1
|
Oh H, Mengist MF, Ma G, Giongo L, Pottorff M, Spencer JA, Perkins-Veazie P, Iorizzo M. Unraveling the genetic architecture of blueberry fruit quality traits: major loci control organic acid content while more complex genetic mechanisms control texture and sugar content. BMC PLANT BIOLOGY 2025; 25:36. [PMID: 39789463 PMCID: PMC11721283 DOI: 10.1186/s12870-025-06061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND Fruit quality traits, including taste, flavor, texture, and shelf-life, have emerged as important breeding priorities in blueberry (Vaccinium corymbosum). Organic acids and sugars play crucial roles in the perception of blueberry taste/flavor, where low and high consumer liking are correlated with high organic acids and high sugars, respectively. Blueberry texture and appearance are also critical for shelf-life quality and consumers' willingness-to-pay. As the genetic mechanisms that determine these fruit quality traits remain largely unknown, in this study, an F1 mapping population was used to perform quantitative trait loci (QTL) mapping for pH, titratable acidity (TA), organic acids, total soluble solids (TSS), sugars, fruit size, and texture at harvest and/or post-storage and weight loss. RESULTS Twenty-eight QTLs were detected for acidity-related parameters (pH, TA, and organic acid content). Six QTLs for pH, TA, and citric acid, two for quinic acid, and two for shikimic acid with major effects were consistently detected across two years on the same genomic regions on chromosomes 3, 4, and 5, respectively. Putative candidate genes for these QTLs were also identified using comparative transcriptomic analysis. No QTL was detected for malic acid content, TSS, or individual sugar content. A total of 146 QTLs with minor effects were identified for texture- and size-related parameters. With a few exceptions, these QTLs were generally inconsistent over years and post-storage, indicating a highly quantitative nature. CONCLUSIONS Our findings enhance the understanding of the genetic basis underlying fruit quality traits in blueberry and guide future work to exploit DNA-informed selection strategies in blueberry breeding programs. The major-effect QTLs identified for acidity-related fruit characteristics could be potential targets to develop DNA markers for marker-assisted selection (MAS). On the other hand, genomic selection may be a more suitable approach than MAS when targeting fruit texture, sugars, or size.
Collapse
Affiliation(s)
- Heeduk Oh
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
- Department of Horticulture, North Carolina State University, Raleigh, NC, 27607, USA
| | - Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
- Agricultural Research Station, Virginia State University, Petersburg, VA, 23806, USA
| | - Guoying Ma
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Lara Giongo
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele a/A, Trento, Italy
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Jessica A Spencer
- Department of Horticulture, North Carolina State University, Raleigh, NC, 27607, USA
| | - Penelope Perkins-Veazie
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA.
- Department of Horticulture, North Carolina State University, Raleigh, NC, 27607, USA.
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA.
- Department of Horticulture, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|
2
|
Rojas‐Barros P, Wernow J, Workmaster BA, Zalapa J, Devi JM, Atucha A. Fruit Cuticle Thickness and Anatomical Changes in Pedicel Xylem Vessels Influence Fruit Transpiration and Calcium Accumulation in Cranberry Fruit. PHYSIOLOGIA PLANTARUM 2025; 177:e70036. [PMID: 39790044 PMCID: PMC11718430 DOI: 10.1111/ppl.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
Ca is a key nutrient for fruit quality due to its role in bonding with pectin in the cell wall, providing strength through cell-to-cell adhesion, thus increasing fruit firmness and extending post-harvest life. However, Ca accumulation is mostly limited to the initial stages of fruit development due to anatomical and physiological changes that occur as fruits develop. The objective of this study was to evaluate fruit transpiration, cuticle thickness, and pedicel vessel changes during cranberry fruit development and the effect these parameters might have on Ca translocation. 'Stevens' cranberry fruits were collected weekly, starting seven days after full bloom (DAFB) until 70 DAFB. For each collection date, fruit transpiration was evaluated in the field, and samples were taken to analyze total fruit Ca content, stomata density, cuticle thickness, pedicel anatomical changes, and xylem functionality. Ca accumulation in the fruit exhibited a sigmoidal curve, beginning at 0.04 mg per berry at 7 DAFB, increasing to a maximum of 0.1 mg per berry at 28 DAFB, and remaining constant until harvest (70 DAFB). Fruit Ca accumulation was mostly explained by fruit transpiration, which exhibited a similar sigmoidal pattern. The rapid decline in fruit transpiration was largely modulated by increases in cuticle thickness, as well as anatomical changes in the pedicel xylem, thereby reducing the capacity to transport water and nutrients into the fruit. Thus, this research could help cranberry growers maximize fruit Ca content by prioritizing fertilization during the early stages of fruit development.
