1
|
Han M, Si Y, Sun S, Hu J, Han Y, Liu X, Zhai Y, Su T, Cao F. Metabolism Plasticity on Account of Aspartate aminotransferase 10 Promotes Poplar Growth under Altered Nitrogen Regimes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6468-6485. [PMID: 40045927 DOI: 10.1021/acs.jafc.4c09107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Improving poplar productivity across a wide spectrum of nitrogen conditions is a primary objective in poplar breeding. In this research, we engineered transgenic poplars to overexpress the aspartate aminotransferase 10 (AspAT10) gene. The results showed that these transgenic plantlets significantly outperformed the wild-type control in terms of growth under both nitrogen-poor and nitrogen-rich conditions, exhibiting increased biomass, height, and root development. This improvement was linked to changes in internal nitrogen pools (including NO3-, NH4+, and total free amino acids) and sugar content. In line with the metabolic results, notable alterations in genes related to nitrogen and carbon metabolism as well as hormone signaling pathways were identified. Our findings highlight the versatile role of AspAT10 in regulating poplar's adaptation to variable nitrogen availability, attributed to the reversible nature of its catalytic reaction, which allows for the flexible reprogramming of nitrogen and carbon metabolism to align nitrogen supply with plant demand.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yujia Si
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shuyue Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jinghan Hu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yirong Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaoning Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yujie Zhai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fuliang Cao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Sun Q, Zhang Z, Ping Q, Wang L, Li Y. Insight into using multi-omics analysis to elucidate nitrogen removal mechanisms in a novel improved constructed rapid infiltration system: Functional gene and metabolite signatures. WATER RESEARCH 2024; 267:122502. [PMID: 39332349 DOI: 10.1016/j.watres.2024.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
In this study, a laboratory-scale improved constructed rapid infiltration (imCRI) system with non-saturated and saturated layers was constructed, and corn cobs as solid carbon source were added to the saturated layer to enhance the removal of nitrogen. Combined analyses of metagenomics and metabolomics were conducted to elucidate the nitrogen removal mechanism in the imCRI system. The results showed that the hydraulic load significantly influenced the treatment performance of the imCRI system, and a hydraulic load of 1.25 m3/(m2⋅d) was recommended. Under optimal conditions, the imCRI system using simulated wastewater achieved average removal efficiencies of 97.8 % for chemical oxygen demand, 85.7 % for total nitrogen (TN), and 97.6 % for ammonia nitrogen. Metagenomic and metabolomic analyses revealed that besides nitrification and denitrification, dissimilatory nitrate reduction to ammonium (DNRA), anammox, etc., are also involved in nitrogen metabolism in the imCRI system. Although nitrification was the predominant pathway in the non-saturated layer, aerobic denitrification also occurred, accounting for 22.59 % of the TN removal. In the saturated layer, nitrogen removal was attributed to synergistic effects of denitrification, DNRA and anammox. Moreover, correlation analysis among nitrogen removal, functional genes and metabolites suggested that metabolites related to the tricarboxylic acid cycle generated from the glycolysis of corn cobs provided sufficient energy for denitrification. Our results can offer a promising technology for decentralized wastewater treatment with stringent nitrogen removal requirements, and provide a foundation for understanding the underlying nitrogen transformation and removal mechanism.
