family and its response to abiotic stress in rye (Secale cereale). BMC Genomics 2024; 25:1142. [PMID: 39604831 PMCID: PMC11600577 DOI: 10.1186/s12864-024-11080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Glutathione S-transferases (GSTs) are a crucial class of plant enzymes, playing pivotal roles in plant growth, development, and stress responses. However, studies on the functions and regulatory mechanisms of GSTs in plants remain relatively limited. RESULTS This study aimed to comprehensively identify and analyze GST proteins in rye. A total of 171 rye GST genes were identified and classified into four subfamilies, Tau, Phi, Theta, and Zeta, based on their sequence similarity and structural features. Notably, genes classified under the Tau subfamily were the most abundant at 118, while only one gene was under the Theta subfamily. Subsequent phylogenetic and collinearity analysis revealed 29 tandem duplications and 6 segmental duplication events. There were 13 collinear genes between rye and wheat, maize, and rice, demonstrating the expansion and evolution of the GST gene family. An analysis of the expression profiles of 20 representative ScGST genes in different tissues and under various environmental stresses was performed to further understand the functions and expression patterns of ScGST genes. The results showed that these genes exhibited the highest expression levels in stems, followed by fruits and leaves. CONCLUSIONS This study provides a comprehensive identity, classification, and analysis of rye GST genes, which offer valuable insights into the functionality and regulatory mechanisms of the GST gene family in rye. Especially, ScGST39 was identified as a candidate gene because it was significantly upregulated under multiple stress conditions, indicating its potential crucial role in plant stress tolerance mechanisms.
Collapse
Affiliation(s)
- Hongli Shi
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Ke Wan
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Bingde Dou
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Yanyan Ren
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Lihuan Huo
- Shangluo Institute of Agricultural Science, Shangluo, Shaanxi, 726000, China
| | - Chao Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Shuning Yue
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Zhongling Li
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Huan Guo
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Jiakun Dai
- Shaanxi Key Laboratory of Qinling Ecological Security, Bio-Agriculture Institute of Shaanxi, Xi'an, Shaanxi, 710043, China.
| |
Collapse
|
2
|
Jin Y, Feng G, Luo J, Yan H, Sun M, Jing T, Yang Y, Jia J, Zhu X, Wang X, Zhang X, Huang L. Combined Genome-Wide Association Study and Transcriptome Analysis Reveal Candidate Genes for Resistance to Rust ( Puccinia graminis) in Dactylis glomerata. PLANT DISEASE 2024; 108:2197-2205. [PMID: 38956749 DOI: 10.1094/pdis-02-24-0360-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Rust disease is a common plant disease that can cause wilting, slow growth of plant leaves, and even affect the growth and development of plants. Orchardgrass (Dactylis glomerata L.) is native to temperate regions of Europe, which has been introduced as a superior forage grass in temperate regions worldwide. Orchardgrass has rich genetic diversity and is widely distributed in the world, which may contain rust resistance genes not found in other crops. Therefore, we collected a total of 333 orchardgrass accessions from different regions around the world. Through a genome-wide association study (GWAS) analysis conducted in four different environments, 91 genes that overlap or are adjacent to significant single nucleotide polymorphisms (SNPs) were identified as potential rust disease resistance genes. Combining transcriptome data from susceptible (PI292589) and resistant (PI251814) accessions, the GWAS candidate gene DG5C04160.1 encoding glutathione S-transferase (GST) was found to be important for orchardgrass rust (Puccinia graminis) resistance. Interestingly, by comparing the number of GST gene family members in seven species, it was found that orchardgrass has the most GST gene family members, containing 119 GST genes. Among them, 23 GST genes showed significant differential expression after inoculation with the rust pathogen in resistant and susceptible accessions; 82% of the genes still showed significantly increased expression 14 days after inoculation in resistant accessions, while the expression level significantly decreased in susceptible accessions. These results indicate that GST genes play an important role in orchardgrass resistance to rust (P. graminis) stress by encoding GST to reduce its oxidative stress response.
