1
|
Wei C, Yang H, Ye B, Wei W, Shan W, Chen J, Chen K, Li X, Deng Z, Zhang B. Ubiquitination of the PpMADS2 transcription factor controls linalool production during UV-B irradiation in detached peach fruit. PLANT PHYSIOLOGY 2025; 198:kiaf159. [PMID: 40329870 DOI: 10.1093/plphys/kiaf159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/10/2025] [Indexed: 04/26/2025]
Abstract
Plant secondary metabolites undergo changes in response to UV-B irradiation. Although UV-B irradiation reduces flavor-associated volatile compounds in detached peach (Prunus persica L. Batsch) fruit, the underlying regulatory mechanisms remain unclear. By integrating proteomic, transcriptomic, and metabolomic data from peach fruit following UV-B irradiation, we discovered that the detached fruit responds to UV-B by suppressing the biosynthesis of the flavor-related monoterpene linalool. We identified PpMADS2, a transcription factor that regulates linalool biosynthesis by activating terpene synthase 1 (PpTPS1) expression. PpMADS2 overexpression in peach and tomato fruits significantly increased linalool levels compared with the controls. Proteomic data and immunoblots revealed a decrease in PpMADS2 abundance following exposure to UV-B. Moreover, our results demonstrated that PpMADS2 interacts with the E3 ubiquitin ligase PpCOP1 both in vitro and in vivo. The UV-B-induced 26S-proteasome-mediated degradation of PpMADS2 is largely PpCOP1-dependent. Taken together, our findings demonstrate that linalool biosynthesis in detached peach fruit exposed to UV-B radiation is governed by the PpCOP1-PpMADS2-PpTPS1 module. This study enhances our understanding of the interplay between light signaling and fruit flavor quality. Multiomics approaches offer valuable resources for investigating the mechanisms underlying how light influences metabolism in fruit crops.
Collapse
Affiliation(s)
- Chunyan Wei
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road No. 298, Hangzhou, Zhejiang Province 310021, China
| | - Huizhen Yang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Bingbing Ye
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Kunsong Chen
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xian Li
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Bo Zhang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
2
|
Razalli II, Abdullah-Zawawi MR, Tamizi AA, Harun S, Zainal-Abidin RA, Jalal MIA, Ullah MA, Zainal Z. Accelerating crop improvement via integration of transcriptome-based network biology and genome editing. PLANTA 2025; 261:92. [PMID: 40095140 DOI: 10.1007/s00425-025-04666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
MAIN CONCLUSION Big data and network biology infer functional coupling between genes. In combination with machine learning, network biology can dramatically accelerate the pace of gene discovery using modern transcriptomics approaches and be validated via genome editing technology for improving crops to stresses. Unlike other living things, plants are sessile and frequently face various environmental challenges due to climate change. The cumulative effects of combined stresses can significantly influence both plant growth and yields. In navigating the complexities of climate change, ensuring the nourishment of our growing population hinges on implementing precise agricultural systems. Conventional breeding methods have been commonly employed; however, their efficacy has been impeded by limitations in terms of time, cost, and infrastructure. Cutting-edge tools focussing on big data are being championed to usher in a new era in stress biology, aiming to cultivate crops that exhibit enhanced resilience to multifactorial stresses. Transcriptomics, combined with network biology and machine learning, is proving to be a powerful approach for identifying potential genes to target for gene editing, specifically to enhance stress tolerance. The integration of transcriptomic data with genome editing can yield significant benefits, such as gaining insights into gene function by modifying or manipulating of specific genes in the target plant. This review provides valuable insights into the use of transcriptomics platforms and the application of biological network analysis and machine learning in the discovery of novel genes, thereby enhancing the understanding of plant responses to combined or sequential stress. The transcriptomics as a forefront omics platform and how it is employed through biological networks and machine learning that lead to novel gene discoveries for producing multi-stress-tolerant crops, limitations, and future directions have also been discussed.