Collapse
Affiliation(s)
- Qiya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Zhipeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314006, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| |
Collapse
|
3
|
Zhang X, Gao X, Liu B, Wang J, Shan J, Wang J, Zhang Y, Li G, Jia Y, Wang R. Transcriptome and metabolome reveal the primary and secondary metabolism changes in Larix gmelinii seedlings under abiotic stress. BMC PLANT BIOLOGY 2024; 24:1128. [PMID: 39592952 PMCID: PMC11600854 DOI: 10.1186/s12870-024-05831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Larix gmelinii is an excellent stress resistant coniferous tree species with a wide distribution and important economic and ecological value. However, at seedling stage, L. gmelinii is extremely susceptible to abiotic stresses, and systematic research on the adaptation mechanisms of L. gmelinii seedlings to abiotic stress is still lacking. RESULTS Phenotypic observation and physiological index detection showed that L. gmelinii seedlings wilted with needles withered and yellowish at later stages of drought and salt stress; Under low temperature, the seedlings grew slowly and turned red at later stage. Under all 3 abiotic stresses, the chlorophyll content in seedlings significantly decreased, while the MDA content significantly increased; The activity of SOD and CAT showed a trend of increasing first and then decreasing. Transcriptome analysis revealed that DEGs were mainly involved in carbohydrate and amino acid metabolism, phenylpropanoid biosynthesis, and flavonoid synthesis metabolism. Metabolomic analysis found unique DAMs under 3 stress treatments. The combined analysis of transcriptome and metabolome showed that the changing patterns of DEGs and DAMs in primary and secondary metabolism were consistent: carbohydrate were significantly accumulated under low temperature stress; amino acids showed the most significant changes under salt stress. The variation pattern of secondary metabolism was similar under both drought and salt stress, while anthocyanin accumulation was the most obvious only under low temperature stress. CONCLUSION Our study provides insightful information about the different mechanisms that L. gmelinii seedlings employ in response to drought, low temperature or salt stress.
Collapse
Affiliation(s)
- Xuting Zhang
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Xianling Gao
- Hohhot Vocational College, Hohhot, 010051, P. R. China
| | - Bin Liu
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Juan Wang
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Jinyuan Shan
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Jiaxiu Wang
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Yanxia Zhang
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Guojing Li
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| | - Yonghong Jia
- College of Vocational and Technical, Inner Mongolia Agricultural University, Baotou, 014109, P. R. China.
| | - Ruigang Wang
- Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| |
Collapse
|
4
|
Liao HS, Lee KT, Chung YH, Chen SZ, Hung YJ, Hsieh MH. Glutamine induces lateral root initiation, stress responses, and disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2289-2308. [PMID: 38466723 DOI: 10.1093/plphys/kiae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
The production of glutamine (Gln) from NO3- and NH4+ requires ATP, reducing power, and carbon skeletons. Plants may redirect these resources to other physiological processes using Gln directly. However, feeding Gln as the sole nitrogen (N) source has complex effects on plants. Under optimal concentrations, Arabidopsis (Arabidopsis thaliana) seedlings grown on Gln have similar primary root lengths, more lateral roots, smaller leaves, and higher amounts of amino acids and proteins compared to those grown on NH4NO3. While high levels of Gln accumulate in Arabidopsis seedlings grown on Gln, the expression of GLUTAMINE SYNTHETASE1;1 (GLN1;1), GLN1;2, and GLN1;3 encoding cytosolic GS1 increases and expression of GLN2 encoding chloroplastic GS2 decreases. These results suggest that Gln has distinct effects on regulating GLN1 and GLN2 gene expression. Notably, Arabidopsis seedlings grown on Gln have an unexpected gene expression profile. Compared with NH4NO3, which activates growth-promoting genes, Gln preferentially induces stress- and defense-responsive genes. Consistent with the gene expression data, exogenous treatment with Gln enhances disease resistance in Arabidopsis. The induction of Gln-responsive genes, including PATHOGENESIS-RELATED1, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, WRKY54, and WALL ASSOCIATED KINASE1, is compromised in salicylic acid (SA) biosynthetic and signaling mutants under Gln treatments. Together, these results suggest that Gln may partly interact with the SA pathway to trigger plant immunity.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Soon-Ziet Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Jie Hung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
5
|
Qiu P, Liu T, Xu Y, Ye C, Zhang R, Wang Y, Jin Q. Multi-omic dissection of the cold resistance traits of white water lily. HORTICULTURE RESEARCH 2024; 11:uhae093. [PMID: 38840939 PMCID: PMC11151331 DOI: 10.1093/hr/uhae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
The white water lily (Nymphaea candida), exemplifying nature's resilience, thrives in the high-altitude terrains of Xinjiang, China, serving as an ideal model for investigating cold adaptation mechanisms in aquatic plants. This study meticulously elucidates the complex cold adaptation mechanisms of the white water lily through a comprehensive and integrated methodological approach. We discovered that the water lily undergoes ecodormancy in winter, retaining high cellular viability and growth potential. During overwintering, the white water lily demonstrates effective resource reallocation, a process facilitated by morphological adjustments, thereby strengthening its resistance to cold temperatures. This enhancement is achieved particularly through the compartmentalization of large vacuoles, the accumulation of osmoregulatory substances, and an increased antioxidant capacity. We established the first exhaustive full-length transcriptome for the white water lily. A subsequent comprehensive analysis of the transcriptome, phytohormones, and metabolome uncovered a multifaceted regulatory network orchestrating cold adaptation. Our research spotlights phytohormone signaling, amino acid metabolism, and circadian rhythms as key elements in the water lily's defense against cold. The results emphasize the critical role of nitrogen metabolism, especially amino acid-related pathways, during cold stress. Metabolite profiling revealed the importance of compounds like myo-inositol and L-proline in enhancing cold tolerance. Remarkably, our study demonstrates that the white water lily notably diminishes the utilization of unsaturated fatty acids in its temperature regulation strategies. In conclusion, this research substantially enriches our understanding of the white water lily's intricate cold adaptation mechanisms, offering new perspectives on the adaptive strategies of aquatic plants and potential applications in agricultural advancement.
