1
|
Landi S, Polito F, Esposito S, Sorbo S, Cianciullo P, Postiglione A, De Feo V, Basile A, Maresca V. Protective effect of Ocimum basilicum L. essential oil on Lactuca sativa L. treated with cadmium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109437. [PMID: 39721187 DOI: 10.1016/j.plaphy.2024.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
In recent years, essential oils (EO) are a sustainable and effective alternative to conventional chemical treatments in response to heavy metals in plants. These natural molecules can increase the resilience of plants under stress conditions. In the present work, the ability of EOs from the aerial parts of Ocimum basilicum L. cv 'Prospera' to improve plant response to heavy metals in Lactuca sativa L. grown hydroponically and subjected to Cd stress was investigated. The chemical profile of the essential oil (EO) was analyzed by GC-MS. Essential oil-induced tolerance to different Cd concentrations (36 μM and 72 μM) was studied by analyzing ultrastructural damage by TEM observations, antioxidant response by spectrophotometric analysis, and changes in gene expression by qRT-PCR involved in abiotic stress response. Our results indicated that exogenous EO application of basil helps preserve plastid ultrastructure and ameliorates Cd-induced damage. In addition, there was a reduction in ROS production and beneficial regulation of the activities and molecular expression of antioxidant enzymes. In conclusion, these results clearly indicate the protective ability of basil EO on cytological organization and in modulating the redox state through the antioxidant pathway, reducing Cd-induced oxidative stress.
Collapse
Affiliation(s)
- Simone Landi
- Dipartimento di Biologia, University of Naples Federico II, Complesso Univ. Monte Sant'Angelo, Via Cinthia 4, 80126, Napoli, Italy.
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy.
| | - Sergio Esposito
- Dipartimento di Biologia, University of Naples Federico II, Complesso Univ. Monte Sant'Angelo, Via Cinthia 4, 80126, Napoli, Italy.
| | - Sergio Sorbo
- Ce.S.M.A, Section of Microscopy, University of Naples Federico II, Complesso Univ. Monte Sant'Angelo, Via Cinthia 4, 80126, Napoli, Italy.
| | - Piergiorgio Cianciullo
- Dipartimento di Biologia, University of Naples Federico II, Complesso Univ. Monte Sant'Angelo, Via Cinthia 4, 80126, Napoli, Italy.
| | - Alessia Postiglione
- Dipartimento di Biologia, University of Naples Federico II, Complesso Univ. Monte Sant'Angelo, Via Cinthia 4, 80126, Napoli, Italy.
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy.
| | - Adriana Basile
- Dipartimento di Biologia, University of Naples Federico II, Complesso Univ. Monte Sant'Angelo, Via Cinthia 4, 80126, Napoli, Italy.
| | - Viviana Maresca
- Department of Life Science, Health, and Health Professions", Link Campus University, 00165 Rome, Italy.
| |
Collapse
|
2
|
Tan Y, Xu L, Zhu M, Zhao Y, Wei H, Wei W. Unraveling Morphological, Physiological, and Transcriptomic Alterations Underlying the Formation of Little Leaves in Phytoplasma-Infected Sweet Cherry Trees. PLANT DISEASE 2025; 109:373-383. [PMID: 39295135 DOI: 10.1094/pdis-04-24-0862-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Phytoplasmas are minute phytopathogenic bacteria that induce excessive vegetative growth, known as witches' broom (WB), in many infected plant species during the later stages of infection. The WB structure is characterized by densely clustered little (small) leaves, which are frequently accompanied by chlorosis (yellowing). The mechanisms behind the formation of little leaves within WB structures (LL-WB) are poorly understood. To address this gap, the LL-WB formation was extensively studied using sweet cherry virescence (SCV) phytoplasma-infected sweet cherry plants. Based on morphological examinations, signs of premature leaf senescence were observed in LL-WB samples, including reduced leaf size, chlorosis, and alterations in shape. Subsequent physiological analyses indicated decreased sucrose and glucose levels and changes in hormone concentrations in LL-WB samples. Additionally, the transcriptomic analysis revealed impaired ribosome biogenesis and DNA replication. As an essential process in protein production, the compromised ribosome biogenesis and the inhibited DNA replication led to cell cycle arrest, thus affecting leaf morphogenesis and further plant development. Moreover, the expression of marker genes involved in premature leaf senescence was significantly altered. These results indicate a complicated interplay between the development of leaves, premature leaf senescence, and pathogen-induced stress responses in SCV phytoplasma-infected sweet cherry trees. The results of this study provide insight into understanding the underlying molecular mechanisms driving the formation of little leaves and interactions between plants and pathogens. The findings might help control phytoplasma diseases in sweet cherry cultivation.