Collapse
Affiliation(s)
- Yarong Jin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinchan Luo
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Haidong Yan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Department of Genetics, University of Georgia, Athens, GA 30602, U.S.A
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Jing
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuchen Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiyuan Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Song Y, Yu K, Zhang S, Li Y, Xu C, Qian H, Cui Y, Guo Y, Zhang X, Li R, Dixon RA, Lin J. Poplar glutathione S-transferase PtrGSTF8 contributes to reactive oxygen species scavenging and salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108766. [PMID: 38797011 DOI: 10.1016/j.plaphy.2024.108766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Glutathione S-transferases (GSTs) constitute a protein superfamily encoded by a large gene family and play a crucial role in plant growth and development. However, their precise functions in wood plant responses to abiotic stress are not fully understood. In this study, we isolated a Phi class glutathione S-transferase-encoding gene, PtrGSTF8, from poplar (Populus alba × P. glandulosa), which is significantly up-regulated under salt stress. Moreover, compared with wild-type (WT) plants, transgenic tobacco plants exhibited significant salt stress tolerance. Under salt stress, PtrGSTF8-overexpressing tobacco plants showed a significant increase in plant height and root length, and less accumulation of reactive oxygen species. In addition, these transgenic tobacco plants exhibited higher superoxide dismutase, peroxidase, and catalase activities and reduced malondialdehyde content compared with WT plants. Quantitative real-time PCR experiments showed that the overexpression of PtrGSTF8 increased the expression of numerous genes related to salt stress. Furthermore, PtrMYB108, a MYB transcription factor involved in salt resistance in poplar, was found to directly activate the promoter of PtrGSTF8, as demonstrated by yeast one-hybrid assays and luciferase complementation assays. Taken together, these findings suggest that poplar PtrGSTF8 contributes to enhanced salt tolerance and confers multiple growth advantages when overexpressed in tobacco.
Collapse
Affiliation(s)
- Yushuang Song
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Keji Yu
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Shuwen Zhang
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Li
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Changwen Xu
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Hongping Qian
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Cui
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Yayu Guo
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Xi Zhang
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Jinxing Lin
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Zhang Z, Yuan L, Dang J, Zhang Y, Wen Y, Du Y, Liang Y, Wang Y, Liu T, Li T, Hu X. 5-Aminolevulinic acid improves cold resistance through regulation of SlMYB4/SlMYB88-SlGSTU43 module to scavenge reactive oxygen species in tomato. HORTICULTURE RESEARCH 2024; 11:uhae026. [PMID: 38495031 PMCID: PMC10940124 DOI: 10.1093/hr/uhae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/14/2024] [Indexed: 03/19/2024]
Abstract
Cold stress severely affects the growth and quality of tomato. 5-Aminolevulinic acid (ALA) can effectively improve tomato's cold stress tolerance. In this study, a tomato glutathione S-transferase gene, SlGSTU43, was identified. Results showed that ALA strongly induced the expression of SlGSTU43 under cold stress. SlGSTU43-overexpressing lines showed increased resistance to cold stress through an enhanced ability to scavenge reactive oxygen species. On the contrary, slgstu43 mutant lines were sensitive to cold stress, and ALA did not improve their cold stress tolerance. Thus, SlGSTU43 is a key gene in the process of ALA improving tomato cold tolerance. Through yeast library screening, SlMYB4 and SlMYB88 were preliminarily identified as transcription factors that bind to the SlGSTU43 promoter. Electrophoretic mobility shift, yeast one-hybrid, dual luciferase, and chromatin immunoprecipitation assays experiments verified that SlMYB4 and SlMYB88 can bind to the SlGSTU43 promoter. Further experiments showed that SlMYB4 and SlMYB88 are involved in the process of ALA-improving tomato's cold stress tolerance and they positively regulate the expression of SlGSTU43. The findings provide new insights into the mechanism by which ALA improves cold stress tolerance. SlGSTU43, as a valuable gene, could be added to the cold-responsive gene repository. Subsequently, it could be used in genetic engineering to enhance the cold tolerance of tomato.