Collapse
Affiliation(s)
- Penghe Qiu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunxiu Ye
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, China
| | - Ran Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Svietlova N, Zhyr L, Reichelt M, Grabe V, Mithöfer A. Glutamine as sole nitrogen source prevents induction of nitrate transporter gene NRT2.4 and affects amino acid metabolism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1369543. [PMID: 38633457 PMCID: PMC11022244 DOI: 10.3389/fpls.2024.1369543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all N-containing compounds in the cell and the first organic nitrogen molecule formed from inorganic nitrogen taken up by the roots. In addition to its role in plant nutrition, glutamine most likely also has a function as a signaling molecule in the regulation of nitrogen metabolism. We investigated whether glutamine influences the high-affinity transporter system for nitrate uptake. Therefore, we analyzed the expression of the nitrate transporter NRT2.4, which is inducible by N deficiency, in Arabidopsis thaliana grown under different nitrogen starvation scenarios, comparing nitrate or glutamine as the sole nitrogen source. Using the reporter line ProNRT2.4:GFP and two independent knockout lines, nrt2.4-1 and nrt2.4-2, we analyzed gene expression and amino acid profiles. We showed that the regulation of NRT2.4 expression depends on available nitrogen in general, for example on glutamine as a nitrogen source, and not specifically on nitrate. In contrast to high nitrate concentrations, amino acid profiles changed to an accumulation of amino acids containing more than one nitrogen during growth in high glutamine concentrations, indicating a switch to nitrogen storage metabolism. Furthermore, we demonstrated that the nrt2.4-2 line shows unexpected effects on NRT2.5 gene expression and the amino acids profile in shoots under high glutamine supply conditions compared to Arabidopsis wild type and nrt2.4-1, suggesting non-NRT2.4-related metabolic consequences in this knockout line.
Collapse
Affiliation(s)
- Nataliia Svietlova
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Liza Zhyr
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
7
|
Liu X, Wu L, Si Y, Zhai Y, Niu M, Han M, Su T. Regulating Effect of Exogenous α-Ketoglutarate on Ammonium Assimilation in Poplar. Molecules 2024; 29:1425. [PMID: 38611705 PMCID: PMC11012726 DOI: 10.3390/molecules29071425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Extensive industrial activities and anthropogenic agricultural practices have led to substantial ammonia release to the environment. Although croplands can act as ammonia sinks, reduced crop production under high concentrations of ammonium has been documented. Alpha-ketoglutarate (AKG) is a critical carbon source, displaying pleiotropic physiological functions. The objective of the present study is to disclose the potential of AKG to enhance ammonium assimilation in poplars. It showed that AKG application substantially boosted the height, biomass, and photosynthesis activity of poplars exposed to excessive ammonium. AKG also enhanced the activities of key enzymes involved in nitrogen assimilation: glutamine synthetase (GS) and glutamate synthase (GOGAT), elevating the content of amino acids, sucrose, and the tricarboxylic acid cycle (TCA) metabolites. Furthermore, AKG positively modulated key genes tied to glucose metabolism and ATP synthesis, while suppressing ATP-depleting genes. Correspondingly, both H+-ATPase activity and ATP content increased. These findings demonstrate that exogenously applying AKG improves poplar growth under a high level of ammonium treatment. AKG might function through sufficient carbon investment, which enhances the carbon-nitrogen balance and energy stability in poplars, promoting ammonium assimilation at high doses of ammonium. Our study provides novel insight into AKG's role in improving poplar growth in response to excess ammonia exposure.