Collapse
Affiliation(s)
- Izreen Izzati Razalli
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Muhammad-Redha Abdullah-Zawawi
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Amin-Asyraf Tamizi
- Malaysian Agricultural Research and Development Institute (MARDI), 43400, Serdang, Selangor, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | | | - Muhammad Irfan Abdul Jalal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Mohammad Asad Ullah
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Bangladesh Institute of Nuclear Agriculture (BINA), BAU Campus, Mymensingh, 2202, Bangladesh
| | - Zamri Zainal
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
3
|
Yang Y, Li Y, Jin L, Li P, Zhou Q, Sheng M, Ma X, Shoji T, Hao X, Kai G. A transcription factor of SHI family AaSHI1 activates artemisinin biosynthesis genes in Artemisia annua. BMC Genomics 2024; 25:776. [PMID: 39123103 PMCID: PMC11312704 DOI: 10.1186/s12864-024-10683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Transcription factors (TFs) of plant-specific SHORT INTERNODES (SHI) family play a significant role in regulating development and metabolism in plants. In Artemisia annua, various TFs from different families have been discovered to regulate the accumulation of artemisinin. However, specific members of the SHI family in A. annua (AaSHIs) have not been identified to regulate the biosynthesis of artemisinin. RESULTS We found five AaSHI genes (AaSHI1 to AaSHI5) in the A. annua genome. The expression levels of AaSHI1, AaSHI2, AaSHI3 and AaSHI4 genes were higher in trichomes and young leaves, also induced by light and decreased when the plants were subjected to dark treatment. The expression pattern of these four AaSHI genes was consistent with the expression pattern of four structural genes of artemisinin biosynthesis and their specific regulatory factors. Dual-luciferase reporter assays, yeast one-hybrid assays, and transient transformation in A. annua provided the evidence that AaSHI1 could directly bind to the promoters of structural genes AaADS and AaCYP71AV1, and positively regulate their expressions. This study has presented candidate genes, with AaSHI1 in particular, that can be considered for the metabolic engineering of artemisinin biosynthesis in A. annua. CONCLUSIONS Overall, a genome-wide analysis of the AaSHI TF family of A. annua was conducted. Five AaSHIs were identified in A. annua genome. Among the identified AaSHIs, AaSHI1 was found to be localized to the nucleus and activate the expression of structural genes of artemisinin biosynthesis including AaADS and AaCYP71AV1. These results indicated that AaSHI1 had positive roles in modulating artemisinin biosynthesis, providing candidate genes for obtaining high-quality new A. annua germplasms.
Collapse
Affiliation(s)
- Yinkai Yang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongpeng Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Li Jin
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Pengyang Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qin Zhou
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Miaomiao Sheng
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaojing Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tsubasa Shoji
- Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Xiaolong Hao
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
4
|
He W, Liu H, Wu Z, Miao Q, Hu X, Yan X, Wen H, Zhang Y, Fu X, Ren L, Tang K, Li L. The AaBBX21-AaHY5 module mediates light-regulated artemisinin biosynthesis in Artemisia annua L. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1735-1751. [PMID: 38980203 DOI: 10.1111/jipb.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/03/2024] [Indexed: 07/10/2024]
Abstract
The sesquiterpene lactone artemisinin is an important anti-malarial component produced by the glandular secretory trichomes of sweet wormwood (Artemisia annua L.). Light was previously shown to promote artemisinin production, but the underlying regulatory mechanism remains elusive. In this study, we demonstrate that ELONGATED HYPOCOTYL 5 (HY5), a central transcription factor in the light signaling pathway, cannot promote artemisinin biosynthesis on its own, as the binding of AaHY5 to the promoters of artemisinin biosynthetic genes failed to activate their transcription. Transcriptome analysis and yeast two-hybrid screening revealed the B-box transcription factor AaBBX21 as a potential interactor with AaHY5. AaBBX21 showed a trichome-specific expression pattern. Additionally, the AaBBX21-AaHY5 complex cooperatively activated transcription from the promoters of the downstream genes AaGSW1, AaMYB108, and AaORA, encoding positive regulators of artemisinin biosynthesis. Moreover, AaHY5 and AaBBX21 physically interacted with the A. annua E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1). In the dark, AaCOP1 decreased the accumulation of AaHY5 and AaBBX21 and repressed the activation of genes downstream of the AaHY5-AaBBX21 complex, explaining the enhanced production of artemisinin upon light exposure. Our study provides insights into the central regulatory mechanism by which light governs terpenoid biosynthesis in the plant kingdom.