Collapse
Affiliation(s)
- Yue Tan
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Li Xu
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Min Zhu
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, U.S.A
| | - Hairong Wei
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, U.S.A
| |
Collapse
|
3
|
Landi S, Vitale E, Lanzilli M, Arena C, D'Ippolito G, Fontana A, Esposito S. Lack of Arabidopsis chloroplastic glucose-6-phosphate dehydrogenase 1 (G6PD1) affects lipid synthesis during cold stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112260. [PMID: 39277046 DOI: 10.1016/j.plantsci.2024.112260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Cold stress represents one of the major constraints for agricultural systems and crops productivity, inducing a wide range of negative effects. Particularly, long-term cold stress affects lipid metabolism, modifying the lipids/proteins ratio, the levels of phospholipids and glycolipids, and increasing lipids' unsaturation in bio-membranes. Glucose-6-phosphate dehydrogenase (G6PDH) reported prominent roles as NADPH suppliers in response to oxidative perturbations. Cytosolic G6PDH was suggested as the main isoform involved in cold stress response, while a down-regulation of the chloroplastic P1-G6PDH was observed. We thus investigated an Arabidopsis mutant defective for the P1-G6PDH (KO-P1) using integrated approaches to verify a possible role of this isoform in low temperature tolerance. KO-P1 genotype showed an improved tolerance to cold stress, highlighting a better photosynthetic efficiency, a reduction in stress markers content and a different regulation of genes involved in stress response. Intriguingly, the lack of P1-G6PDH induced modification in the levels of the main fatty acid and lipid species affecting the morphology of chloroplasts and mitochondria, which was restored under cold. Globally, these results indicate a priming effect induced by the absence of P1-G6PDH able to improve the tolerance to abiotic stress. Our results suggest novel and specific abilities of P1-G6PDH, highlighting its central role in different aspects of plant physiology and metabolism.
Collapse
Affiliation(s)
- Simone Landi
- Università̀ di Napoli ''Federico II'', Dipartimento di Biologia, Via Cinthia, Napoli I-80126, Italy
| | - Ermenegilda Vitale
- Università̀ di Napoli ''Federico II'', Dipartimento di Biologia, Via Cinthia, Napoli I-80126, Italy
| | - Mariamichela Lanzilli
- Institute of Biomolecular Chemistry (ICB), CNR, Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
| | - Carmen Arena
- Università̀ di Napoli ''Federico II'', Dipartimento di Biologia, Via Cinthia, Napoli I-80126, Italy
| | - Giuliana D'Ippolito
- Institute of Biomolecular Chemistry (ICB), CNR, Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
| | - Angelo Fontana
- Università̀ di Napoli ''Federico II'', Dipartimento di Biologia, Via Cinthia, Napoli I-80126, Italy; Institute of Biomolecular Chemistry (ICB), CNR, Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
| | - Sergio Esposito
- Università̀ di Napoli ''Federico II'', Dipartimento di Biologia, Via Cinthia, Napoli I-80126, Italy.
