1
|
Morales-Quintana L, Rabert C, Mendez-Yañez A, Ramos P. Transcriptional and structural analysis of non-specific lipid transfer proteins modulated by fungal endophytes in Antarctic plants under drought. PHYSIOLOGIA PLANTARUM 2024; 176:e14359. [PMID: 38797943 DOI: 10.1111/ppl.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Lipid transfer proteins (LTPs) play crucial roles in various biological processes in plants, such as pollen tube adhesion, phospholipid transfer, cuticle synthesis, and response to abiotic stress. While a few members of the non-specific LTPs (nsLTPs) have been identified, their structural characteristics remain largely unexplored. Given the observed improvement in the performance of Antarctic plants facing water deficit when associated with fungal endophytes, this study aimed to assess the role of these symbiotic organisms in the transcriptional modulation of putative nsLTPs. The study focused on identifying and characterizing two nsLTP in the Antarctic plant Colobanthus quitensis that exhibit responsiveness to drought stress. Furthermore, we investigated the influence of Antarctic endophytic fungi on the expression profiles of these nsLTPs, as these fungi have been known to enhance plant physiological and biochemical performance under water deficit conditions. Through 3D modeling, docking, and molecular dynamics simulations with different substrates, the conducted structural and ligand-protein interaction analyses showed that differentially expressed nsLTPs displayed the ability to interact with various ligands, with a higher affinity towards palmitoyl-CoA. Overall, our findings suggest a regulatory mechanism for the expression of these two nsLTPs in Colobanthus quitensis under drought stress, further modulated by the presence of endophytic fungi.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Claudia Rabert
- Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Angela Mendez-Yañez
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Patricio Ramos
- Plant-microorganisms Interaction Laboratory, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
2
|
Rodríguez R, Barra PJ, Larama G, Carrion VJ, de la Luz Mora M, Hale L, Durán P. Microbiome engineering optimized by Antarctic microbiota to support a plant host under water deficit. FRONTIERS IN PLANT SCIENCE 2023; 14:1241612. [PMID: 37780522 PMCID: PMC10541027 DOI: 10.3389/fpls.2023.1241612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Climate change challenges modern agriculture to develop alternative and eco-friendly solutions to alleviate abiotic and/or biotic stresses. The use of soil microbiomes from extreme environments opens new avenues to discover novel microorganisms and microbial functions to protect plants. In this study we confirm the ability of a bioinoculant, generated by natural engineering, to promote host development under water stress. Microbiome engineering was mediated through three factors i) Antarctic soil donation, ii) water deficit and iii) multigenerational tomato host selection. We revealed that tomato plants growing in soils supplemented with Antarctic microbiota were tolerant to water deficit stress after 10 generations. A clear increase in tomato seedling tolerance against water deficit stress was observed in all soils over generations of Host Mediated Microbiome Engineering, being Fildes mixture the most representatives, which was evidenced by an increased survival time, plant stress index, biomass accumulation, and decreased leaf proline content. Microbial community analysis using 16s rRNA gene amplicon sequencing data suggested a microbiome restructuring that could be associated with increased tolerance of water deficit. Additionally, the results showed a significant increase in the relative abundance of Candidatus Nitrosocosmicus and Bacillus spp. which could be key taxa associated with the observed tolerance improvement. We proposed that in situ microbiota engineering through the evolution of three factors (long-standing extreme climate adaption and host and stress selection) could represent a promising strategy for novel generation of microbial inoculants.