Collapse
Affiliation(s)
- Zhengda Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Luqiao Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Jiao Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yuhui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yongshuai Wen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yu Du
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yufei Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Tu Y, Shen J, Peng Z, Xu Y, Li Z, Liang J, Wei Q, Zhao H, Huang J. Biochar-Dual Oxidant Composite Particles Alleviate the Oxidative Stress of Phenolic Acid on Tomato Seed Germination. Antioxidants (Basel) 2023; 12:antiox12040910. [PMID: 37107285 PMCID: PMC10136075 DOI: 10.3390/antiox12040910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Phenolic acid is a well-known allelochemical, but also a pollutant in soil and water impeding crop production. Biochar is a multifunctional material widely used to mitigate the phenolic acids allelopathic effect. However, phenolic acid absorbed by biochar can still be released. In order to improve the removal efficiency of phenolic acids by biochar, the biochar-dual oxidant (BDO) composite particles were synthesized in this study, and the underlying mechanism of the BDO particles in ameliorating p-coumaric acid (p-CA) oxidative damage to tomato seed germination was revealed. Upon p-CA treatment, the BDO composite particles application increased the radical length, radical surface area, and germination index by 95.0%, 52.8%, and 114.6%, respectively. Compared to using biochar or oxidants alone, the BDO particles addition resulted in a higher removal rate of p-CA and produced more O2•-, HO•, SO4•- and 1O2 radicals via autocatalytic action, suggesting that BDO particles removed phenolic acid by both adsorption and free radical oxidation. The addition of BDO particles maintained the levels of the antioxidant enzyme activity close to the control, and reduced the malondialdehyde and H2O2 by 49.7% and 49.5%, compared to the p-CA treatment. Integrative metabolomic and transcriptomic analyses revealed that 14 key metabolites and 62 genes were involved in phenylalanine and linoleic acid metabolism, which increased dramatically under p-CA stress but down-regulated with the addition of BDO particles. This study proved that the use of BDO composite particles could alleviate the oxidative stress of phenolic acid on tomato seeds. The findings will provide unprecedented insights into the application and mechanism of such composite particles as continuous cropping soil conditioners.
Collapse
Affiliation(s)
- Yuting Tu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jinchun Shen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiping Peng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Yanggui Xu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Zhuxian Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianyi Liang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qiufang Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jichuan Huang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China
- Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| |
Collapse
|
6
|
Wang L, Fu H, Zhao J, Wang J, Dong S, Yuan X, Li X, Chen M. Genome-Wide Identification and Expression Profiling of Glutathione S-Transferase Gene Family in Foxtail Millet ( Setaria italica L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1138. [PMID: 36904001 PMCID: PMC10005783 DOI: 10.3390/plants12051138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Glutathione S-transferases (GSTs) are a critical superfamily of multifunctional enzymes in plants. As a ligand or binding protein, GSTs regulate plant growth and development and detoxification. Foxtail millet (Setaria italica (L.) P. Beauv) could respond to abiotic stresses through a highly complex multi-gene regulatory network in which the GST family is also involved. However, GST genes have been scarcely studied in foxtail millet. Genome-wide identification and expression characteristics analysis of the foxtail millet GST gene family were conducted by biological information technology. The results showed that 73 GST genes (SiGSTs) were identified in the foxtail millet genome and were divided into seven classes. The chromosome localization results showed uneven distribution of GSTs on the seven chromosomes. There were 30 tandem duplication gene pairs belonging to 11 clusters. Only one pair of SiGSTU1 and SiGSTU23 were identified as fragment duplication genes. A total of ten conserved motifs were identified in the GST family of foxtail millet. The gene structure of SiGSTs is relatively conservative, but the number and length of exons of each gene are still different. The cis-acting elements in the promoter region of 73 SiGST genes showed that 94.5% of SiGST genes possessed defense and stress-responsive elements. The expression profiles of 37 SiGST genes covering 21 tissues suggested that most SiGST genes were expressed in multiple organs and were highly expressed in roots and leaves. By qPCR analysis, we found that 21 SiGST genes were responsive to abiotic stresses and abscisic acid (ABA). Taken together, this study provides a theoretical basis for identifying foxtail millet GST family information and improving their responses to different stresses.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Hongbo Fu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661100, China
| | - Juan Zhao
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jiagang Wang
- National Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding (in preparation), Shanxi Agricultural University, Taiyuan 030031, China
| | - Shuqi Dong
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiangyang Yuan
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaorui Li
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China
| | - Mingxun Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Liu Z, Zhang Y, Zheng Y, Feng Y, Zhang W, Gong S, Lin H, Gao P, Zhang H. Genome-wide identification glutathione-S-transferase gene superfamily in Daphnia pulex and its transcriptional response to nanoplastics. Int J Biol Macromol 2023; 230:123112. [PMID: 36621743 DOI: 10.1016/j.ijbiomac.2022.123112] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
Glutathione S-transferases (GSTs) are key multifunctional phase II detoxification enzymes involved in the regulation of growth, development, and stress responses. However, the knowledge of GSTs in the model invertebrate organism Daphnia pulex at the genomic level remains limited. In the present study, 35 GST genes were identified in D. pulex (Dp-GST), belonging to eight subfamilies, with the sigma, mu, and delta/epsilon subfamilies constituting approximately 29 %, 20 %, and 20 % of the GST superfamily, respectively. Chromosome tandem duplication of genes within the same subfamily was observed, which may be the main force driving GST expansion in D. pulex. DpGST genes showed different expression patterns in response to nanoplastic exposure for 96 h and 21 days. Some homologous GST genes in D. pulex showed similar expression patterns in response to nanoplastic exposure, likely owing to their unique motifs. For example, motif 9 is found in all delta/epsilon GST genes, whereas motifs 1, 2, 3, 5, and 7 are highly conserved in sigma GST genes. The characterization of D. pulex GSTs extending the knowledge of GST-mediated environmental contaminants, especially nanoplastics.
