1
|
Xu Y, Li Y, Chen Z, Chen X, Li X, Li W, Li L, Li Q, Geng Z, Shi S, Zhang L, Han D. Malus xiaojinensis MxbHLH30 Confers Iron Homeostasis Under Iron Deficiency in Arabidopsis. Int J Mol Sci 2025; 26:368. [PMID: 39796222 PMCID: PMC11720179 DOI: 10.3390/ijms26010368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Iron stress adversely impacts plants' growth and development. Transcription factors (TFs) receive stress signals and modulate plant tolerance by influencing the expression of related functional genes. In the present study, we investigated the role of an apple bHLH transcription factor MxbHLH30 in the tolerance to iron stresses. The expression of MxbHLH30 was induced significantly by low-iron and high-iron treatments and MxbHLH30-overexpressed Arabidopsis plants displayed iron-stress-tolerant phenotypes. A determination of physiological and biochemical indexes associated with abiotic stress responses showed that overexpression of MxbHLH30 increased the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in Arabidopsis plants treated with iron stress, and decreased the contents of H2O2 and malondialdehyde (MDA), which contribute to reduce cell membrane lipid peroxidation. Meanwhile, the accumulation of proline in transgenic plant cells increased, regulating cell osmotic pressure. Furthermore, quantitative expression analysis indicated that overexpression of MxbHLH30 improved the expression levels of positive functional genes' responses to iron stress, improving plant resistance. Interestingly, MxbHLH30 may have the ability to balance the homeostasis of iron and other metal ions for the iron homeostasis of Arabidopsis cell under low-iron environments. This research demonstrates that MxbHLH30 is a key regulator of cell iron homeostasis in Arabidopsis plants under iron deficiency, providing new knowledge for plant resistance regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lihua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.X.); (Y.L.); (Z.C.); (X.C.); (X.L.); (W.L.); (L.L.); (Q.L.); (Z.G.); (S.S.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.X.); (Y.L.); (Z.C.); (X.C.); (X.L.); (W.L.); (L.L.); (Q.L.); (Z.G.); (S.S.)
| |
Collapse
|
2
|
Zhong XN, Peng JJ, Wang MY, Yang XL, Sun L. Overexpression of NAC transcription factors from Eremopyrum triticeum promoted abiotic stress tolerance. Transgenic Res 2024; 34:3. [PMID: 39738759 DOI: 10.1007/s11248-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/21/2024] [Indexed: 01/02/2025]
Abstract
Eremopyrum triticeum is a typical spring ephemeral species, which in China mainly distributed in the desert regions of northern Xinjiang, and play an important role in the desert ecosystems. E. triticeum has several adaptive characteristics such as short growth rhythms, high photosynthetic efficiency, high seed production, drought and salt resistance. However, the molecular regulatory mechanism of E. triticeum in responses to abiotic stress resistance is still unknown. In this study, two NAC-like transcription factor-encoding genes, EtNAC1 and EtNAC2, were isolated from E. triticeum. The predicted EtNAC1 and EtNAC2 proteins possess a typical NAC DNA-binding domain at the N-terminal region. The qRT-PCR analysis showed that EtNAC1 and EtNAC2 were highly expressed in mature roots of E. triticeum, and were significantly up-regulated under drought, high salt and abscisic acid (ABA) stresses. Subcellular localization analysis in onion epidermal cells revealed that EtNAC1 and EtNAC2 were located in the nucleus. Expression of EtNAC1 and EtNAC2 in yeast cells improved the survival rate of yeast under low temperature, H2O2, high drought and salt stresses. Overexpression of EtNAC1 and EtNAC2 in Arabidopsis thaliana conferred enhanced tolerance to drought and salt stresses, increased ABA sensitivity, and transgenic plants showed higher proline (Pro) content, but lower malondialdehyde content, lower chlorophyll leaching, lower water loss rate and stomatal aperture (width/length) than WT plants. In conclusion, EtNAC1 and EtNAC2 play important roles in abiotic stress responses of E. triticeum, which might have significant potential in crop molecular breeding for abiotic stress tolerance.
Collapse
Affiliation(s)
- Xue-Ni Zhong
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Jun-Jie Peng
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Meng-Yao Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Xiu-Li Yang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Li Sun
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
3
|
Li F, Liu B, Zhang H, Zhang J, Cai J, Cui J. Integrative multi-omics analysis of chilling stress in pumpkin (Cucurbita moschata). BMC Genomics 2024; 25:1042. [PMID: 39501146 PMCID: PMC11539673 DOI: 10.1186/s12864-024-10939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Pumpkin (Cucurbita moschata) is an important vegetable crop that often suffers from low-temperature stress during growth. However, the molecular mechanism involved in its response to chilling stress remains unknown. In this study, we comprehensively investigated the effect of chilling stress in pumpkin seedlings by conducting physiological, transcriptomic, and metabolomic analyses. RESULTS Under chilling stress, there was an overall increase in relative electrical conductivity, along with malondialdehyde, soluble sugar, and soluble protein contents, but decreased superoxide dismutase and peroxidase activities and chlorophyll contents in seedling leaves compared with controls. Overall, 5,780 differentially expressed genes (DEGs) and 178 differentially expressed metabolites (DEMs) were identified under chilling stress. Most DEGs were involved in plant hormone signal transduction and the phenylpropanoid biosynthesis pathway, and ERF, bHLH, WRKY, MYB, and HSF transcription factors were induced. Metabolomic analysis revealed that the contents of salicylic acid (SA), phenylalanine, and tyrosine increased in response to chilling stress. The findings indicated that the SA signaling and phenylpropanoid biosynthesis pathways are key to regulating the responses to chilling stress in pumpkins. CONCLUSION Overall, our study provides valuable insights into the comprehensive response of C. moschata to chilling stress, enriching the theoretical basis of this mechanism and facilitating the development of molecular breeding strategies for pumpkin tolerance to chilling stress.