| |
Collapse
|
4
|
Unnikrishnan P, Grzesik S, Trojańska M, Klimek B, Plesnar-Bielak A. 6Pgdh polymorphism in wild bulb mite populations: prevalence, environmental correlates and life history trade-offs. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:115-132. [PMID: 38597987 PMCID: PMC11182828 DOI: 10.1007/s10493-024-00909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Genetic polymorphism in key metabolic genes plays a pivotal role in shaping phenotypes and adapting to varying environments. Polymorphism in the metabolic gene 6-phosphogluconate dehydrogenase (6Pgdh) in bulb mites, Rhizoglyphus robini is characterized by two alleles, S and F, that differ by a single amino acid substitution and correlate with male reproductive fitness. The S-bearing males demonstrate a reproductive advantage. Although the S allele rapidly fixes in laboratory settings, the persistence of polymorphic populations in the wild is noteworthy. This study examines the prevalence and stability of 6Pgdh polymorphism in natural populations across Poland, investigating potential environmental influences and seasonal variations. We found widespread 6Pgdh polymorphism in natural populations, with allele frequencies varying across locations and sampling dates but without clear geographical or seasonal clines. This widespread polymorphism and spatio-temporal variability may be attributed to population demography and gene flow between local populations. We found some correlation between soil properties, particularly cation content (Na, K, Ca, and Mg) and 6Pgdh allele frequencies, showcasing the connection between mite physiology and soil characteristics and highlighting the presence of environment-dependent balancing selection. We conducted experimental fitness assays to determine whether the allele providing the advantage in male-male competition has antagonistic effects on life-history traits and if these effects are temperature-dependent. We found that temperature does not differentially influence development time or juvenile survival in different 6Pgdh genotypes. This study reveals the relationship between genetic variation, environmental factors, and reproductive fitness in natural bulb mite populations, shedding light on the dynamic mechanisms governing 6Pgdh polymorphism.
Collapse
Affiliation(s)
- Pranav Unnikrishnan
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | - Szymon Grzesik
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Magdalena Trojańska
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
- Department of Pathobiology, Institute of Microbiology, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Beata Klimek
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Agata Plesnar-Bielak
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
5
|
Li X, Cai Q, Yu T, Li S, Li S, Li Y, Sun Y, Ren H, Zhang J, Zhao Y, Zhang J, Zuo Y. ZmG6PDH1 in glucose-6-phosphate dehydrogenase family enhances cold stress tolerance in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1116237. [PMID: 36968417 PMCID: PMC10034328 DOI: 10.3389/fpls.2023.1116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) is a key enzyme in the pentose phosphate pathway responsible for the generation of nicotinamide adenine dinucleotide phosphate (NADPH), thereby playing a central role in facilitating cellular responses to stress and maintaining redox homeostasis. This study aimed to characterize five G6PDH gene family members in maize. The classification of these ZmG6PDHs into plastidic and cytosolic isoforms was enabled by phylogenetic and transit peptide predictive analyses and confirmed by subcellular localization imaging analyses using maize mesophyll protoplasts. These ZmG6PDH genes exhibited distinctive expression patterns across tissues and developmental stages. Exposure to stressors, including cold, osmotic stress, salinity, and alkaline conditions, also significantly affected the expression and activity of the ZmG6PDHs, with particularly high expression of a cytosolic isoform (ZmG6PDH1) in response to cold stress and closely correlated with G6PDH enzymatic activity, suggesting that it may play a central role in shaping responses to cold conditions. CRISPR/Cas9-mediated knockout of ZmG6PDH1 on the B73 background led to enhanced cold stress sensitivity. Significant changes in the redox status of the NADPH, ascorbic acid (ASA), and glutathione (GSH) pools were observed after exposure of the zmg6pdh1 mutants to cold stress, with this disrupted redox balance contributing to increased production of reactive oxygen species and resultant cellular damage and death. Overall, these results highlight the importance of cytosolic ZmG6PDH1 in supporting maize resistance to cold stress, at least in part by producing NADPH that can be used by the ASA-GSH cycle to mitigate cold-induced oxidative damage.