Collapse
Affiliation(s)
- Weizhi He
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhangkuanyu Wu
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Miao
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Hu
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hangyu Wen
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaojie Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Ren
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research, Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Liu J, Peng L, Cao C, Bai C, Wang Y, Li Z, Zhu H, Wen Q, He S. Identification of WRKY Family Members and Characterization of the Low-Temperature-Stress-Responsive WRKY Genes in Luffa ( Luffa cylindrica L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:676. [PMID: 38475522 DOI: 10.3390/plants13050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The plant-specific WRKY transcription factor family members have diverse regulatory effects on the genes associated with many plant processes. Although the WRKY proteins in Arabidopsis thaliana and other species have been thoroughly investigated, there has been relatively little research on the WRKY family in Luffa cylindrica, which is one of the most widely grown vegetables in China. In this study, we performed a genome-wide analysis to identify L. cylindrica WRKY genes, which were subsequently classified and examined in terms of their gene structures, chromosomal locations, promoter cis-acting elements, and responses to abiotic stress. A total of 62 LcWRKY genes (471-2238 bp) were identified and divided into three phylogenetic groups (I, II, and III), with group II further divided into five subgroups (IIa, IIb, IIc, IId, and IIe) in accordance with the classification in other plants. The LcWRKY genes were unevenly distributed across 13 chromosomes. The gene structure analysis indicated that the LcWRKY genes contained 0-11 introns (average of 4.4). Moreover, 20 motifs were detected in the LcWRKY proteins with conserved motifs among the different phylogenetic groups. Two subgroup IIc members (LcWRKY16 and LcWRKY31) contained the WRKY sequence variant WRKYGKK. Additionally, nine cis-acting elements related to diverse responses to environmental stimuli were identified in the LcWRKY promoters. The subcellular localization analysis indicated that three LcWRKY proteins (LcWRKY43, LcWRKY7, and LcWRKY23) are localized in the nucleus. The tissue-specific LcWRKY expression profiles reflected the diversity in LcWRKY expression. The RNA-seq data revealed the effects of low-temperature stress on LcWRKY expression. The cold-induced changes in expression were verified via a qRT-PCR analysis of 24 differentially expressed WRKY genes. Both LcWRKY7 and LcWRKY12 were highly responsive to the low-temperature treatment (approximately 110-fold increase in expression). Furthermore, the LcWRKY8, LcWRKY12, and LcWRKY59 expression levels increased by more than 25-fold under cold conditions. Our findings will help clarify the evolution of the luffa WRKY family while also providing valuable insights for future studies on WRKY functions.
Collapse
Affiliation(s)
- Jianting Liu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Fuzhou 350013, China
| | - Lijuan Peng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengjuan Cao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Changhui Bai
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Fuzhou 350013, China
| | - Yuqian Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zuliang Li
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Fuzhou 350013, China
| | - Haisheng Zhu
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Fuzhou 350013, China
| | - Qingfang Wen
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Fujian Key Laboratory of Vegetable Genetics and Breeding, Fuzhou 350013, China
| | - Shuilin He
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Li Y, Yang Y, Li L, Tang K, Hao X, Kai G. Advanced metabolic engineering strategies for increasing artemisinin yield in Artemisia annua L. HORTICULTURE RESEARCH 2024; 11:uhad292. [PMID: 38414837 PMCID: PMC10898619 DOI: 10.1093/hr/uhad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 02/29/2024]
Abstract
Artemisinin, also known as 'Qinghaosu', is a chemically sesquiterpene lactone containing an endoperoxide bridge. Due to the high activity to kill Plasmodium parasites, artemisinin and its derivatives have continuously served as the foundation for antimalarial therapies. Natural artemisinin is unique to the traditional Chinese medicinal plant Artemisia annua L., and its content in this plant is low. This has motivated the synthesis of this bioactive compound using yeast, tobacco, and Physcomitrium patens systems. However, the artemisinin production in these heterologous hosts is low and cannot fulfil its increasing clinical demand. Therefore, A. annua plants remain the major source of this bioactive component. Recently, the transcriptional regulatory networks related to artemisinin biosynthesis and glandular trichome formation have been extensively studied in A. annua. Various strategies including (i) enhancing the metabolic flux in artemisinin biosynthetic pathway; (ii) blocking competition branch pathways; (iii) using transcription factors (TFs); (iv) increasing peltate glandular secretory trichome (GST) density; (v) applying exogenous factors; and (vi) phytohormones have been used to improve artemisinin yields. Here we summarize recent scientific advances and achievements in artemisinin metabolic engineering, and discuss prospects in the development of high-artemisinin yielding A. annua varieties. This review provides new insights into revealing the transcriptional regulatory networks of other high-value plant-derived natural compounds (e.g., taxol, vinblastine, and camptothecin), as well as glandular trichome formation. It is also helpful for the researchers who intend to promote natural compounds production in other plants species.