Collapse
Affiliation(s)
- Zhiquan Liu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Yinan Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yueyue Zheng
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yixuan Feng
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Weiping Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Si Gong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huikang Lin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Panpan Gao
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
8
|
Liu L, Zheng S, Yang D, Zheng J. Genome-wide in silico identification of glutathione S-transferase (GST) gene family members in fig ( Ficus carica L.) and expression characteristics during fruit color development. PeerJ 2023; 11:e14406. [PMID: 36718451 PMCID: PMC9884035 DOI: 10.7717/peerj.14406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
Glutathione S-transferase (GSTs), a large and diverse group of multi-functional enzymes (EC 2.5.1.18), are associated with cellular detoxification, various biotic and abiotic stress responses, as well as secondary metabolites transportation. Here, 53 members of the FcGST gene family were screened from the genome database of fig (Ficus carica), which were further classified into five subfamilies, and the tau and phi were the major subfamilies. These genes were unevenly distributed over all the 13 chromosomes, and 12 tandem and one segmental duplication may contribute to this family expansion. Syntenic analysis revealed that FcGST shared closer genetic evolutionary origin relationship with species from the Ficus genus of the Moraceae family, such as F. microcarpa and F. hispida. The FcGST members of the same subfamily shared similar gene structure and motif distribution. The α helices were the chief structure element in predicted secondary and tertiary structure of FcGSTs proteins. GO and KEGG indicated that FcGSTs play multiple roles in glutathione metabolism and stress reactions as well as flavonoid metabolism. Predictive promoter analysis indicated that FcGSTs gene may be responsive to light, hormone, stress stimulation, development signaling, and regulated by MYB or WRKY. RNA-seq analysis showed that several FcGSTs that mainly expressed in the female flower tissue and peel during 'Purple-Peel' fig fruit development. Compared with 'Green Peel', FcGSTF1, and FcGSTU5/6/7 exhibited high expression abundance in the mature fruit purple peel. Additionally, results of phylogenetic sequences analysis, multiple sequences alignment, and anthocyanin content together showed that the expression changes of FcGSTF1, and FcGSTU5/6/7 may play crucial roles in fruit peel color alteration during fruit ripening. Our study provides a comprehensive overview of the GST gene family in fig, thus facilitating the further clarification of the molecular function and breeding utilization.
Collapse
Affiliation(s)
- Longbo Liu
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Shuxuan Zheng
- Xiayi Branch of Henan Agricultural Radio and Television School, Shangqiu, Henan, China
| | - Dekun Yang
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Jie Zheng
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
9
|
Duan X, Yu X, Wang Y, Fu W, Cao R, Yang L, Ye X. Genome-wide identification and expression analysis of glutathione S-transferase gene family to reveal their role in cold stress response in cucumber. Front Genet 2022; 13:1009883. [PMID: 36246659 PMCID: PMC9556972 DOI: 10.3389/fgene.2022.1009883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
The plant glutathione S-transferases (GSTs) are versatile proteins encoded by several genes and play vital roles in responding to various physiological processes. Members of plant GSTs have been identified in several species, but few studies on cucumber (Cucumis sativus L.) have been reported. In this study, we identified 46 GST genes, which were divided into 11 classes. Chromosomal location and genome mapping revealed that cucumber GSTs (CsGSTs) were unevenly distributed in seven chromosomes, and the syntenic regions differed in each chromosome. The conserved motifs and gene structure of CsGSTs were analyzed using MEME and GSDS 2.0 online tools, respectively. Transcriptome and RT-qPCR analysis revealed that most CsGST members responded to cold stress. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for differentially expressed CsGSTs under cold stress revealed that these genes responded to cold stress probably through “glutathione metabolism.” Finally, we screened seven candidates that may be involved in cold stress using Venn analysis, and their promoters were analyzed using PlantCARE and New PLACE tools to predict the factors regulating these genes. Antioxidant enzyme activities were increased under cold stress conditions, which conferred tolerance against cold stress. Our study illustrates the characteristics and functions of CsGST genes, especially in responding to cold stress in cucumber.