Collapse
Affiliation(s)
- Fengmei Li
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China.
| | - Bobo Liu
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China
| | - Hui Zhang
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China
| | - Jiuming Zhang
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China
| | - Jinling Cai
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, China
| | - Jian Cui
- Qingdao Academy of Agricultural Sciences, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Chang N, Zheng L, Xu Y, Wang C, Li H, Wang Y. Integrated transcriptomic and metabolomic analysis reveals the molecular profiles of dynamic variation in Lilium brownii var. viridulum suffering from bulb rot. Front Genet 2024; 15:1432997. [PMID: 39205945 PMCID: PMC11349735 DOI: 10.3389/fgene.2024.1432997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Lilium brownii var. viridulum, known as Longya lily, is a well-known medicinal and edible plant in China. Bulb rot is a common disease in Longya lily cultivation that severely affects the yield and quality of lilies. According field investigations, we found that different Longya lily plants in the same field had different degrees of resistance to root rot. To find the reasons leading to the difference, we performed metabolomic and transcriptomic analyses of Longya lily with different degrees of disease. The transcriptomic analyses showed that the number of differentially expressed genes increased in early and mid-stage infections (LYBH2 and LYBH3), while decreased in late-stage infection (LYBH4). A total of 2309 DEGs showed the same expression trend in diseased bulb compared healthy bulb (LYBH1). The transcription factors (TFs) analysis of DEGs showed that several common TFs, like WRKY, bHLH, AP2/ERF-ERF and MYB, were significantly activated in bulbs after decay. The metabolomic analyses showed that there were 794 differentially accumulated metabolites, and metabolites with significant changes in relative content largely were phenolic acids, followed by flavonoids and amino acids and derivatives. The combined analysis of transcriptome and metabolome indicated that phenylpropanoid biosynthesis pathway was crucial in Longya lily resistance to bulb rot. Therefore, we speculated that the different degree of resistance to bulb rot in Longya lily may be related to the transcript levels of gene and contents of metabolites in the phenylpropanoid biosynthesis pathway. Overall, these results elucidate the molecular responses of Longya lily to bulb rot and lay a theoretical foundation for breeding resistant varieties.
Collapse
Affiliation(s)
- Nana Chang
- Jiangxi Province Key Laboratory of Sustainable Utilization of Traditional Chinese Medicine Resources, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, China
| | - Lingling Zheng
- Jiangxi Province Key Laboratory of Sustainable Utilization of Traditional Chinese Medicine Resources, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, China
| | - Yang Xu
- Jiangxi Province Key Laboratory of Sustainable Utilization of Traditional Chinese Medicine Resources, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, China
| | - Chu Wang
- Jiangxi Province Key Laboratory of Sustainable Utilization of Traditional Chinese Medicine Resources, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, China
| | - Hui Li
- Jiangxi Province Key Laboratory of Sustainable Utilization of Traditional Chinese Medicine Resources, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medicinal Sciences, Beijing, China
| | - Ye Wang
- Jiangxi Province Key Laboratory of Sustainable Utilization of Traditional Chinese Medicine Resources, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
5
|
Lei P, Jiang Y, Zhao Y, Jiang M, Ji X, Ma L, Jin G, Li J, Zhang S, Kong D, Zhao X, Meng F. Functions of Basic Helix-Loop-Helix (bHLH) Proteins in the Regulation of Plant Responses to Cold, Drought, Salt, and Iron Deficiency: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10692-10709. [PMID: 38712500 DOI: 10.1021/acs.jafc.3c09665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Abiotic stresses including cold, drought, salt, and iron deficiency severely impair plant development, crop productivity, and geographic distribution. Several bodies of research have shed light on the pleiotropic functions of BASIC HELIX-LOOP-HELIX (bHLH) proteins in plant responses to these abiotic stresses. In this review, we mention the regulatory roles of bHLH TFs in response to stresses such as cold, drought, salt resistance, and iron deficiency, as well as in enhancing grain yield in plants, especially crops. The bHLH proteins bind to E/G-box motifs in the target promoter and interact with various other factors to form a complex regulatory network. Through this network, they cooperatively activate or repress the transcription of downstream genes, thereby regulating various stress responses. Finally, we present some perspectives for future research focusing on the molecular mechanisms that integrate and coordinate these abiotic stresses. Understanding these molecular mechanisms is crucial for the development of stress-tolerant crops.
