1
|
Yang R, Guo S, Huo L, Yang G, Tian S. Impact of watershed-scale land restoration on soil microbial communities and their functions: Insights from metagenomic analysis. ENVIRONMENTAL RESEARCH 2025; 277:121609. [PMID: 40252793 DOI: 10.1016/j.envres.2025.121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/30/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
Land restoration in the gully regions of China's Loess Plateau has significantly altered soil conditions and farming practices, yet its impact on soil microbes remains unclear. This study applied metagenomic sequencing and correlation analysis to examine microbial community shifts and key genes involved in carbon, nitrogen, and phosphorus cycling. Results show increased biodiversity and microbial activity, especially downstream, enhancing carbon metabolism and ecosystem resilience. Phosphorus activation improved, with related gene abundance rising by 27.45 %-52.57 %, facilitating phosphorus availability. Nitrogen cycling showed enhanced nitrification and nitrogen fixation, with reduced denitrification, promoting nitrogen retention. Soil organic carbon, total nitrogen, ammonium nitrogen, and available phosphorus (AP), particularly AP, strongly influenced microbial dynamics. These findings highlight the positive role of land restoration in improving soil health and nutrient cycling, supporting sustainable agriculture.
Collapse
Affiliation(s)
- Rui Yang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Shaoqing Guo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, PR China
| | - Lijuan Huo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, PR China
| | - Gaiqiang Yang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, PR China
| | - Shuting Tian
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, PR China
| |
Collapse
|
2
|
Zhu LR, Cui W, Liu HP. Research progress and advances in endoplasmic reticulum stress regulation of acute kidney injury. Ren Fail 2024; 46:2433160. [PMID: 39586579 PMCID: PMC11590187 DOI: 10.1080/0886022x.2024.2433160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Acute kidney injury (AKI) is a common and severe clinical disorder in which endoplasmic reticulum (ER) stress plays an important regulatory role. In this review, we summarize the research progress on the relationship between ER stress and AKI. It emphasizes the importance of maintaining a balance between promoting and protecting ER stress during AKI and highlights the potential of ER stress-targeted drugs as a new therapeutic approach for AKI. The article also discusses the need for developing drugs that target ER stress effectively while avoiding adverse effects on normal cells and tissues. The review concludes that with a more comprehensive understanding of ER stress mechanisms and advancements in research techniques, more effective treatment options for AKI can be developed in the future.
Collapse
Affiliation(s)
- Li-Ran Zhu
- Anhui Institute of Pediatric Research, Anhui Provincial Children’s Hospital (Children’s Hospital of Fudan University Anhui Hospital; Children’s Medical Center of Anhui Medical University), Hefei, Anhui, China
| | - Wei Cui
- Department of Scientific Research and Education, Anhui Provincial Children’s Hospital (Children’s Hospital of Fudan University Anhui Hospital; Children’s Medical Center of Anhui Medical University), Hefei, Anhui, China
| | - Hai-Peng Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children’s Hospital (Children’s Hospital of Fudan University Anhui Hospital; Children’s Medical Center of Anhui Medical University), Hefei, Anhui, China
| |
Collapse
|
3
|
Giulietti S, Bigini V, Savatin DV. ROS and RNS production, subcellular localization, and signaling triggered by immunogenic danger signals. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4512-4534. [PMID: 37950493 DOI: 10.1093/jxb/erad449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Plants continuously monitor the environment to detect changing conditions and to properly respond, avoiding deleterious effects on their fitness and survival. An enormous number of cell surface and intracellular immune receptors are deployed to perceive danger signals associated with microbial infections. Ligand binding by cognate receptors represents the first essential event in triggering plant immunity and determining the outcome of the tissue invasion attempt. Reactive oxygen and nitrogen species (ROS/RNS) are secondary messengers rapidly produced in different subcellular localizations upon the perception of immunogenic signals. Danger signal transduction inside the plant cells involves cytoskeletal rearrangements as well as several organelles and interactions between them to activate key immune signaling modules. Such immune processes depend on ROS and RNS accumulation, highlighting their role as key regulators in the execution of the immune cellular program. In fact, ROS and RNS are synergic and interdependent intracellular signals required for decoding danger signals and for the modulation of defense-related responses. Here we summarize current knowledge on ROS/RNS production, compartmentalization, and signaling in plant cells that have perceived immunogenic danger signals.