Collapse
Affiliation(s)
- Xin Li
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Quan Cai
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Tao Yu
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Shujun Li
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Sinan Li
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yunlong Li
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yan Sun
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Honglei Ren
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jiajia Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Zhao
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jianguo Zhang
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yuhu Zuo
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
6
|
Jiang Z, Wang M, Nicolas M, Ogé L, Pérez-Garcia MD, Crespel L, Li G, Ding Y, Le Gourrierec J, Grappin P, Sakr S. Glucose-6-Phosphate Dehydrogenases: The Hidden Players of Plant Physiology. Int J Mol Sci 2022; 23:16128. [PMID: 36555768 PMCID: PMC9785579 DOI: 10.3390/ijms232416128] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) catalyzes a metabolic hub between glycolysis and the pentose phosphate pathway (PPP), which is the oxidation of glucose-6-phosphate (G6P) to 6-phosphogluconolactone concomitantly with the production of nicotinamide adenine dinucleotide phosphate (NADPH), a reducing power. It is considered to be the rate-limiting step that governs carbon flow through the oxidative pentose phosphate pathway (OPPP). The OPPP is the main supplier of reductant (NADPH) for several "reducing" biosynthetic reactions. Although it is involved in multiple physiological processes, current knowledge on its exact role and regulation is still piecemeal. The present review provides a concise and comprehensive picture of the diversity of plant G6PDHs and their role in seed germination, nitrogen assimilation, plant branching, and plant response to abiotic stress. This work will help define future research directions to improve our knowledge of G6PDHs in plant physiology and to integrate this hidden player in plant performance.
Collapse
Affiliation(s)
- Zhengrong Jiang
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Wang
- Dryland-Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Michael Nicolas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laurent Ogé
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | | | - Laurent Crespel
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - José Le Gourrierec
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Philippe Grappin
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Soulaiman Sakr
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| |
Collapse
|
7
|
Landi S, Santini G, Vitale E, Di Natale G, Maisto G, Arena C, Esposito S. Photosynthetic, Molecular and Ultrastructural Characterization of Toxic Effects of Zinc in Caulerpa racemosa Indicate Promising Bioremediation Potentiality. PLANTS (BASEL, SWITZERLAND) 2022; 11:2868. [PMID: 36365321 PMCID: PMC9653827 DOI: 10.3390/plants11212868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Caulerpaceae are unconventional green algae composed of multinucleated, single siphonous cells. The species of Caulerpa are acquiring major scientific interest for both their invasion in the Mediterranean ecological niche and for the production of valuable natural metabolites. Furthermore, the abilities of Caulerpa spp. in the biorecovery of polluted waters were recently investigated. Among heavy metal contaminants in marine systems, zinc (Zn) is considered a critical pollutant, progressively accumulating from plastic leachates. In this study, the responses of Caulerpa racemosa to different levels (5-10 mg L-1) of Zn were studied for 14 days under laboratory-controlled conditions. Effects of Zn were monitored by measuring the growth rate, photosynthetic efficiency and gene expression. Moreover, the ability of Caulerpa to remove Zn from seawater was monitored. Zn induced detrimental effects by decreasing the relative growth rate (RGR) and maximal PSII photochemical efficiency (Fv/Fm). Moreover, C. racemosa, grown in contaminated seawater, reduced the levels of Zn to a final concentration of 1.026 and 1.932 mg L-1 after 14 days, thus demonstrating efficient uptake. Therefore, our results characterized the effects of zinc on C. racemosa and the possible role of this alga as being effective in the bioremediation of marine seawater.