Collapse
Affiliation(s)
- Yongpeng Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yinkai Yang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolong Hao
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
7
|
Zhang J, Zhao H, Chen L, Lin J, Wang Z, Pan J, Yang F, Ni X, Wang Y, Wang Y, Li R, Pi E, Wang S. Multifaceted roles of WRKY transcription factors in abiotic stress and flavonoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303667. [PMID: 38169626 PMCID: PMC10758500 DOI: 10.3389/fpls.2023.1303667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Increasing biotic and abiotic stresses are seriously impeding the growth and yield of staple crops and threatening global food security. As one of the largest classes of regulators in vascular plants, WRKY transcription factors play critical roles governing flavonoid biosynthesis during stress responses. By binding major W-box cis-elements (TGACCA/T) in target promoters, WRKYs modulate diverse signaling pathways. In this review, we optimized existing WRKY phylogenetic trees by incorporating additional plant species with WRKY proteins implicated in stress tolerance and flavonoid regulation. Based on the improved frameworks and documented results, we aim to deduce unifying themes of distinct WRKY subfamilies governing specific stress responses and flavonoid metabolism. These analyses will generate experimentally testable hypotheses regarding the putative functions of uncharacterized WRKY homologs in tuning flavonoid accumulation to enhance stress resilience.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
8
|
Song H, Guo Z, Duan Z, Li M, Zhang J. WRKY transcription factors in Arachis hypogaea and its donors: From identification to function prediction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108131. [PMID: 37897893 DOI: 10.1016/j.plaphy.2023.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
WRKY transcription factors (TFs) play important roles in plant growth and development and responses to abiotic and biotic stresses. Since the initial isolation of a WRKY TF in Ipomoea batatas in 1994, WRKY TFs have been identified in plants, protozoa, and fungi. Peanut (Arachis hypogaea) is a key oil and protein crop for humans and a forage source for animal consumption. Several Arachis genomes have been sequenced and genome-wide WRKY TFs have been identified. In this review, we summarized WRKY TFs and their functions in A. hypogaea and its donors. We also standardized the nomenclature for Arachis WRKY TFs to ensure uniformity. We determined the evolutionary relationships between Arachis and Arabidopsis thaliana WRKY (AtWRKY) TFs using a phylogenetic analysis. Biological functions and regulatory networks of Arachis WRKY TFs were predicted using AtWRKY TFs. Thus, this review paves the way for studies of Arachis WRKY TFs.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenquan Duan
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Meiran Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | | |
Collapse
|
9
|
Liu Y, Singh SK, Pattanaik S, Wang H, Yuan L. Light regulation of the biosynthesis of phenolics, terpenoids, and alkaloids in plants. Commun Biol 2023; 6:1055. [PMID: 37853112 PMCID: PMC10584869 DOI: 10.1038/s42003-023-05435-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Biosynthesis of specialized metabolites (SM), including phenolics, terpenoids, and alkaloids, is stimulated by many environmental factors including light. In recent years, significant progress has been made in understanding the regulatory mechanisms involved in light-stimulated SM biosynthesis at the transcriptional, posttranscriptional, and posttranslational levels of regulation. While several excellent recent reviews have primarily focused on the impacts of general environmental factors, including light, on biosynthesis of an individual class of SM, here we highlight the regulation of three major SM biosynthesis pathways by light-responsive gene expression, microRNA regulation, and posttranslational modification of regulatory proteins. In addition, we present our future perspectives on this topic.
Collapse
Affiliation(s)
- Yongliang Liu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sanjay K Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| | - Hongxia Wang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences Chenshan Botanical Garden, 3888 Chenhua Road, 201602, Songjiang, Shanghai, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
10
|
Liu Z, Du Y, Sun Z, Cheng B, Bi Z, Yao Z, Liang Y, Zhang H, Yao R, Kang S, Shi Y, Wan H, Qin D, Xiang L, Leng L, Chen S. Manual correction of genome annotation improved alternative splicing identification of Artemisia annua. PLANTA 2023; 258:83. [PMID: 37721598 DOI: 10.1007/s00425-023-04237-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Gene annotation is essential for genome-based studies. However, algorithm-based genome annotation is difficult to fully and correctly reveal genomic information, especially for species with complex genomes. Artemisia annua L. is the only commercial resource of artemisinin production though the content of artemisinin is still to be improved. Genome-based genetic modification and breeding are useful strategies to boost artemisinin content and therefore, ensure the supply of artemisinin and reduce costs, but better gene annotation is urgently needed. In this study, we manually corrected the newly released genome annotation of A. annua using second- and third-generation transcriptome data. We found that incorrect gene information may lead to differences in structural, functional, and expression levels compared to the original expectations. We also identified alternative splicing events and found that genome annotation information impacted identifying alternative splicing genes. We further demonstrated that genome annotation information and alternative splicing could affect gene expression estimation and gene function prediction. Finally, we provided a valuable version of A. annua genome annotation and demonstrated the importance of gene annotation in future research.