Collapse
Affiliation(s)
- Xiaoyu Duan
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang, Liaoning, China
| | - Xuejing Yu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang, Liaoning, China
| | - Yidan Wang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang, Liaoning, China
| | - Wei Fu
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning, China
| | - Ruifang Cao
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang, Liaoning, China
| | - Lu Yang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang, Liaoning, China
| | - Xueling Ye
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang, Liaoning, China
- *Correspondence: Xueling Ye,
| |
Collapse
|
10
|
Genome-Wide Identification, Characterization, and Expression Analysis Related to Low-Temperature Stress of the CmGLP Gene Family in Cucumis melo L. Int J Mol Sci 2022; 23:ijms23158190. [PMID: 35897766 PMCID: PMC9330424 DOI: 10.3390/ijms23158190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023] Open
Abstract
Germin-like protein (GLP) participates in plant growth and development and plays an important role in plant stress. In the present study, 22 CmGLPs belonging to five classes were identified in the melon genome. Each member of the CmGLPs family contains a typical Cupin_1 domain. We conducted a genome-wide analysis of the melon GLP gene family characterization. CmGLPs were randomly distributed in the melon chromosomes, with the largest number on chromosome 8, having eight family members. Gene duplication events drive the evolution and expansion of the melon GLP gene family. Based on the phylogenetic tree analysis of GLP proteins in melon, rice, Arabidopsis, and cucumber, it was found that the GLP gene families of different species have diverged in evolution. Based on qRT-PCR results, all members of the CmGLP gene family could be expressed in different tissues of melon. Most CmGLP genes were up-regulated after low-temperature stress. The relative expression of CmGLP2-5 increased by 157.13 times at 48 h after low-temperature treatment. This finding suggests that the CmGLP2-5 might play an important role in low-temperature stress in melon. Furthermore, quantitative dual LUC assays indicated that CmMYB23 and CmWRKY33 can bind the promoter fragment of the CmGLP2-5. These results were helpful in understanding the functional succession and evolution of the melon GLP gene family and further revealed the response of CmGLPs to low-temperature stress in melon.
Collapse
|
11
|
Genome-Wide Identification of Glutathione S-Transferase and Expression Analysis in Response to Anthocyanin Transport in the Flesh of the New Teinturier Grape Germplasm ‘Zhongshan-HongYu’. Int J Mol Sci 2022; 23:ijms23147717. [PMID: 35887065 PMCID: PMC9317864 DOI: 10.3390/ijms23147717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
Anthocyanins are synthesized in the endoplasmic reticulum and then transported to the vacuole in plants. Glutathione S-transferases (GSTs) are thought to play a key role in anthocyanin transport. To clarify the mechanism of GST genes in the accumulation and transport of anthocyanin in the early fruit stage, we analyzed and characterized the GST family in the flesh of ‘Zhongshan-HongYu’ (ZS-HY) based on the transcriptome. In this study, the 92 GST genes identified through a comprehensive bioinformatics analysis were unevenly present in all chromosomes of grapes, except chromosomes 3, 9 and 10. Through the analysis of the chromosomal location, gene structure, conserved domains, phylogenetic relationships and cis-acting elements of GST family genes, the phylogenetic tree divided the GST genes into 9 subfamilies. Eighteen GST genes were screened and identified from grape berries via a transcriptome sequencing analysis, of which 4 belonged to the phi subfamily and 14 to the tau subfamily, and the expression levels of these GST genes were not tissue-specific. The phylogenetic analysis indicated that VvGST4 was closely related to PhAN9 and AtTT19. This study provides a foundation for the analysis of the GST gene family and insight into the roles of GSTs in grape anthocyanin transport.