Collapse
Affiliation(s)
- Sarah Giulietti
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Daniel V Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
4
|
Liu Q, Zhang C, Fang H, Yi L, Li M. Indispensable Biomolecules for Plant Defense Against Pathogens: NBS-LRR and "nitrogen pool" Alkaloids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111752. [PMID: 37268110 DOI: 10.1016/j.plantsci.2023.111752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
In a complex natural environment, plants have evolved intricate and subtle defense response regulatory mechanisms for survival. Plant specific defenses, including the disease resistance protein nucleotide-binding site leucine-rich repeat (NBS-LRR) protein and metabolite derived alkaloids, are key components of these complex mechanisms. The NBS-LRR protein can specifically recognize the invasion of pathogenic microorganisms to trigger the immune response mechanism. Alkaloids, synthesized from amino acids or their derivatives, can also inhibit pathogens. This study reviews NBS-LRR protein activation, recognition, and downstream signal transduction in plant protection, as well as the synthetic signaling pathways and regulatory defense mechanisms associated with alkaloids. In addition, we clarify the basic regulation mechanism and summarize their current applications and the development of future applications in biotechnology for these plant defense molecules. Studies on the NBS-LRR protein and alkaloid plant disease resistance molecules may provide a theoretical foundation for the cultivation of disease resistant crops and the development of botanical pesticides.
Collapse
Affiliation(s)
- Qian Liu
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China; Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China
| | - Chunhong Zhang
- Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China
| | - Huiyong Fang
- Hebei University of Chinese Medicine, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.
| | - Letai Yi
- Inner Mongolia Medical University, Hohhot, China.
| | - Minhui Li
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China; Baotou Medical College, Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus membranaceus of the Geoherbs, Baotou, China; Inner Mongolia Institute of Traditional Chinese and Mongolian Medicine, Hohhot, China.
| |
Collapse
|
5
|
Cha JY, Uddin S, Macoy DM, Shin GI, Jeong SY, Ali I, Hwang JW, Ji MG, Lee SC, Park JH, Sultana M, Ryu GR, Ahn G, Lee SY, Kim MG, Kim WY. Nucleoredoxin gene SINRX1 negatively regulates tomato immunity by activating SA signaling pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107804. [PMID: 37269823 DOI: 10.1016/j.plaphy.2023.107804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
The tomato (Solanum lycopersicum) is widely consumed globally and renowned for its health benefits, including the reduction of cardiovascular disease and prostate cancer risk. However, tomato production faces significant challenges, particularly due to various biotic stresses such as fungi, bacteria, and viruses. To address this challenges, we employed the CRISPR/Cas9 system to modify the tomato NUCLEOREDOXIN (SlNRX) genes (SlNRX1 and SlNRX2) belonging to the nucleocytoplasmic THIOREDOXIN subfamily. CRISPR/Cas9-mediated mutations in SlNRX1 (slnrx1) plants exhibited resistance against bacterial leaf pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326, as well as the fungal pathogen Alternaria brassicicola. However, the slnrx2 plants did not display resistance. Notably, the slnrx1 demonstrated elevated levels of endogenous salicylic acid (SA) and reduced levels of jasmonic acid after Psm infection, in comparison to both wild-type (WT) and slnrx2 plants. Furthermore, transcriptional analysis revealed that genes involved in SA biosynthesis, such as ISOCHORISMATE SYNTHASE 1 (SlICS1) and ENHANCED DISEASE SUSCEPTIBILITY 5 (SlEDS5), were upregulated in slnrx1 compared to WT plants. In addition, a key regulator of systemic acquired resistance, PATHOGENESIS-RELATED 1 (PR1), exhibited increased expression in slnrx1 compared to WT. These findings suggest that SlNRX1 acts as a negative regulator of plant immunity, facilitating infection by the Psm pathogen through interference with the phytohormone SA signaling pathway. Thus, targeted mutagenesis of SlNRX1 is a promising genetic means to enhance biotic stress resistance in crop breeding.