Collapse
Affiliation(s)
- Xiaoning Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Liangdan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Yujia Si
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Yujie Zhai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Mingyi Niu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China (Y.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Lee KT, Liao HS, Hsieh MH. Glutamine Metabolism, Sensing and Signaling in Plants. PLANT & CELL PHYSIOLOGY 2023; 64:1466-1481. [PMID: 37243703 DOI: 10.1093/pcp/pcad054] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Glutamine (Gln) is the first amino acid synthesized in nitrogen (N) assimilation in plants. Gln synthetase (GS), converting glutamate (Glu) and NH4+ into Gln at the expense of ATP, is one of the oldest enzymes in all life domains. Plants have multiple GS isoenzymes that work individually or cooperatively to ensure that the Gln supply is sufficient for plant growth and development under various conditions. Gln is a building block for protein synthesis and an N-donor for the biosynthesis of amino acids, nucleic acids, amino sugars and vitamin B coenzymes. Most reactions using Gln as an N-donor are catalyzed by Gln amidotransferase (GAT) that hydrolyzes Gln to Glu and transfers the amido group of Gln to an acceptor substrate. Several GAT domain-containing proteins of unknown function in the reference plant Arabidopsis thaliana suggest that some metabolic fates of Gln have yet to be identified in plants. In addition to metabolism, Gln signaling has emerged in recent years. The N regulatory protein PII senses Gln to regulate arginine biosynthesis in plants. Gln promotes somatic embryogenesis and shoot organogenesis with unknown mechanisms. Exogenous Gln has been implicated in activating stress and defense responses in plants. Likely, Gln signaling is responsible for some of the new Gln functions in plants.
Collapse
Affiliation(s)
- Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
9
|
Carrell AA, Clark M, Jawdy S, Muchero W, Alexandre G, Labbé JL, Rush TA. Interactions with microbial consortia have variable effects in organic carbon and production of exometabolites among genotypes of Populus trichocarpa. PLANT DIRECT 2023; 7:e544. [PMID: 38028650 PMCID: PMC10660807 DOI: 10.1002/pld3.544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Poplar is a short-rotation woody crop frequently studied for its significance as a sustainable bioenergy source. The successful establishment of a poplar plantation partially depends on its rhizosphere-a dynamic zone governed by complex interactions between plant roots and a plethora of commensal, mutualistic, symbiotic, or pathogenic microbes that shape plant fitness. In an exploratory endeavor, we investigated the effects of a consortium consisting of ectomycorrhizal fungi and a beneficial Pseudomonas sp. strain GM41 on plant growth (including height, stem girth, leaf, and root growth) and as well as growth rate over time, across four Populus trichocarpa genotypes. Additionally, we compared the level of total organic carbon and plant exometabolite profiles across different poplar genotypes in the presence of the microbial consortium. These data revealed no significant difference in plant growth parameters between the treatments and the control across four different poplar genotypes at 7 weeks post-inoculation. However, total organic carbon and exometabolite profiles were significantly different between the genotypes and the treatments. These findings suggest that this microbial consortium has the potential to trigger early signaling responses in poplar, influencing its metabolism in ways crucial for later developmental processes and stress tolerance.