Collapse
Affiliation(s)
- Pei Lei
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Yaxuan Jiang
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Yong Zhao
- College of Life Sciences, Baicheng Normal University, Baicheng 137099, China
| | - Mingquan Jiang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130022, China
| | - Ximei Ji
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Le Ma
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Guangze Jin
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Jianxin Li
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Subin Zhang
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Dexin Kong
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Fanjuan Meng
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
6
|
Garg A, Srivastava P, Verma PC, Ghosh S. ApCPS2 contributes to medicinal diterpenoid biosynthesis and defense against insect herbivore in Andrographis paniculata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112046. [PMID: 38395069 DOI: 10.1016/j.plantsci.2024.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Kalmegh (Andrographis paniculata) spatiotemporally produces medicinally-important ent-labdane-related diterpenoids (ent-LRDs); andrographolide (AD), 14-deoxy-11,12-didehydroandrographolide (DDAD), neoandrographolide (NAD). ApCPS1 and ApCPS2, the ent-copalyl pyrophosphate (ent-CPP)-producing class II diterpene synthases (diTPSs) were identified, but their contributions to ent-CPP precursor supply for ent-LRD biosynthesis were not well understood. Here, we characterized ApCPS4, an additional ent-CPP-forming diTPS. Further, we elucidated in planta function of the ent-CPP-producing diTPSs (ApCPS1,2,4) by integrating transcript-metabolite co-profiles, biochemical analysis and gene functional characterization. ApCPS1,2,4 localized to the plastids, where diterpenoid biosynthesis occurs in plants, but ApCPS1,2,4 transcript expression patterns and ent-LRD contents revealed a strong correlation of ApCPS2 expression and ent-LRD accumulation in kalmegh. ApCPS1,2,4 upstream sequences differentially activated β-glucuronidase (GUS) in Arabidopsis and transiently-transformed kalmegh. Similar to higher expression of ApCPS1 in kalmegh stem, ApCPS1 upstream sequence activated GUS in stem/hypocotyl of Arabidopsis and kalmegh. However, ApCPS2,4 upstream sequences weakly activated GUS expression in Arabidopsis, which was not well correlated with ApCPS2,4 transcript expression in kalmegh tissues. Whereas, ApCPS2,4 upstream sequences could activate GUS expression at a considerable level in kalmegh leaf and roots/calyx, respectively, suggesting the involvement of transcriptional regulator(s) of ApCPS2,4 that might participate in kalmegh-specific diterpenoid pathway. Interestingly, ApCPS2-silenced kalmegh showed a drastic reduction in AD, DDAD and NAD contents and compromised defense against insect herbivore Spodoptera litura. However, ent-LRD contents and herbivore defense in ApCPS1 or ApCPS4-silenced plants remained largely unaltered. Overall, these results suggested an important role of ApCPS2 in producing ent-CPP for medicinal ent-LRD biosynthesis and defense against insect herbivore.
Collapse
Affiliation(s)
- Anchal Garg
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Payal Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Praveen Chandra Verma
- Molecular Biology and Biotechnology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Guo F, Meng X, Hong H, Liu S, Yu J, Huang C, Dong T, Geng H, Li Z, Zhu M. Systematic identification and expression analysis of bHLH gene family reveal their relevance to abiotic stress response and anthocyanin biosynthesis in sweetpotato. BMC PLANT BIOLOGY 2024; 24:156. [PMID: 38424529 PMCID: PMC10905920 DOI: 10.1186/s12870-024-04788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND bHLH transcription factors play significant roles in regulating plant growth and development, stress response, and anthocyanin biosynthesis. Sweetpotato is a pivotal food and industry crop, but little information is available on sweetpotato bHLH genes. RESULTS Herein, 227 putative IbbHLH genes were defined on sweetpotato chromosomes, and fragment duplications were identified as the dominant driving force for IbbHLH expansion. These IbbHLHs were divided into 26 subfamilies through phylogenetic analysis, as supported by further analysis of exon-intron structure and conserved motif composition. The syntenic analysis between IbbHLHs and their orthologs from other plants depicted evolutionary relationships of IbbHLHs. Based on the transcriptome data under salt stress, the expression of 12 IbbHLHs was screened for validation by qRT-PCR, and differential and significant transcriptions under abiotic stress were detected. Moreover, IbbHLH123 and IbbHLH215, which were remarkably upregulated by stress treatments, had obvious transactivation activity in yeasts. Protein interaction detections and yeast two-hybrid assays suggested an intricate interaction correlation between IbbHLHs. Besides, transcriptome screening revealed that multiple IbbHLHs may be closely related to anthocyanin biosynthesis based on the phenotype (purple vs. white tissues), which was confirmed by subsequent qRT-PCR analysis. CONCLUSIONS These results shed light on the promising functions of sweetpotato IbbHLHs in abiotic stress response and anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Haiting Hong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Jing Yu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Can Huang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Huixue Geng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu Province, 221116, China.
| |
Collapse
|
8
|
Ahmed S, Khan MSS, Xue S, Islam F, Ikram AU, Abdullah M, Liu S, Tappiban P, Chen J. A comprehensive overview of omics-based approaches to enhance biotic and abiotic stress tolerance in sweet potato. HORTICULTURE RESEARCH 2024; 11:uhae014. [PMID: 38464477 PMCID: PMC10923648 DOI: 10.1093/hr/uhae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/09/2024] [Indexed: 03/12/2024]
Abstract
Biotic and abiotic stresses negatively affect the yield and overall plant developmental process, thus causing substantial losses in global sweet potato production. To cope with stresses, sweet potato has evolved numerous strategies to tackle ever-changing surroundings and biological and environmental conditions. The invention of modern sequencing technology and the latest data processing and analysis instruments has paved the way to integrate biological information from different approaches and helps to understand plant system biology more precisely. The advancement in omics technologies has accumulated and provided a great source of information at all levels (genome, transcript, protein, and metabolite) under stressful conditions. These latest molecular tools facilitate us to understand better the plant's responses to stress signaling and help to process/integrate the biological information encoded within the biological system of plants. This review briefly addresses utilizing the latest omics strategies for deciphering the adaptive mechanisms for sweet potatoes' biotic and abiotic stress tolerance via functional genomics, transcriptomics, proteomics, and metabolomics. This information also provides a powerful reference to understand the complex, well-coordinated stress signaling genetic regulatory networks and better comprehend the plant phenotypic responses at the cellular/molecular level under various environmental stimuli, thus accelerating the design of stress-resilient sweet potato via the latest genetic engineering approaches.