Collapse
Affiliation(s)
- Joon Yung Cha
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Shahab Uddin
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Donah Mary Macoy
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Song Yi Jeong
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Imdad Ali
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ji-Won Hwang
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myung Geun Ji
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang Cheol Lee
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Joung Hun Park
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Marium Sultana
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyeong Ryul Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyeongik Ahn
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21four), PMBBRC, RILS, IALS, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
6
|
Beihammer G, Romero-Pérez A, Maresch D, Figl R, Mócsai R, Grünwald-Gruber C, Altmann F, Van Damme EJM, Strasser R. Pseudomonas syringae DC3000 infection increases glucosylated N-glycans in Arabidopsis thaliana. Glycoconj J 2023; 40:97-108. [PMID: 36269466 PMCID: PMC9925501 DOI: 10.1007/s10719-022-10084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
Abstract
Studying the interaction between the hemibiotrophic bacterium Pseudomonas syringae pv. tomato DC3000 and Arabidopsis thaliana has shed light onto the various forms of mechanisms plants use to defend themselves against pathogen attack. While a lot of emphasis has been put on investigating changes in protein expression in infected plants, only little information is available on the effect infection plays on the plants N-glycan composition. To close this gap in knowledge, total N-glycans were enriched from P. syringae DC3000-infected and mock treated Arabidopsis seedlings and analyzed via MALDI-TOF-MS. Additionally, fluorescently labelled N-glycans were quantified via HPLC-FLD. N-glycans from infected plants were overall less processed and displayed increased amounts of oligomannosidic N-glycans. As multiple peaks for certain oligomannosidic glycoforms were detected upon separation via liquid chromatography, a porous graphitic carbon (PGC)-analysis was conducted to separate individual N-glycan isomers. Indeed, multiple different N-glycan isomers with masses of two N-acetylhexosamine residues plus 8, 9 or 10 hexoses were detected in the infected plants which were absent in the mock controls. Treatment with jack bean α-mannosidase resulted in incomplete removal of hexoses from these N-glycans, indicating the presence of glucose residues. This hints at the accumulation of misfolded glycoproteins in the infected plants, likely because of endoplasmic reticulum (ER) stress. In addition, poly-hexose structures susceptible to α-amylase treatment were found in the DC3000-infected plants, indicating alterations in starch metabolism due to the infection process.
Collapse
Affiliation(s)
- Gernot Beihammer
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andrea Romero-Pérez
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Daniel Maresch
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rudolf Figl
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Réka Mócsai
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
7
|
Yu X, Wang T, Li Y, Li Y, Bai B, Fang J, Han J, Li S, Xiu Z, Liu Z, Yang X, Li Y, Zhu G, Jin N, Shang C, Li X, Zhu Y. Apoptin causes apoptosis in HepG-2 cells via Ca 2+ imbalance and activation of the mitochondrial apoptotic pathway. Cancer Med 2022; 12:8306-8318. [PMID: 36515089 PMCID: PMC10134343 DOI: 10.1002/cam4.5528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/06/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Apoptin is derived from the chicken anemia virus and exhibits specific cytotoxic effects against tumor cells. Herein, we found that Apoptin induced a strong and lasting endoplasmic reticulum (ER) stress response, Ca2+ imbalance, and triggered the mitochondrial apoptotic pathway. The aim of this study was to explore the mechanisms by which Apoptin exhibited anti-tumor effects in HepG-2 cells. METHODS The intracellular levels of calcium (Ca2+ ) were induced by ER stress and determined by electron microscopy, flow cytometry, and fluorescence staining. The mitochondrial injury was determined by mitochondrial membrane potential and electron microscopy. Western blotting was used to investigate the levels of key proteins in ER stress and the apoptotic pathway in mitochondria. The relationship between Ca2+ levels and apoptosis in Apoptin-treated cells was analyzed using a Ca2+ chelator (BAPTA-AM), flow cytometry, and fluorescence staining. We also investigated the in vivo effects of Ca2+ imbalance on the mitochondrial apoptotic pathway using tumor tissues xenografted on nude mice. RESULTS This study showed that Apoptin induced a strong and long- lasting ER stress and injury, which subsequently led to an imbalance of cellular Ca2+ levels, a reduction in the mitochondrial membrane potential, a significant extent image in the mitochondrial structure, and an increase in the expression levels of Smac/Diablo and Cyto-C. CONCLUSIONS In summary, Apoptin induced apoptosis in HepG-2 cells via Ca2+ imbalance and activation of the mitochondrial apoptotic pathway. This study provided a new direction for antitumor research in Apoptin.