Collapse
|
12
|
Duan Q, Li GR, Qu YP, Yin DX, Zhang CL, Chen YS. Genome-Wide Identification, Evolution and Expression Analysis of the Glutathione S-Transferase Supergene Family in Euphorbiaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:808279. [PMID: 35360301 PMCID: PMC8963715 DOI: 10.3389/fpls.2022.808279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Euphorbiaceae, a family of plants mainly grown in the tropics and subtropics, is also widely distributed all over the world and is well known for being rich in rubber, oil, medicinal materials, starch, wood and other economically important plant products. Glutathione S-transferases (GSTs) constitute a family of proteins encoded by a large supergene family and are widely expressed in animals, bacteria, fungi and plants, but with few reports of them in Euphorbiaceae plants. These proteins participate in and regulate the detoxification and oxidative stress response of heterogeneous organisms, resistance to stress, growth and development, signal transduction and other related processes. In this study, we identified and analyzed the whole genomes of four species of Euphorbiaceae, namely Ricinus communis, Jatropha curcas, Hevea brasiliensis, and Manihot esculenta, which have high economic and practical value. A total of 244 GST genes were identified. Based on their sequence characteristics and conserved domain types, the GST supergene family in Euphorbiaceae was classified into 10 subfamilies. The GST supergene families of Euphorbiaceae and Arabidopsis have been found to be highly conserved in evolution, and tandem repeats and translocations in these genes have made the greatest contributions to gene amplification here and have experienced strong purification selection. An evolutionary analysis showed that Euphorbiaceae GST genes have also evolved into new subtribes (GSTO, EF1BG, MAPEG), which may play a specific role in Euphorbiaceae. An analysis of expression patterns of the GST supergene family in Euphorbiaceae revealed the functions of these GSTs in different tissues, including resistance to stress and participation in herbicide detoxification. In addition, an interaction analysis was performed to determine the GST gene regulatory mechanism. The results of this study have laid a foundation for further analysis of the functions of the GST supergene family in Euphorbiaceae, especially in stress and herbicide detoxification. The results have also provided new ideas for the study of the regulatory mechanism of the GST supergene family, and have provided a reference for follow-up genetics and breeding work.
Collapse
Affiliation(s)
- Qiang Duan
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
| | - Guo-Rui Li
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
| | - Yi-Peng Qu
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
| | - Dong-Xue Yin
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
| | - Chun-Ling Zhang
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
| | - Yong-Sheng Chen
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
13
|
Gao Y, Cui Y, Zhao R, Chen X, Zhang J, Zhao J, Kong L. Cryo-Treatment Enhances the Embryogenicity of Mature Somatic Embryos via the lncRNA-miRNA-mRNA Network in White Spruce. Int J Mol Sci 2022; 23:ijms23031111. [PMID: 35163033 PMCID: PMC8834816 DOI: 10.3390/ijms23031111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
In conifers, somatic embryogenesis is uniquely initiated from immature embryos in a narrow time window, which is considerably hindered by the difficulty to induce embryogenic tissue (ET) from other tissues, including mature somatic embryos. In this study, the embryogenic ability of newly induced ET and DNA methylation levels was detected, and whole-transcriptome sequencing analyses were carried out. The results showed that ultra-low temperature treatment significantly enhanced ET induction from mature somatic embryos, with the induction rate from 0.4% to 15.5%, but the underlying mechanisms remain unclear. The newly induced ET showed higher capability in generating mature embryos than the original ET. DNA methylation levels fluctuated during the ET induction process. Here, WGCNA analysis revealed that OPT4, TIP1-1, Chi I, GASA5, GST, LAX3, WRKY7, MYBS3, LRR-RLK, PBL7, and WIN1 genes are involved in stress response and auxin signal transduction. Through co-expression analysis, lncRNAs MSTRG.505746.1, MSTRG.1070680.1, and MSTRG.33602.1 might bind to pre-novel_miR_339 to promote the expression of WRKY7 genes for stress response; LAX3 could be protected by lncRNAs MSTRG.1070680.1 and MSTRG.33602.1 via serving as sponges for novel_miR_495 to initiate auxin signal transduction; lncRNAs MSTRG.505746.1, MSTRG.1070680.1, and MSTRG.33602.1 might serve as sponges for novel_miR_527 to enhance the expression of Chi I for early somatic embryo development. This study provides new insight into the area of stress-enhanced early somatic embryogenesis in conifers, which is also attributable to practical applications.