Collapse
Affiliation(s)
- Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | | | - Songlei Xue
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224000, China
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Abdullah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, 200240, Shanghai, China
| | - Shan Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Piengtawan Tappiban
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Hou Q, Shen T, Yu R, Deng H, Wen X, Qiao G. Functional analysis of sweet cherry PavbHLH106 in the regulation of cold stress. PLANT CELL REPORTS 2023; 43:7. [PMID: 38133822 DOI: 10.1007/s00299-023-03115-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 12/23/2023]
Abstract
KEY MESSAGE Sweet cherry PavbHLH106 was up-regulated under cold induction and overexpressed to enhance the cold resistance in tobacco by mediating the scavenging of ROS through increasing of antioxidant enzyme activity. Sweet cherry (Prunus avium L.) is an economically important fruit. Chilling requirements are critical during dormancy, but abnormally low temperatures unfavorably affect fruit growth and development. Differences were found in the transcript level of PavbHLH106 under salt, dehydration, and low-temperature treatments, especially in response to cold stress, suggesting that this gene is involved in the regulation of different abiotic stresses. PavbHLH106 is homologous to Arabidopsis thaliana AtbHLH106 with a conserved bHLH domain, and transient expression in tobacco suggests that the protein is localized in the nucleus and has transcriptional activity in yeast. The PavbHLH106 overexpression in tobacco resulted in weaker electrolyte leakages, lower malondialdehyde, and higher proline content than the wild type at low-temperature treatment. Reactive oxygen species accumulation was significantly reduced in the overexpressed lines, negatively correlated with the antioxidant enzyme activity. In addition, overexpression of PavbHLH106 delayed the germination of tobacco seeds and promoted plant growth. Resistance-related genes were expressed more in the overexpressed plants compared to the wild type. PavbHLH106 bound to the PavACO promoter in yeast and potentially interacted with a bHLH162-like transcription factor. These results indicate that PavbHLH106 has various functions and is particularly active in controlling low-temperature stress.
Collapse
Affiliation(s)
- Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Tianjiao Shen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Runrun Yu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Hong Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
10
|
Cao X, Wen Z, Shen T, Cai X, Hou Q, Shang C, Qiao G. Overexpression of PavbHLH28 from Prunus avium enhances tolerance to cold stress in transgenic Arabidopsis. BMC PLANT BIOLOGY 2023; 23:652. [PMID: 38110865 PMCID: PMC10726552 DOI: 10.1186/s12870-023-04666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) gene family is one of plants' largest transcription factor families. It plays an important role in regulating plant growth and abiotic stress response. RESULTS In this study, we determined that the PavbHLH28 gene participated in cold resistance. The PavbHLH28 gene was located in the nucleus and could be induced by low temperature. Under the treatment of ABA, PEG, and GA3, the transcript level of PavbHLH28 was affected. At low temperature, overexpression of the PavbHLH28 gene enhanced the cold resistance of plants with higher proline content, lower electrolyte leakage (EL) and malondialdehyde (MDA) content. Compared with the WT plants, the transgenic plants accumulated fewer reactive oxygen species (ROS), and the activity and expression levels of antioxidant enzymes were significantly increased. The expression of proline synthesis enzyme genes was up-regulated, and the transcripts levels of degradation genes were significantly down-regulated. The transcripts abundance of the cold stressed-related genes in the C-repeat binding factor (CBF) pathway was not significantly different between WT plants and transgenic plants after cold stress. Moreover, the PavbHLH28 could directly bind to the POD2 gene promoter and promote its gene expression. CONCLUSIONS Overall, PavbHLH28 enhanced the cold resistance of transgenic plants through a CBF-independent pathway, which may be partly related to ROS scavenging.
Collapse
Affiliation(s)
- Xuejiao Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Tianjiao Shen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Xiaowei Cai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Chunqiong Shang
- College of Forestry, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China.
| |
Collapse
|
11
|
Zhang C, Chen B, Zhang P, Han Q, Zhao G, Zhao F. Comparative Transcriptome Analysis Reveals the Underlying Response Mechanism to Salt Stress in Maize Seedling Roots. Metabolites 2023; 13:1155. [PMID: 37999251 PMCID: PMC10673138 DOI: 10.3390/metabo13111155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Crop growth and development can be impeded by salt stress, leading to a significant decline in crop yield and quality. This investigation performed a comparative analysis of the physiological responses of two maize inbred lines, namely L318 (CML115) and L323 (GEMS58), under salt-stress conditions. The results elucidated that CML115 exhibited higher salt tolerance compared with GEMS58. Transcriptome analysis of the root system revealed that DEGs shared by the two inbred lines were significantly enriched in the MAPK signaling pathway-plant and plant hormone signal transduction, which wield an instrumental role in orchestrating the maize response to salt-induced stress. Furthermore, the DEGs' exclusivity to salt-tolerant genotypes was associated with sugar metabolism pathways, and these unique DEGs may account for the disparities in salt tolerance between the two genotypes. Meanwhile, we investigated the dynamic global transcriptome in the root systems of seedlings at five time points after salt treatment and compared transcriptome data from different genotypes to examine the similarities and differences in salt tolerance mechanisms of different germplasms.