Collapse
Affiliation(s)
- Rodrigo Rodríguez
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
- Agroscientific SpA, Temuco, Chile
| | - Patricio J. Barra
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Giovanni Larama
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
| | | | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Lauren Hale
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Paola Durán
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Facultad de Ciencias Agropecuarias y Medioambiente, Departamento de Producción Agropecuaria, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
3
|
Wang X, Huang X, Chen L, Xie Z, Tan S, Qin X, Chen T, Huang Y, Xi J, Chen H, Yi K. Transcriptome Sequencing of Agave amaniensis Reveals Shoot-Related Expression Patterns of Expansin A Genes in Agave. PLANTS (BASEL, SWITZERLAND) 2023; 12:2020. [PMID: 37653937 PMCID: PMC10222593 DOI: 10.3390/plants12102020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
Agave species are widely planted for fiber production. However, the molecular basis of agave fiber development has not been well understood. In this study, we performed a transcriptomic analysis in A. amaniensi, a well-known variety with high-quality fiber production. Approximately 43.87 million clean reads were obtained using Illumina sequencing. The de novo assembly produced 66,746 unigrams, 54% of which were annotated in a public database. In the Nr database, 21,490 unigenes of A. amaniensis were shown to be most closely related to Asparagus officinalis. Nine expansin A orthologs with full coding regions were obtained, which were named EXP1a, EXP1b, EXP2, EXP3, EXP4a, EXP4b, EXP11, EXP12, and EXP13. The maximum likelihood phylogenetic tree revealed the species-specific expansion of expansin genes in Arabidopsis, rice and agave. The expression analysis suggested the negative correlation between the expression of expansin genes and the leaf growth rate, except AhEXP11. Moreover, expansin genes were differentially affected by abiotic and biotic stresses. Notably, AhEXP2 expression level was highly upgraded after the infection of Phytophthora nicotiana. Nutrient deficiency also influent expansin genes expression. Together, our research will benefit future studies related to fiber development, disease resistance and nutrient usage in agave.
Collapse
Affiliation(s)
- Xuxia Wang
- Urban Construction College, Wuchang Shouyi University, Wuhan 430064, China
| | - Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lisha Chen
- Quality Supervision, Inspection and Testing Center of Sisal and Products, Ministry of Agriculture and Rural Affairs, Zhanjiang 524022, China
| | - Zhouli Xie
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Shibei Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xu Qin
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China
| | - Yanlei Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingen Xi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Helong Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, China
| |
Collapse
|
4
|
Perazzolli M, Vicelli B, Antonielli L, Longa CMO, Bozza E, Bertini L, Caruso C, Pertot I. Simulated global warming affects endophytic bacterial and fungal communities of Antarctic pearlwort leaves and some bacterial isolates support plant growth at low temperatures. Sci Rep 2022; 12:18839. [PMID: 36336707 PMCID: PMC9637742 DOI: 10.1038/s41598-022-23582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022] Open
Abstract
Antarctica is one of the most stressful environments for plant life and the Antarctic pearlwort (Colobanthus quitensis) is adapted to the hostile conditions. Plant-associated microorganisms can contribute to plant survival in cold environments, but scarce information is available on the taxonomic structure and functional roles of C. quitensis-associated microbial communities. This study aimed at evaluating the possible impacts of climate warming on the taxonomic structure of C. quitensis endophytes and at investigating the contribution of culturable bacterial endophytes to plant growth at low temperatures. The culture-independent analysis revealed changes in the taxonomic structure of bacterial and fungal communities according to plant growth conditions, such as the collection site and the presence of open-top chambers (OTCs), which can simulate global warming. Plants grown inside OTCs showed lower microbial richness and higher relative abundances of biomarker bacterial genera (Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Aeromicrobium, Aureimonas, Hymenobacter, Novosphingobium, Pedobacter, Pseudomonas and Sphingomonas) and fungal genera (Alternaria, Cistella, and Vishniacozyma) compared to plants collected from open areas (OA), as a possible response to global warming simulated by OTCs. Culturable psychrotolerant bacteria of C. quitensis were able to endophytically colonize tomato seedlings and promote shoot growth at low temperatures, suggesting their potential contribution to plant tolerance to cold conditions.