Collapse
Affiliation(s)
- Zhaoyu Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yupeng Du
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhihao Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bohan Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zenghao Bi
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhicheng Yao
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yuting Liang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huiling Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Run Yao
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shen Kang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuhua Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dou Qin
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi, 830000, China
| | - Li Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi, 830000, China.
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shilin Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
11
|
Song H, Cao Y, Zhao L, Zhang J, Li S. Review: WRKY transcription factors: Understanding the functional divergence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111770. [PMID: 37321304 DOI: 10.1016/j.plantsci.2023.111770] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
WRKY transcription factors (TFs) play crucial roles in the growth and development of plants and their response to environmental changes. WRKY TFs have been detected in sequenced plant genomes. The functions and regulatory networks of many WRKY TFs, especially from Arabidopsis thaliana (AtWRKY TFs), have been revealed, and the origin of WRKY TFs in plants is clear. Nonetheless, the relationship between WRKY TFs function and classification is unclear. Furthermore, the functional divergence of homologous WRKY TFs in plants is unclear. In this review, WRKY TFs were explored based on WRKY-related literature published from 1994 to 2022. WRKY TFs were identified in 234 species at the genome and transcriptome levels. The biological functions of ∼ 71 % of AtWRKY TFs were uncovered. Although functional divergence occurred in homologous WRKY TFs, different WRKY TF groups had no preferential function.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Longgang Zhao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; High-efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Qingdao 266109, China
| | | | - Shuai Li
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
12
|
Zheng H, Fu X, Shao J, Tang Y, Yu M, Li L, Huang L, Tang K. Transcriptional regulatory network of high-value active ingredients in medicinal plants. TRENDS IN PLANT SCIENCE 2023; 28:429-446. [PMID: 36621413 DOI: 10.1016/j.tplants.2022.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 05/14/2023]
Abstract
High-value active ingredients in medicinal plants have attracted research attention because of their benefits for human health, such as the antimalarial artemisinin, anticardiovascular disease tanshinones, and anticancer Taxol and vinblastine. Here, we review how hormones and environmental factors promote the accumulation of active ingredients, thereby providing a strategy to produce high-value drugs at a low cost. Focusing on major hormone signaling events and environmental factors, we review the transcriptional regulatory network mediating biosynthesis of representative active ingredients. In this network, many transcription factors (TFs) simultaneously control multiple synthase genes; thus, understanding the molecular mechanisms affecting transcriptional regulation of active ingredients will be crucial to developing new breeding possibilities.
Collapse
Affiliation(s)
- Han Zheng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueqing Fu
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Shao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueli Tang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre,School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Muyao Yu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), SWU-TAAHC Medicinal Plant Joint R&D Centre,School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Zhou L, Li J, Zeng T, Xu Z, Luo J, Zheng R, Wang Y, Wang C. TcMYB8, a R3-MYB Transcription Factor, Positively Regulates Pyrethrin Biosynthesis in Tanacetum cinerariifolium. Int J Mol Sci 2022; 23:12186. [PMID: 36293043 PMCID: PMC9602545 DOI: 10.3390/ijms232012186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Pyrethrins are a mixture of terpenes, with insecticidal properties, that accumulate in the aboveground parts of the pyrethrum (Tanacetum cinerariifolium). Numerous studies have been published on the positive role of MYB transcription factors (TFs) in terpenoid biosynthesis; however, the role of MYB TFs in pyrethrin biosynthesis remains unknown. Here, we report the isolation and characterization of a T. cinerariifolium MYB gene encoding a R3-MYB protein, TcMYB8, containing a large number of hormone-responsive elements in its promoter. The expression of the TcMYB8 gene showed a downward trend during the development stage of flowers and leaves, and was induced by methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA). Transient overexpression of TcMYB8 enhanced the expression of key enzyme-encoding genes, TcCHS and TcGLIP, and increased the content of pyrethrins. By contrast, transient silencing of TcMYB8 decreased pyrethrin contents and downregulated TcCHS and TcGLIP expression. Further analysis indicated that TcMYB8 directly binds to cis-elements in proTcCHS and proTcGLIP to activate their expression, thus regulating pyrethrin biosynthesis. Together, these results highlight the potential application of TcMYB8 for improving the T. cinerariifolium germplasm, and provide insight into the pyrethrin biosynthesis regulation network.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawen Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Tuo Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Zhizhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Riru Zheng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|