Collapse
Affiliation(s)
- Chen Zhang
- College of Advanced Agricultural Science, Zhejiang Agriculture and Forestry University, Lin’an 311300, China; (C.Z.)
| | - Bin Chen
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China; (B.C.)
| | - Ping Zhang
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China; (B.C.)
| | - Qinghui Han
- College of Advanced Agricultural Science, Zhejiang Agriculture and Forestry University, Lin’an 311300, China; (C.Z.)
| | - Guangwu Zhao
- College of Advanced Agricultural Science, Zhejiang Agriculture and Forestry University, Lin’an 311300, China; (C.Z.)
| | - Fucheng Zhao
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China; (B.C.)
| |
Collapse
|
12
|
Radani Y, Li R, Korboe HM, Ma H, Yang L. Transcriptional and Post-Translational Regulation of Plant bHLH Transcription Factors during the Response to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112113. [PMID: 37299095 DOI: 10.3390/plants12112113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Over the past decades, extensive research has been conducted to identify and characterize various plant transcription factors involved in abiotic stress responses. Therefore, numerous efforts have been made to improve plant stress tolerance by engineering these transcription factor genes. The plant basic Helix-Loop-Helix (bHLH) transcription factor family represents one of the most prominent gene families and contains a bHLH motif that is highly conserved in eukaryotic organisms. By binding to specific positions in promoters, they activate or repress the transcription of specific response genes and thus affect multiple variables in plant physiology such as the response to abiotic stresses, which include drought, climatic variations, mineral deficiencies, excessive salinity, and water stress. The regulation of bHLH transcription factors is crucial to better control their activity. On the one hand, they are regulated at the transcriptional level by other upstream components; on the other hand, they undergo various modifications such as ubiquitination, phosphorylation, and glycosylation at the post-translational level. Modified bHLH transcription factors can form a complex regulatory network to regulate the expression of stress response genes and thus determine the activation of physiological and metabolic reactions. This review article focuses on the structural characteristics, classification, function, and regulatory mechanism of bHLH transcription factor expression at the transcriptional and post-translational levels during their responses to various abiotic stress conditions.
Collapse
Affiliation(s)
- Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Rongxue Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Harriet Mateko Korboe
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
13
|
Zhang C, Luo Q, Tang W, Ma J, Yang D, Chen J, Gao F, Sun H, Xie Y. Transcriptome Characterization and Gene Changes Induced by Fusarium solani in Sweetpotato Roots. Genes (Basel) 2023; 14:genes14050969. [PMID: 37239329 DOI: 10.3390/genes14050969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Sweetpotato (Ipomoea batatas) is an important root crop that is infected by Fusarium solani in both seedling and root stages, causing irregular black or brown disease spots and root rot and canker. This study aims to use RNA sequencing technology to investigate the dynamic changes in root transcriptome profiles between control check and roots at 6 h, 24 h, 3 days, and 5 days post-inoculation (hpi/dpi) with F. solani. The results showed that the defense reaction of sweetpotato could be divided into an early step (6 and 24 hpi) without symptoms and a late step to respond to F. solani infection (3 and 5 dpi). The differentially expressed genes (DEGs) in response to F. solani infection were enriched in the cellular component, biological process, and molecular function, with more DEGs in the biological process and molecular function than in the cellular component. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the main pathways were metabolic pathways, the biosynthesis of secondary metabolites, and carbon metabolism. More downregulated genes were identified than upregulated genes in the plant-pathogen interaction and transcription factors, which might be related to the degree of host resistance to F. solani. The findings of this study provide an important basis to further characterize the complex mechanisms of sweetpotato resistance against biotic stress and identify new candidate genes for increasing the resistance of sweetpotato.
Collapse
Affiliation(s)
- Chengling Zhang
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Qinchuan Luo
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Wei Tang
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Jukui Ma
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Dongjing Yang
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Jingwei Chen
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Fangyuan Gao
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Houjun Sun
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Yiping Xie
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| |
Collapse
|
14
|
Salih H, Bai W, Zhao M, Liang Y, Yang R, Zhang D, Li X. Genome-Wide Characterization and Expression Analysis of Transcription Factor Families in Desert Moss Syntrichia caninervis under Abiotic Stresses. Int J Mol Sci 2023; 24:ijms24076137. [PMID: 37047111 PMCID: PMC10094499 DOI: 10.3390/ijms24076137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Transcription factor (TF) families play important roles in plant stress responses. S. caninervis is a new model moss for plant desiccation tolerance studies. Here, we report a high-confidence identification and characterization of 591 TFs representing 52 families that covered all chromosomes in S. caninervis. GO term and KEGG pathway analysis showed that TFs were involved in the regulation of transcription, DNA-templated, gene expression, binding activities, plant hormone signal transduction, and circadian rhythm. A number of TF promoter regions have a mixture of various hormones-related cis-regulatory elements. AP2/ERF, bHLH, MYB, and C2H2-zinc finger TFs were the overrepresented TF families in S. caninervis, and the detailed classification of each family is performed based on structural features. Transcriptome analysis revealed the transcript abundances of some ScAP2/ERF, bHLH, MYB, and C2H2 genes were accumulated in the treated S. caninervis under cold, dehydration, and rehydration stresses. The RT-qPCR results strongly agreed with RNA-seq analysis, indicating these TFs might play a key role in S. caninervis response to abiotic stress. Our comparative TF characterization and classification provide the foundations for functional investigations of the dominant TF genes involved in S. caninervis stress response, as well as excellent stress tolerance gene resources for plant stress resistance breeding.
Collapse
|
15
|
Xia L, Sun S, Han B, Yang X. NAC domain transcription factor gene GhNAC3 confers drought tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:114-123. [PMID: 36634506 DOI: 10.1016/j.plaphy.2023.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Abiotic stress seriously affects the growth, yield, and fiber quality of cotton. It is of great importance to cultivate drought-resistant and salt-tolerant cotton. NAC (NAM, ATAF1/2, and CUC2) is a plant-specific transcription factor, which is widely involved in the response to abiotic stress. Here, we discovered the GhNAC3 gene isolated from the expression profile of drought stress in cotton and verified its functions in cotton. First, GhNAC3 was strongly induced expression by drought and salt stresses. Gene structure analysis revealed that GhNAC3 had a conserved NAC domain and was homologous to several stress-related NAC transcription factors gene of Arabidopsis. Subcellular localization and transcriptional activation assays revealed that GhNAC3 was a nuclear protein with a C-terminal transcriptional activation domain. Overexpression of GhNAC3 enhanced Arabidopsis tolerance to drought stress with reduced sensitivity to ABA, characterized by increased germination and cotyledon rates under drought stress, and promoted root elongation. VIGS silencing of GhNAC3 reduced cotton tolerance to drought stress as indicated by the low water content of the leaves under drought treatment, significantly faster water loss and lower ABA content in detached leaves, along with the accumulation of more hydrogen peroxide (H2O2) and malondialdehyde (MDA). In conclusion, GhNAC3 plays an important role in the abiotic stress of cotton, which might have great application potential in molecular breeding of cotton varieties with drought resistance.