Collapse
Affiliation(s)
- Michele Perazzolli
- grid.11696.390000 0004 1937 0351Centre Agriculture, Food and the Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy ,grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Bianca Vicelli
- grid.11696.390000 0004 1937 0351Centre Agriculture, Food and the Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Livio Antonielli
- grid.4332.60000 0000 9799 7097Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | - Claudia M. O. Longa
- grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Elisa Bozza
- grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Laura Bertini
- grid.12597.380000 0001 2298 9743Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Carla Caruso
- grid.12597.380000 0001 2298 9743Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Ilaria Pertot
- grid.11696.390000 0004 1937 0351Centre Agriculture, Food and the Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy ,grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| |
Collapse
|
5
|
Morales-Quintana L, Moya M, Santelices-Moya R, Cabrera-Ariza A, Rabert C, Pollmann S, Ramos P. Improvement in the physiological and biochemical performance of strawberries under drought stress through symbiosis with Antarctic fungal endophytes. Front Microbiol 2022; 13:939955. [PMID: 36090118 PMCID: PMC9453553 DOI: 10.3389/fmicb.2022.939955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Strawberry is one of the most widely consumed fruit, but this crop is highly susceptible to drought, a condition strongly associated with climate change, causing economic losses due to the lower product quality. In this context, plant root-associated fungi emerge as a new and novel strategy to improve crop performance under water-deficiency stress. This study aimed to investigate the supplementation of two Antarctic vascular plant-associated fungal endophytes, Penicillium brevicompactum and Penicillium chrysogenum, in strawberry plants to develop an efficient, effective, and ecologically sustainable approach for the improvement of plant performance under drought stress. The symbiotic association of fungal endophytes with strawberry roots resulted in a greater shoot and root biomass production, higher fruit number, and an enhanced plant survival rate under water-limiting conditions. Inoculation with fungal endophytes provokes higher photosynthetic efficiency, lower lipid peroxidation, a modulation in antioxidant enzymatic activity, and increased proline content in strawberry plants under drought stress. In conclusion, promoting beneficial symbiosis between plants and endophytes can be an eco-friendly strategy to cope with drought and help to mitigate the impact of diverse negative effects of climate change on crop production.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Mario Moya
- Plant Microorganism Interaction Laboratory, Centro del Secano, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Rómulo Santelices-Moya
- Centro del Secano, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Antonio Cabrera-Ariza
- Centro del Secano, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Claudia Rabert
- Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
| | - Patricio Ramos
- Plant Microorganism Interaction Laboratory, Centro del Secano, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
6
|
Characterization of the Cell Wall Component through Thermogravimetric Analysis and Its Relationship with an Expansin-like Protein in Deschampsia antarctica. Int J Mol Sci 2022; 23:ijms23105741. [PMID: 35628551 PMCID: PMC9143908 DOI: 10.3390/ijms23105741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Deschampsia antarctica Desv. (Poaceae) is one of the two vascular plants that have colonized the Antarctic Peninsula, which is usually exposed to extreme environmental conditions. To support these conditions, the plant carries out modifications in its morphology and metabolism, such as modifications to the cell wall. Thus, we performed a comparative study of the changes in the physiological properties of the cell-wall-associated polysaccharide contents of aerial and root tissues of the D. antarctica via thermogravimetric analysis (TGA) combined with a computational approach. The result showed that the thermal stability was lower in aerial tissues with respect to the root samples, while the DTG curve describes four maximum peaks of degradation, which occurred between 282 and 358 °C. The carbohydrate polymers present in the cell wall have been depolymerized showing mainly cellulose and hemicellulose fragments. Additionally, a differentially expressed sequence encoding for an expansin-like (DaEXLA2), which is characterized by possessing cell wall remodeling function, was found in D. antarctica. To gain deep insight into a probable mechanism of action of the expansin protein identified, a comparative model of the structure was carried out. DaEXLA2 protein model displayed two domains with an open groove in the center. Finally, using a cell wall polymer component as a ligand, the protein-ligand interaction was evaluated by molecular dynamic (MD) simulation. The MD simulations showed that DaEXLA2 could interact with cellulose and XXXGXXXG polymers. Finally, the cell wall component description provides the basis for a model for understanding the changes in the cell wall polymers in response to extreme environmental conditions.
Collapse
|