Collapse
Affiliation(s)
- Simone Landi
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy
| | - Giorgia Santini
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy
| | - Ermenegilda Vitale
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy
| | - Gabriella Di Natale
- Department of Chemistry, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy
| | - Giulia Maisto
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy
| | - Carmen Arena
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy
| | - Sergio Esposito
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy
| |
Collapse
|
8
|
Yang D, Peng Q, Cheng Y, Xi D. Glucose-6-phosphate dehydrogenase promotes the infection of Chilli veinal mottle virus through affecting ROS signaling in Nicotiana benthamiana. PLANTA 2022; 256:96. [PMID: 36217064 DOI: 10.1007/s00425-022-04010-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
G6PDH negatively regulates viral accumulation in Nicotiana benthamiana through RBOHB-associated ROS signaling. Anti-oxidative metabolism and phytohormone-mediated immunity responses play important roles in virus infection. Glucose-6-phosphate dehydrogenase (G6PDH) is an enzyme in the pentose phosphate pathway, which plays an important role in maintaining intracellular redox homeostasis and has functions in plant growth, development and stress tolerance. However, the role of G6PDH in plants response to virus infection is poorly understood. In this study, NbG6PDH was found to be down-regulated after Chilli veinal mottle virus (ChiVMV-GFP) infection in Nicotiana benthamiana. Subcellular localization of NbG6PDH showed that it was punctate distributed in the protoplasm. Silencing of NbG6PDH reduced the sensitivity of N. benthamiana plants to ChiVMV-GFP. By contrast, transient overexpression of NbG6PDH promoted the accumulation of the virus. The results of physiological indexes showed that glutathione (GSH), catalase (CAT) and proline played an important role in maintaining plants physiological homeostasis. The results of gene expression detection showed that jasmonic acid/ethylene (JA/ET) signaling pathway was significantly correlated with the response of N. benthamiana to ChiVMV-GFP infection, and the changes of N. benthamiana respiratory burst oxidase homologues B (NbRBOHB) indicated that the NbG6PDH-dependent ROS may be regulated by NbRBOHB. Pretreatment of the inducer of reactive oxygen species (ROS) promoted virus infection, whereas inhibitor of ROS alleviated virus infection. Thus, our results indicate that the promoting effect of NbG6PDH on ChiVMV-GFP infection may be related to the NbRBOHB-regulated ROS production.
Collapse
Affiliation(s)
- Daoyong Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Qiding Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yongchao Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Dehui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
Lei D, Lin Y, Luo M, Zhao B, Tang H, Zhou X, Yao W, Zhang Y, Wang Y, Li M, Chen Q, Luo Y, Wang X, Tang H, Zhang Y. Genome-Wide Investigation of G6PDH Gene in Strawberry: Evolution and Expression Analysis during Development and Stress. Int J Mol Sci 2022; 23:4728. [PMID: 35563120 PMCID: PMC9104510 DOI: 10.3390/ijms23094728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
As one of the key enzymes in the pentose phosphate pathway (PPP), glucose-6-phosphate dehydrogenase (G6PDH) provides NADPH and plays an important role in plant development and stress responses. However, little information was available about the G6PDH genes in strawberry (Fragaria × ananassa). The recent release of the whole-genome sequence of strawberry allowed us to perform a genome-wide investigation into the organization and expression profiling of strawberry G6PDH genes. In the present study, 19 strawberry G6PDH genes (FaG6PDHs) were identified from the strawberry genome database. They were designated as FaG6PDH1 to FaG6PDH19, respectively, according to the conserved domain of each subfamily and multiple sequence alignment with Arabidopsis. According to their structural and phylogenetic features, the 19 FaG6PDHs were further classified into five types: Cy, P1, P1.1, P2 and PO. The number and location of exons and introns are similar, suggesting that genes of the same type are very similar and are alleles. A cis-element analysis inferred that FaG6PDHs possessed at least one stress-responsive cis-acting element. Expression profiles derived from transcriptome data analysis exhibited distinct expression patterns of FaG6PDHs genes in different developmental stages. Real-time quantitative PCR was used to detect the expression level of five types FaG6PDHs genes and demonstrated that the genes were expressed and responded to multiple abiotic stress and hormonal treatments.
Collapse
Affiliation(s)
- Diya Lei
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengwen Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Bing Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Honglan Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Xuan Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Wantian Yao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (D.L.); (Y.L.); (M.L.); (B.Z.); (H.T.); (X.Z.); (W.Y.); (Y.Z.); (Y.W.); (M.L.); (Q.C.); (Y.L.); (X.W.); (H.T.)
| |
Collapse
|