Collapse
Affiliation(s)
- Linjie Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Simin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Bei Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
16
|
Wang Y, Xi Z, Wang X, Zhang Y, Liu Y, Yuan S, Zhao S, Sheng J, Meng D. Identification of bHLH family genes in Agaricus bisporus and transcriptional regulation of arginine catabolism-related genes by AbbHLH1 after harvest. Int J Biol Macromol 2023; 226:496-509. [PMID: 36521696 DOI: 10.1016/j.ijbiomac.2022.12.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are widely distributed in eukaryotes and play an important role in biological growth and development. The identification and functional analyses of bHLH genes/proteins in edible mushrooms (Agaricus bisporus) have yet to be reported. In the present study, we identified 10 putative bHLH members carrying the conserved bHLH domains. Phylogenetic analyses revealed that the 10 AbbHLHs were the closest to sequences of species belonging to 7 different fungal subgroups, which was supported by loop length, intron patterns, and key amino acid residues. The substantial increase after harvest and continuously elevated expression of AbbHLH1 during the development until the disruption of mushroom velum, and the preferential expression in cap and gill tissues suggest the important function of AbbHLH1 in postharvest development of A. bisporus. The relationship of arginine catabolism-related genes with the early stage of postharvest continuing development also was revealed by expression determination. Subcellular localization showed that AbbHLH1 could be localized in nucleus. Importantly, the electrophoretic mobility shift and dual-luciferase reporter assays showed that AbbHLH1 activated the promoters of AbOAT, AbSPDS, and AbSAMDC and suppressed the expression of AbARG, AbUREA, and AbODC, probably for the modulation of arginine catabolism and thus control of postharvest mushroom development. Taken together, the available data provide valuable functional insight into the role of AbbHLH proteins in postharvest mushrooms.
Collapse
Affiliation(s)
- Yating Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Zhiai Xi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Xiuhong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Shirui Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, People's Republic of China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China; Tianjin Gasin-DH Preservation Technology Co., Ltd, Tianjin 300300, People's Republic of China.
| |
Collapse
|
17
|
Liang X, Li Y, Yao A, Liu W, Yang T, Zhao M, Zhang B, Han D. Overexpression of MxbHLH18 Increased Iron and High Salinity Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23148007. [PMID: 35887354 PMCID: PMC9319408 DOI: 10.3390/ijms23148007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023] Open
Abstract
In the life cycle of apple, it will suffer a variety of abiotic stresses, such as iron stress and salt stress. bHLH transcription factors (TFs) play an indispensable role in the response of plants to stress. In this study, a new bHLH gene named MxbHLH18 was separated from Malus xiaojinensis. According to the results of subcellular localization, MxbHLH18 was localized in the nucleus. Salt stress and iron stress affected the expression of MxbHLH18 in Malus xiaojinensis seedlings to a large extent. Due to the introduction of MxbHLH18, the resistance of Arabidopsis thaliana to salt, high iron and low iron was significantly enhanced. Under the environmental conditions of high iron and low iron, the overexpression of MxbHLH18 increased many physiological indexes of transgenic Arabidopsis compared to wild type (WT), such as root length, fresh weight and iron content. The high level expression of MxbHLH18 in transformed Arabidopsis thaliana can not only increased the content of chlorophyll and proline, as well as increasing the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); it also reduced the content of malondialdehyde (MDA), which was more obvious under high salt conditions. In addition, the relative conductivity, H2O2 content and O2− content in transgenic Arabidopsis decreased under salt stress. Meanwhile, MxbHLH18 can also regulate the expression of downstream genes associated with salt stress (AtCBF1/2/3, AtKIN1 and AtCOR15a/b) and iron stress (AtIRT1, AtFRO2, AtNAS2, ATACT2, AtZIF1 and AtOPT3). Therefore, MxbHLH18 can actively promote the adaptability of plants to the growth environment of salt and low and/or iron.
Collapse
Affiliation(s)
- Xiaoqi Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Yingmei Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Anqi Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China;
| | - Tianyu Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Mengfei Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Bingxiu Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
- Correspondence: (B.Z.); (D.H.); Tel.: +86-451-55190781 (D.H.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
- Correspondence: (B.Z.); (D.H.); Tel.: +86-451-55190781 (D.H.)