Collapse
Affiliation(s)
- Xiaoyang Yu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Tongxing Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yue Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Yiquan Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Bing Bai
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jinbo Fang
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jicheng Han
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Shanzhi Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zhiru Xiu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zirui Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xia Yang
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Yaru Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Guangze Zhu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Ningyi Jin
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiao Li
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yilong Zhu
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
8
|
Giordano L, Allasia V, Cremades A, Hok S, Panabières F, Bailly-Maître B, Keller H. A plant receptor domain with functional analogies to animal malectin disables ER stress responses upon infection. iScience 2022; 25:103877. [PMID: 35243239 PMCID: PMC8861646 DOI: 10.1016/j.isci.2022.103877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/06/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Malectins from the oligosaccharyltransferase (OST) complex in the endoplasmic reticulum (ER) of animal cells are involved in ER quality control and contribute to the Unfolded Protein Response (UPR). Malectins are not found in plant cells, but malectin-like domains (MLDs) are constituents of many membrane-bound receptors. In Arabidopsis thaliana, the MLD-containing receptor IOS1 promotes successful infection by filamentous plant pathogens. We show that the MLD of its exodomain retains IOS1 in the ER of plant cells and attenuates the infection-induced UPR. Expression of the MLD in the ios1-1 knockout background is sufficient to complement infection-related phenotypes of the mutant, such as increased UPR and reduced disease susceptibility. IOS1 interacts with the ER membrane-associated ribophorin HAP6 from the OST complex, and hap6 mutants show decreased pathogen-responsive UPR and increased disease susceptibility. Altogether, this study revealed a previously uncharacterized role of a plant receptor domain in the regulation of ER stress during infection. The Unfolded Protein Response (UPR) in plants impairs downy mildew infection The pathogen exploits a molecular mechanism of the host cell to promote disease The extracellular domain of the receptor IOS1 attenuates the pathogen-induced UPR IOS1 interacts with the ribophorin HAP6 in the ER to fine-tune the UPR
Collapse
|
9
|
Verchot J, Pajerowska-Mukhtar KM. UPR signaling at the nexus of plant viral, bacterial, and fungal defenses. Curr Opin Virol 2020; 47:9-17. [PMID: 33360330 DOI: 10.1016/j.coviro.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022]
Abstract
In recent years there have been significant advances in our understanding of the ER stress responses in plants that are associated with virus infection, as well as bacterial and fungal diseases. In plants, ER stress induced by virus infection includes several signaling pathways that include the unfolded protein response (UPR) to promote the expression of chaperone proteins for proper protein folding. Understanding how facets of ER stress signaling broadly engage in pathogen responses, as well as those that are specific to virus infection is important to distinguishing features essential for broad cellular defenses and processes that may be specifically linked to viral infectivity and disease.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845, USA..
| | | |
Collapse
|