Collapse
Affiliation(s)
- Alyssa A. Carrell
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Miranda Clark
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Sara Jawdy
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | | | - Gladys Alexandre
- Department of Biochemistry and Cellular and Molecular BiologyUniversity of Tennessee‐KnoxvilleKnoxvilleTennesseeUSA
| | - Jesse L. Labbé
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
- Present address:
Technology HoldingSalt Lake CityUtahUSA
| | - Tomás A. Rush
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| |
Collapse
|
10
|
Li C, Feng Y, Tian P, Yu X. Mathematical Estimation of Endogenous Proline as a Bioindicator to Regulate the Stress of Trivalent Chromium on Rice Plants Grown in Different Nitrogenous Conditions. TOXICS 2023; 11:803. [PMID: 37888654 PMCID: PMC10611392 DOI: 10.3390/toxics11100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
The accumulation of proline impacts the defense mechanisms of plants against the harmful effects of adverse environmental conditions; however, its concentration in plants is associated with the metabolism of N. Therefore, the effects of exogenous organic [glutamate (Glu)/arginine (Arg)] and inorganic [nitrate (NO3-)/ammonium (NH4+)] N on the accumulation of proline (Pro) in rice plants under trivalent chromium [Cr(III)] stress were studied through using the mass balance matrix model (MBMM). Application of 'NH4+' showed the largest contribution to the Pro content in rice shoots under different concentrations of Cr(III), followed by 'NO3-', 'Arg', and 'Glu' applications. On the other hand, 'Arg' application displayed the largest contribution to the Pro content in roots under Cr(III) stress, followed by 'NH4+', 'Glu', and 'NO3-' applications. The combined application of 'NH4++Arg' showed the greatest contribution to the Pro content in both roots and shoots of Cr(III)-treated rice seedlings, while the application of 'NO3-+Glu' showed the least contribution to the Pro content in rice seedlings. The current study indicated that the endogenous level of Pro in rice seedlings is quite sensitive to Cr(III) stress under different N sources, and the mathematical modeling showed a reliable result while estimating the relationship between Pro content and N source application.
Collapse
Affiliation(s)
| | | | | | - Xiaozhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, China (Y.F.)
| |
Collapse
|
11
|
Zhou X, Xiang X, Zhang M, Cao D, Du C, Zhang L, Hu J. Combining GS-assisted GWAS and transcriptome analysis to mine candidate genes for nitrogen utilization efficiency in Populus cathayana. BMC PLANT BIOLOGY 2023; 23:182. [PMID: 37020197 PMCID: PMC10074878 DOI: 10.1186/s12870-023-04202-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Forest trees such as poplar, shrub willow, et al. are essential natural resources for sustainable and renewable energy production, and their wood can reduce dependence on fossil fuels and reduce environmental pollution. However, the productivity of forest trees is often limited by the availability of nitrogen (N), improving nitrogen use efficiency (NUE) is an important way to address it. Currently, NUE genetic resources are scarce in forest tree research, and more genetic resources are urgently needed. RESULTS Here, we performed genome-wide association studies (GWAS) using the mixed linear model (MLM) to identify genetic loci regulating growth traits in Populus cathayana at two N levels, and attempted to enhance the signal strength of single nucleotide polymorphism (SNP) detection by performing genome selection (GS) assistance GWAS. The results of the two GWAS analyses identified 55 and 40 SNPs that were respectively associated with plant height (PH) and ground diameter (GD), and 92 and 69 candidate genes, including 30 overlapping genes. The prediction accuracy of the GS model (rrBLUP) for phenotype exceeds 0.9. Transcriptome analysis of 13 genotypes under two N levels showed that genes related to carbon and N metabolism, amino acid metabolism, energy metabolism, and signal transduction were differentially expressed in the xylem of P. cathayana under N treatment. Furthermore, we observed strong regional patterns in gene expression levels of P. cathayana, with significant differences between different regions. Among them, P. cathayana in Longquan region exhibited the highest response to N. Finally, through weighted gene co-expression network analysis (WGCNA), we identified a module closely related to the N metabolic process and eight hub genes. CONCLUSIONS Integrating the GWAS, RNA-seq and WGCNA data, we ultimately identified four key regulatory genes (PtrNAC123, PtrNAC025, Potri.002G233100, and Potri.006G236200) involved in the wood formation process, and they may affect P. cathayana growth and wood formation by regulating nitrogen metabolism. This study will provide strong evidence for N regulation mechanisms, and reliable genetic resources for growth and NUE genetic improvement in poplar.