| |
Collapse
|
18
|
Jin R, Yu T, Guo P, Liu M, Pan J, Zhao P, Zhang Q, Zhu X, Wang J, Zhang A, Cao Q, Tang Z. Comparative Transcriptome and Interaction Protein Analysis Reveals the Mechanism of IbMPK3-Overexpressing Transgenic Sweet Potato Response to Low-Temperature Stress. Genes (Basel) 2022; 13:genes13071247. [PMID: 35886030 PMCID: PMC9317282 DOI: 10.3390/genes13071247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
The sweet potato is very sensitive to low temperature. Our previous study revealed that IbMPK3-overexpressing transgenic sweet potato (M3) plants showed stronger low-temperature stress tolerance than wild-type plants (WT). However, the mechanism of M3 plants in response to low-temperature stress is unclear. To further analyze how IbMPK3 mediates low-temperature stress in sweet potato, WT and M3 plants were exposed to low-temperature stress for 2 h and 12 h for RNA-seq analysis, whereas normal conditions were used as a control (CK). In total, 3436 and 8718 differentially expressed genes (DEGs) were identified in WT at 2 h (vs. CK) and 12 h (vs. CK) under low-temperature stress, respectively, whereas 1450 and 9291 DEGs were detected in M3 plants, respectively. Many common and unique DEGs were analyzed in WT and M3 plants. DEGs related to low temperature were involved in Ca2+ signaling, MAPK cascades, the reactive oxygen species (ROS) signaling pathway, hormone transduction pathway, encoding transcription factor families (bHLH, NAC, and WRKY), and downstream stress-related genes. Additionally, more upregulated genes were associated with the MAPK pathway in M3 plants during short-term low-temperature stress (CK vs. 2 h), and more upregulated genes were involved in secondary metabolic synthesis in M3 plants than in the WT during the long-time low-temperature stress treatment (CK vs. 12 h), such as fatty acid biosynthesis and elongation, glutathione metabolism, flavonoid biosynthesis, carotenoid biosynthesis, and zeatin biosynthesis. Moreover, the interaction proteins of IbMPK3 related to photosynthesis, or encoding CaM, NAC, and ribosomal proteins, were identified using yeast two-hybrid (Y2H). This study may provide a valuable resource for elucidating the sweet potato low-temperature stress resistance mechanism, as well as data to support molecular-assisted breeding with the IbMPK3 gene.
Collapse
Affiliation(s)
- Rong Jin
- Xuzhou Sweet Potato Research Center, Xuzhou Institute of Agricultural Sciences Jiangsu, China/Key Laboratory of Sweet Potato Biology and Genetic Breeding, Ministry of Agriculture/National Agricultural Experimental Station for Soil Quality, Xuzhou 221000, China; (R.J.); (P.G.); (M.L.); (P.Z.); (Q.Z.); (X.Z.); (J.W.); (A.Z.); (Q.C.)
| | - Tao Yu
- Tube Division, Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110000, China; (T.Y.); (J.P.)
| | - Pengyu Guo
- Xuzhou Sweet Potato Research Center, Xuzhou Institute of Agricultural Sciences Jiangsu, China/Key Laboratory of Sweet Potato Biology and Genetic Breeding, Ministry of Agriculture/National Agricultural Experimental Station for Soil Quality, Xuzhou 221000, China; (R.J.); (P.G.); (M.L.); (P.Z.); (Q.Z.); (X.Z.); (J.W.); (A.Z.); (Q.C.)
| | - Ming Liu
- Xuzhou Sweet Potato Research Center, Xuzhou Institute of Agricultural Sciences Jiangsu, China/Key Laboratory of Sweet Potato Biology and Genetic Breeding, Ministry of Agriculture/National Agricultural Experimental Station for Soil Quality, Xuzhou 221000, China; (R.J.); (P.G.); (M.L.); (P.Z.); (Q.Z.); (X.Z.); (J.W.); (A.Z.); (Q.C.)
| | - Jiaquan Pan
- Tube Division, Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110000, China; (T.Y.); (J.P.)
| | - Peng Zhao
- Xuzhou Sweet Potato Research Center, Xuzhou Institute of Agricultural Sciences Jiangsu, China/Key Laboratory of Sweet Potato Biology and Genetic Breeding, Ministry of Agriculture/National Agricultural Experimental Station for Soil Quality, Xuzhou 221000, China; (R.J.); (P.G.); (M.L.); (P.Z.); (Q.Z.); (X.Z.); (J.W.); (A.Z.); (Q.C.)
| | - Qiangqiang Zhang
- Xuzhou Sweet Potato Research Center, Xuzhou Institute of Agricultural Sciences Jiangsu, China/Key Laboratory of Sweet Potato Biology and Genetic Breeding, Ministry of Agriculture/National Agricultural Experimental Station for Soil Quality, Xuzhou 221000, China; (R.J.); (P.G.); (M.L.); (P.Z.); (Q.Z.); (X.Z.); (J.W.); (A.Z.); (Q.C.)
| | - Xiaoya Zhu
- Xuzhou Sweet Potato Research Center, Xuzhou Institute of Agricultural Sciences Jiangsu, China/Key Laboratory of Sweet Potato Biology and Genetic Breeding, Ministry of Agriculture/National Agricultural Experimental Station for Soil Quality, Xuzhou 221000, China; (R.J.); (P.G.); (M.L.); (P.Z.); (Q.Z.); (X.Z.); (J.W.); (A.Z.); (Q.C.)
| | - Jing Wang
- Xuzhou Sweet Potato Research Center, Xuzhou Institute of Agricultural Sciences Jiangsu, China/Key Laboratory of Sweet Potato Biology and Genetic Breeding, Ministry of Agriculture/National Agricultural Experimental Station for Soil Quality, Xuzhou 221000, China; (R.J.); (P.G.); (M.L.); (P.Z.); (Q.Z.); (X.Z.); (J.W.); (A.Z.); (Q.C.)
| | - Aijun Zhang
- Xuzhou Sweet Potato Research Center, Xuzhou Institute of Agricultural Sciences Jiangsu, China/Key Laboratory of Sweet Potato Biology and Genetic Breeding, Ministry of Agriculture/National Agricultural Experimental Station for Soil Quality, Xuzhou 221000, China; (R.J.); (P.G.); (M.L.); (P.Z.); (Q.Z.); (X.Z.); (J.W.); (A.Z.); (Q.C.)
| | - Qinghe Cao
- Xuzhou Sweet Potato Research Center, Xuzhou Institute of Agricultural Sciences Jiangsu, China/Key Laboratory of Sweet Potato Biology and Genetic Breeding, Ministry of Agriculture/National Agricultural Experimental Station for Soil Quality, Xuzhou 221000, China; (R.J.); (P.G.); (M.L.); (P.Z.); (Q.Z.); (X.Z.); (J.W.); (A.Z.); (Q.C.)
| | - Zhonghou Tang
- Xuzhou Sweet Potato Research Center, Xuzhou Institute of Agricultural Sciences Jiangsu, China/Key Laboratory of Sweet Potato Biology and Genetic Breeding, Ministry of Agriculture/National Agricultural Experimental Station for Soil Quality, Xuzhou 221000, China; (R.J.); (P.G.); (M.L.); (P.Z.); (Q.Z.); (X.Z.); (J.W.); (A.Z.); (Q.C.)