Collapse
Affiliation(s)
- Pedro Rojas‐Barros
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWI
| | - Jane Wernow
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWI
| | - Beth Ann Workmaster
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWI
| | - Juan Zalapa
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWI
- USDA‐ARS, Vegetable Crops Research Unit, Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWI
| | - Jyostna Mura Devi
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWI
- USDA‐ARS, Vegetable Crops Research Unit, Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWI
| | - Amaya Atucha
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWI
| |
Collapse
|
3
|
Yang H, Wei Z, Wu Y, Zhang C, Lyu L, Wu W, Li W. Transcriptomic and Metabolomic Profiling Reveals the Variations in Carbohydrate Metabolism between Two Blueberry Cultivars. Int J Mol Sci 2023; 25:293. [PMID: 38203463 PMCID: PMC10778917 DOI: 10.3390/ijms25010293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Blueberry is a high-quality fruit tree with significant nutritional and economic value, but the intricate mechanism of sugar accumulation in its fruit remains unclear. In this study, the ripe fruits of blueberry cultivars 'Anna' and 'Misty' were utilized as experimental materials, and physiological and multi-omics methodologies were applied to analyze the regulatory mechanisms of the difference in sugar content between them. The results demonstrated that the 'Anna' fruit was smaller and had less hardness than the 'Misty' fruit, as well as higher sugar content, antioxidant capability, and lower active substance content. A total of 7067 differentially expressed genes (DEGs) (3674 up-regulated and 3393 down-regulated) and 140 differentially abundant metabolites (DAMs) (82 up-regulated and 58 down-regulated) were identified between the fruits of the two cultivars. According to KEGG analysis, DEGs were primarily abundant in phenylpropanoid synthesis and hormone signal transduction pathways, whereas DAMs were primarily enriched in ascorbate and aldarate metabolism, phenylpropanoid biosynthesis, and the pentose phosphate pathway. A combined multi-omics study showed that 116 DEGs and 3 DAMs in starch and sucrose metabolism (48 DEGs and 1 DAM), glycolysis and gluconeogenesis (54 DEGs and 1 DAM), and the pentose phosphate pathway (14 DEGs and 1 DAM) were significantly enriched. These findings suggest that blueberries predominantly increase sugar accumulation by activating carbon metabolism network pathways. Moreover, we identified critical transcription factors linked to the sugar response. This study presents new understandings regarding the molecular mechanisms underlying blueberry sugar accumulation and will be helpful in improving blueberry fruit quality through breeding.
Collapse
Affiliation(s)
- Haiyan Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (H.Y.); (Y.W.); (C.Z.); (L.L.)
| | - Zhiwen Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Yaqiong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (H.Y.); (Y.W.); (C.Z.); (L.L.)
| | - Chunhong Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (H.Y.); (Y.W.); (C.Z.); (L.L.)
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (H.Y.); (Y.W.); (C.Z.); (L.L.)
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (H.Y.); (Y.W.); (C.Z.); (L.L.)
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
4
|
Romero I, Escribano MI, Merodio C, Sanchez-Ballesta MT. Postharvest High-CO 2 Treatments on the Quality of Soft Fruit Berries: An Integrated Transcriptomic, Proteomic, and Metabolomic Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8593-8597. [PMID: 35792090 PMCID: PMC9305969 DOI: 10.1021/acs.jafc.2c01305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft fruits are appreciated for their taste qualities and for being a source of health-promoting compounds. However, their postharvest is affected by their high respiratory rates and susceptibility to fungal decay. Our aim here is to provide a perspective on the application of short-term high-CO2 treatments at a low temperature to maintain the postharvest quality of soft fruits. This work also suggests using a multi-omics approach to better understand the role of the cell wall and phenolic compounds in maintaining quality. Finally, the contribution of high-throughput transcriptomic technologies to understand the mechanisms modulated by the short-term gaseous treatments is also highlighted.
Collapse
|
5
|
Rojas B, Suárez-Vega F, Saez-Aguayo S, Olmedo P, Zepeda B, Delgado-Rioseco J, Defilippi BG, Pedreschi R, Meneses C, Pérez-Donoso AG, Campos-Vargas R. Pre-Anthesis Cytokinin Applications Increase Table Grape Berry Firmness by Modulating Cell Wall Polysaccharides. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122642. [PMID: 34961114 PMCID: PMC8708260 DOI: 10.3390/plants10122642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The use of plant growth regulators (PGRs) is widespread in commercial table grape vineyards. The synthetic cytokinin CPPU is a PGR that is extensively used to obtain higher quality grapes. However, the effect of CPPU on berry firmness is not clear. The current study investigated the effects of pre-anthesis applications (BBCH15 and BBCH55 stages) of CPPU on 'Thompson Seedless' berry firmness at harvest through a combination of cytological, morphological, and biochemical analyses. Ovaries in CPPU-treated plants presented morphological changes related to cell division and cell wall modification at the anthesis stage (BBCH65). Moreover, immunofluorescence analysis with monoclonal antibodies 2F4 and LM15 against pectin and xyloglucan demonstrated that CPPU treatment resulted in cell wall modifications at anthesis. These early changes have major repercussions regarding the hemicellulose and pectin cell wall composition of mature fruits, and are associated with increased calcium content and a higher berry firmness at harvest.
Collapse
Affiliation(s)
- Bárbara Rojas
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile; (B.R.); (P.O.)
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile; (S.S.-A.); (J.D.-R.); (C.M.)
| | - Felipe Suárez-Vega
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile; (S.S.-A.); (J.D.-R.); (C.M.)
| | - Patricio Olmedo
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile; (B.R.); (P.O.)
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile; (S.S.-A.); (J.D.-R.); (C.M.)
| | - Baltasar Zepeda
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands;
| | - Joaquín Delgado-Rioseco
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile; (S.S.-A.); (J.D.-R.); (C.M.)
| | - Bruno G. Defilippi
- INIA La Platina, Instituto de Investigaciones Agropecuarias, Santiago 8831314, Chile;
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile;
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile; (S.S.-A.); (J.D.-R.); (C.M.)
| | - Alonso G. Pérez-Donoso
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Reinaldo Campos-Vargas
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile; (B.R.); (P.O.)
| |
Collapse
|