Collapse
Affiliation(s)
- Xinglu Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaodong Xiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Min Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Demei Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
12
|
Chang M, Ma J, Sun Y, Fu M, Liu L, Chen Q, Zhang Z, Song C, Sun J, Wan X. Role of Endophytic Bacteria in the Remobilization of Leaf Nitrogen Mediated by CsEGGT in Tea Plants ( Camellia sinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5208-5218. [PMID: 36970979 DOI: 10.1021/acs.jafc.2c08909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As an important economic plant, tea (Camellia sinensis) has a good economic value and significant health effects. Theanine is an important nitrogen reservoir, and its synthesis and degradation are considered important for nitrogen storage and remobilization in tea plants. Our previous research indicated that the endophyte CsE7 participates in the synthesis of theanine in tea plants. Here, the tracking test confirmed that CsE7 tended to be exposed to mild light and preferentially colonized mature tea leaves. CsE7 also participated in glutamine, theanine, and glutamic acid circulatory metabolism (Gln-Thea-Glu) and contributed to nitrogen remobilization, mediated by the γ-glutamyl-transpeptidase (CsEGGT) with hydrolase preference. The reisolation and inoculation of endophytes further verified their role in accelerating the remobilization of nitrogen, especially in the reuse of theanine and glutamine. This is the first report about the photoregulated endophytic colonization and the positive effect of endophytes on tea plants mediated and characterized by promoting leaf nitrogen remobilization.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| |
Collapse
|
13
|
Effects of Exogenous L-Asparagine on Poplar Biomass Partitioning and Root Morphology. Int J Mol Sci 2022; 23:ijms232113126. [DOI: 10.3390/ijms232113126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
L-Asparagine (Asn) has been regarded as one of the most economical molecules for nitrogen (N) storage and transport in plants due to its relatively high N-to-carbon (C) ratio (2:4) and stability. Although its internal function has been addressed, the biological role of exogenous Asn in plants remains elusive. In this study, different concentrations (0.5, 1, 2, or 5 mM) of Asn were added to the N-deficient hydroponic solution for poplar ‘Nanlin895’. Morphometric analyses showed that poplar height, biomass, and photosynthesis activities were significantly promoted by Asn treatment compared with the N-free control. Moreover, the amino acid content, total N and C content, and nitrate and ammonia content were dramatically altered by Asn treatment. Moreover, exogenous Asn elicited root growth inhibition, accompanied by complex changes in the transcriptional pattern of genes and activities of enzymes associated with N and C metabolism. Combined with the plant phenotype and the physiological and biochemical indexes, our data suggest that poplar is competent to take up and utilize exogenous Asn dose-dependently. It provides valuable information and insight on how different forms of N and concentrations of Asn influence poplar root and shoot growth and function, and roles of Asn engaged in protein homeostasis regulation.
Collapse
|
14
|
Han M, Xu M, Su T, Wang S, Wu L, Feng J, Ding C. Transcriptome Analysis Reveals Critical Genes and Pathways in Carbon Metabolism and Ribosome Biogenesis in Poplar Fertilized with Glutamine. Int J Mol Sci 2022; 23:9998. [PMID: 36077396 PMCID: PMC9456319 DOI: 10.3390/ijms23179998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Exogenous Gln as a single N source has been shown to exert similar roles to the inorganic N in poplar 'Nanlin895' in terms of growth performance, yet the underlying molecular mechanism remains unclear. Herein, transcriptome analyses of both shoots (L) and roots (R) of poplar 'Nanlin895' fertilized with Gln (G) or the inorganic N (control, C) were performed. Compared with the control, 3109 differentially expressed genes (DEGs) and 5071 DEGs were detected in the GL and GR libraries, respectively. In the shoots, Gln treatment resulted in downregulation of a large number of ribosomal genes but significant induction of many starch and sucrose metabolism genes, demonstrating that poplars tend to distribute more energy to sugar metabolism rather than ribosome biosynthesis when fertilized with Gln-N. By contrast, in the roots, most of the DEGs were annotated to carbon metabolism, glycolysis/gluconeogenesis and phenylpropanoid biosynthesis, suggesting that apart from N metabolism, exogenous Gln has an important role in regulating the redistribution of carbon resources and secondary metabolites. Therefore, it can be proposed that the promotion impact of Gln on poplar growth and photosynthesis may result from the improvement of both carbon and N allocation, accompanied by an efficient energy switch for growth and stress responses.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Shizhen Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Liangdan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Junhu Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Changjun Ding