- Correspondence: ; Tel.: +86-0516-82189235
| |
Collapse
|
19
|
Pan R, Buitrago S, Peng Y, Fatouh Abou-Elwafa S, Wan K, Liu Y, Wang R, Yang X, Zhang W. Genome-wide identification of cold-tolerance genes and functional analysis of IbbHLH116 gene in sweet potato. Gene X 2022; 837:146690. [PMID: 35738441 DOI: 10.1016/j.gene.2022.146690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Sweet potato (Ipomoea batatas L.) originated from South America; therefore, it is vulnerable to low temperature. Here, the evolutionary analysis of 22 cold-responsive genes in 35 plant species revealed that the identified MYC-type basic helix-loop-helix (bHLH) transcription factors exhibit diverse structures. We found that the number of bHLH gene family members was significantly lower than that of cold-tolerant species. We further systematically evaluated the gene structure, promoter analysis, synteny analysis, and expression pattern of 28 bHLH gene family members in sweet potato. The basic helix-loop-helix protein 116 (IbbHLH116) has the closest phylogeny to the AtICE1 protein of A. thaliana. However, the IbbHLH116 protein from cold-tolerant variety FS18 showed a 37.90% of sequence homology with AtICE1 protein. Subcellular localization analysis showed that IbbHLH116 is localized in the nucleus. The transcripts of IbbHLH116 were highly accumulated in cold-tolerant genotype FS18, particularly in new leaves and stems, compared to the cold-sensitive genotype NC1 under cold stress. Overexpression of IbbHLH116 in the wild type (Col-0) A. thaliana significantly enhanced cold tolerance in transgenic plants by regulating activities of oxidative protective enzymes, such as peroxidase (POD), superoxide dismutase (SOD), and the contents of malondialdehyde (MDA), proline and soluble proteins. Moreover, overexpression of IbbHLH116 in ice1 mutant A. thaliana fully rescued the cold-sensitive phenotype by promoting the expression of C-repeat binding factors 3 (CBF3). Overexpression of IbbHLH116 in the sweet potato callus also induced the expression of CBF3 under low temperature. These results imply that IbbHLH116 can perform the function of the ICE1 gene in conferring cold tolerance in sweet potato.
Collapse
Affiliation(s)
- Rui Pan
- Research Center of Crop Stresses Resistance Technologies/ Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China
| | - Sebastian Buitrago
- Research Center of Crop Stresses Resistance Technologies/ Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China
| | - Ying Peng
- Research Center of Crop Stresses Resistance Technologies/ Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China
| | | | - Kui Wan
- Research Center of Crop Stresses Resistance Technologies/ Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China
| | - Yi Liu
- Research Center of Crop Stresses Resistance Technologies/ Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China; Hubei Sweet potato Engineering and Technology Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rongsen Wang
- Research Center of Crop Stresses Resistance Technologies/ Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China
| | - Xinsun Yang
- Hubei Sweet potato Engineering and Technology Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/ Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
20
|
Oncul AB, Celik Y, Unel NM, Baloglu MC. Bhlhdb: A next generation database of basic helix loop helix transcription factors based on deep learning model. J Bioinform Comput Biol 2022; 20:2250014. [DOI: 10.1142/s0219720022500147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Abdullah SNA, Azzeme AM, Yousefi K. Fine-Tuning Cold Stress Response Through Regulated Cellular Abundance and Mechanistic Actions of Transcription Factors. FRONTIERS IN PLANT SCIENCE 2022; 13:850216. [PMID: 35422820 PMCID: PMC9002269 DOI: 10.3389/fpls.2022.850216] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/04/2022] [Indexed: 05/11/2023]
Abstract
Inflictions caused by cold stress can result in disastrous effects on the productivity and survival of plants. Cold stress response in plants requires crosstalk between multiple signaling pathways including cold, heat, and reactive oxygen species (ROS) signaling networks. CBF, MYB, bHLH, and WRKY families are among the TFs that function as key players in the regulation of cold stress response at the molecular level. This review discusses some of the latest understanding on the regulation of expression and the mechanistic actions of plant TFs to address cold stress response. It was shown that the plant response consists of early and late responses as well as memory reprogramming for long-term protection against cold stress. The regulatory network can be differentiated into CBF-dependent and independent pathways involving different sets of TFs. Post-transcriptional regulation by miRNAs, control during ribosomal translation process, and post-translational regulation involving 26S proteosomic degradation are processes that affect the cellular abundance of key regulatory TFs, which is an important aspect of the regulation for cold acclimation. Therefore, fine-tuning of the regulation by TFs for adjusting to the cold stress condition involving the dynamic action of protein kinases, membrane ion channels, adapters, and modifiers is emphasized in this review.
Collapse
Affiliation(s)
- Siti Nor Akmar Abdullah
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Agronomy and Sustainable Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Siti Nor Akmar Abdullah,
| | - Azzreena Mohamad Azzeme
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kobra Yousefi
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|