Collapse
Affiliation(s)
- Ying Gao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Ying Cui
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Ruirui Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Xiaoyi Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Jinfeng Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Jian Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
- Correspondence: (J.Z.); (L.K.)
| | - Lisheng Kong
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
- Correspondence: (J.Z.); (L.K.)
| |
Collapse
|
14
|
Shen W, Zeng C, Zhang H, Zhu K, He H, Zhu W, He H, Li G, Liu J. Integrative Physiological, Transcriptional, and Metabolic Analyses Provide Insights Into Response Mechanisms of Prunus persica to Autotoxicity Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:794881. [PMID: 34975982 PMCID: PMC8714634 DOI: 10.3389/fpls.2021.794881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/26/2021] [Indexed: 05/10/2023]
Abstract
Autotoxicity is known as a critical factor in replanting problem that reduces land utilization and creates economic losses. Benzoic acid (BA) is identified as a major autotoxin in peach replant problem, and causes stunted seedling growth or even death. However, the physiological and molecular mechanisms of peach response to BA stress remain elusive. Here, we comprehensively studied the morphophysiological, transcriptional, and metabolic responses of peach plants to BA toxicity. Results showed that BA stress inhibited peach seedlings growth, decreased chlorophyll contents and fluorescence levels, as well as disturbed mineral metabolism. The contents of hydrogen peroxide, superoxide anion, and malondialdehyde, as well as the total antioxidant capacity, were significantly increased under BA stress. A total of 6,319 differentially expressed genes (DEGs) were identified after BA stress, of which the DEGs related to photosynthesis, redox, and ion metabolism were greatly changed; meanwhile, numerous stress-responsive genes (HSPs, GSTs, GR, and ABC transporters) and transcription factors (MYB, AP2/ERF, NAC, bHLH, and WRKY) were noticeably altered under BA stress. BA induced metabolic reprogramming, and 74 differentially accumulated metabolites, including amino acids and derivatives, fatty acids, organic acids, sugars, and sugar alcohols, were identified in BA-stressed roots. Furthermore, an integrated analysis of genes and metabolites indicated that most of the co-mapped KEGG pathways were enriched in amino acid and carbohydrate metabolism, which implied a disturbed carbon and nitrogen metabolism after BA stress. The findings would be insightful in elucidating the mechanisms of plant response to autotoxicity stress, and help guide crops in alleviating replant problem.
Collapse
Affiliation(s)
- Wanqi Shen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Chunfa Zeng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - He Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Hao He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China
| | - Wei Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hanzi He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guohuai Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Guohuai Li, , orcid.org/0000-0003-1170-9157
| | - Junwei Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Junwei Liu, , orcid.org/0000-0002-8842-2253
| |
Collapse
|
15
|
Identification of Anthocyanins-Related Glutathione S-Transferase (GST) Genes in the Genome of Cultivated Strawberry ( Fragaria × ananassa). Int J Mol Sci 2020; 21:ijms21228708. [PMID: 33218073 PMCID: PMC7698900 DOI: 10.3390/ijms21228708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
Anthocyanins are responsible for the red color of strawberry, they are a subclass of flavonoids synthesized in cytosol and transferred to vacuole to form the visible color. Previous studies in model and ornamental plants indicated members of the glutathione S-transferase (GST) gene family were involved in vacuolar accumulation of anthocyanins. In the present study, a total of 130 FaGST genes were identified in the genome of cultivated strawberry (Fragaria × ananassa), which were unevenly distributed across the 28 chromosomes from the four subgenomes. Evolutionary analysis revealed the expansion of FaGST family was under stable selection and mainly drove by WGD/segmental duplication event. Classification and phylogenetic analysis indicated that all the FaGST genes were clarified into seven subclasses, among which FaGST1, FaGST37, and FaGST97 belonging to Phi class were closely related to FvRAP, an anthocyanin-related GST of wildwood strawberry, and this clade was clustered with other known anthocyanin-related GSTs. RNAseq-based expression analysis at different developmental stages of strawberry revealed that the expression of FaGST1, FaGST37, FaGST39, FaGST73, and FaGST97 was gradually increased during the fruit ripening, consistent with the anthocyanins accumulation. These expression patterns of those five FaGST genes were also significantly correlated with those of other anthocyanin biosynthetic genes such as FaCHI, FaCHS, and FaANS, as well as anthocyanin regulatory gene FaMYB10. These results indicated FaGST1, FaGST37, FaGST39, FaGST73, and FaGST97 may function in vacuolar anthocyanin accumulation in cultivated strawberry.
Collapse
|