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
15
|
Zhou J, Yang LY, Jia CL, Shi WG, Deng SR, Luo ZB. Identification and Functional Prediction of Poplar Root circRNAs Involved in Treatment With Different Forms of Nitrogen. FRONTIERS IN PLANT SCIENCE 2022; 13:941380. [PMID: 35874008 PMCID: PMC9305699 DOI: 10.3389/fpls.2022.941380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNA molecules with ring structures formed by covalent bonds and are commonly present in organisms, playing an important regulatory role in plant growth and development. However, the mechanism of circRNAs in poplar root responses to different forms of nitrogen (N) is still unclear. In this study, high-throughput sequencing was used to identify and predict the function of circRNAs in the roots of poplar exposed to three N forms [1 mM NO3 - (T1), 0.5 mM NH4NO3 (T2, control) and 1 mM NH4 + (T3)]. A total of 2,193 circRNAs were identified, and 37, 24 and 45 differentially expressed circRNAs (DECs) were screened in the T1-T2, T3-T2 and T1-T3 comparisons, respectively. In addition, 30 DECs could act as miRNA sponges, and several of them could bind miRNA family members that play key roles in response to different N forms, indicating their important functions in response to N and plant growth and development. Furthermore, we generated a competing endogenous RNA (ceRNA) regulatory network in poplar roots treated with three N forms. DECs could participate in responses to N in poplar roots through the ceRNA regulatory network, which mainly included N metabolism, amino acid metabolism and synthesis, response to NO3 - or NH4 + and remobilization of N. Together, these results provide new insights into the potential role of circRNAs in poplar root responses to different N forms.
Collapse
|
16
|
Han M, Xu X, Li X, Xu M, Hu M, Xiong Y, Feng J, Wu H, Zhu H, Su T. New Insight into Aspartate Metabolic Pathways in Populus: Linking the Root Responsive Isoenzymes with Amino Acid Biosynthesis during Incompatible Interactions of Fusarium solani. Int J Mol Sci 2022; 23:ijms23126368. [PMID: 35742809 PMCID: PMC9224274 DOI: 10.3390/ijms23126368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/10/2023] Open
Abstract
Integrating amino acid metabolic pathways into plant defense and immune systems provides the building block for stress acclimation and host-pathogen interactions. Recent progress in L-aspartate (Asp) and its deployed metabolic pathways highlighted profound roles in plant growth and defense modulation. Nevertheless, much remains unknown concerning the multiple isoenzyme families involved in Asp metabolic pathways in Populus trichocarpa, a model tree species. Here, we present comprehensive features of 11 critical isoenzyme families, representing biological significance in plant development and stress adaptation. The in silico prediction of the molecular and genetic patterns, including phylogenies, genomic structures, and chromosomal distribution, identify 44 putative isoenzymes in the Populus genome. Inspection of the tissue-specific expression demonstrated that approximately 26 isogenes were expressed, predominantly in roots. Based on the transcriptomic atlas in time-course experiments, the dynamic changes of the genes transcript were explored in Populus roots challenged with soil-borne pathogenic Fusarium solani (Fs). Quantitative expression evaluation prompted 12 isoenzyme genes (PtGS2/6, PtGOGAT2/3, PtAspAT2/5/10, PtAS2, PtAspg2, PtAlaAT1, PtAK1, and PtAlaAT4) to show significant induction responding to the Fs infection. Using high-performance liquid chromatography (HPLC) and non-target metabolomics assay, the concurrent perturbation on levels of Asp-related metabolites led to findings of free amino acids and derivatives (e.g., Glutamate, Asp, Asparagine, Alanine, Proline, and α-/γ-aminobutyric acid), showing marked differences. The multi-omics integration of the responsive isoenzymes and differential amino acids examined facilitates Asp as a cross-talk mediator involved in metabolite biosynthesis and defense regulation. Our research provides theoretical clues for the in-depth unveiling of the defense mechanisms underlying the synergistic effect of fine-tuned Asp pathway enzymes and the linked metabolite flux in Populus.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Xianglei Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Xue Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Mei Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yuan Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Junhu Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Hao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-1589-598-3381
| |
Collapse
|