1
|
Haim D, Pochamreddy M, Doron-Faigenboim A, Kamara I, Ben-Ari G, Sadka A. Auxin treatment reduces inflorescences number and delays bud development in the alternate bearing Citrus cultivar Murcott mandarin. TREE PHYSIOLOGY 2025; 45:tpaf009. [PMID: 39834014 DOI: 10.1093/treephys/tpaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Specific cultivars of many commercial fruit trees undergo cycles of heavy fruit load (ON-crop) one year, followed by low fruit load (OFF-crop) the next (termed alternate bearing). Fruit load may affect flowering at various developmental stages, and its presence is suggested to generate a flowering-inhibitory signal. In a previous report, we showed that the presence of fruit induces polar auxin transport from the fruit into the stem, interfering with indole acetic acid release from the bud and thus elevating its levels in the bud meristem. To better understand the relationship between auxin homeostasis in the bud and flowering, indole acetic acid or 2,4-dichlorophenoxyacetic acid (2,4-D) was applied with the polar auxin transport blocker 2,3,5-triiodobenzoic acid to OFF-crop 'Murcott' mandarin (Citrus reticulata × Citrus sinensis) trees during the flowering-induction period. The treatment reduced inflorescence number and delayed bud development. Transcriptome analysis following the treatment revealed a reduction in the expression of a few flowering-control genes, including LEAFY and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE. In addition, genes related to carbohydrate metabolism were reduced. We suggest that the elevation of auxin levels in the bud by heavy fruit load directly affects the expression of flowering-control, flower-development and developmental genes.
Collapse
Affiliation(s)
- Dor Haim
- Department of Fruit Tree Sciences, The Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Rd, P.O. Box 15159, Rishon LeZion 7528809, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 229 Herzl St., P.O. Box 12, Rehovot 7610001, Israel
| | - Madhuri Pochamreddy
- Department of Fruit Tree Sciences, The Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Rd, P.O. Box 15159, Rishon LeZion 7528809, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 229 Herzl St., P.O. Box 12, Rehovot 7610001, Israel
| | - Adi Doron-Faigenboim
- Department of Fruit Tree Sciences, The Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Rd, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Itzahk Kamara
- Department of Fruit Tree Sciences, The Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Rd, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Giora Ben-Ari
- Department of Fruit Tree Sciences, The Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Rd, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Avi Sadka
- Department of Fruit Tree Sciences, The Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Rd, P.O. Box 15159, Rishon LeZion 7528809, Israel
| |
Collapse
|
2
|
Wang P, Su L, Cao L, Hu H, Wan H, Wu C, Zheng Y, Bao C, Liu X. AtSRT1 regulates flowering by regulating flowering integrators and energy signals in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108841. [PMID: 38879987 DOI: 10.1016/j.plaphy.2024.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Epigenetic modifications, such as histone alterations, play crucial roles in regulating the flowering process in Arabidopsis, a typical long-day model plant. Histone modifications are notably involved in the intricate regulation of FLC, a key inhibitor of flowering. Although sirtuin-like protein and NAD+-dependent deacetylases play an important role in regulating energy metabolism, plant stress responses, and hormonal signal transduction, the mechanisms underlying their developmental transitions remain unclear. Thus, this study aimed to reveal how Arabidopsis NAD + -dependent deacetylase AtSRT1 affects flowering by regulating the expression of flowering integrators. Genetic and molecular evidence demonstrated that AtSRT1 mediates histone deacetylation by directly binding near the transcriptional start sites (TSS) of the flowering integrator genes FT and SOC1 and negatively regulating their expression by modulating the expression of the downstream gene LFY to inhibit flowering. Additionally, AtSRT1 directly down-regulates the expression of TOR, a glucose-driven central hub of energy signaling, which controls cell metabolism and growth in response to nutritional and environmental factors. This down-regulation occurs through binding near the TSS of TOR, facilitating the addition of H3K27me3 marks on FLC via the TOR-FIE-PRC2 pathway, further repressing flowering. These results uncover a multi-pathway regulatory network involving deacetylase AtSRT1 during the flowering process, highlighting its interaction with TOR as a hub for the coordinated regulation of energy metabolism and flowering initiation. These findings significantly enhance understanding of the complexity of histone modifications in the regulation of flowering.
Collapse
Affiliation(s)
- Ping Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Lufang Su
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Lan Cao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Hanbing Hu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Heping Wan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Chunhong Wu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Yu Zheng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Chun Bao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Xiaoyun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China.
| |
Collapse
|
3
|
Gao W, Ma R, Li X, Liu J, Jiang A, Tan P, Xiong G, Du C, Zhang J, Zhang X, Fang X, Yi Z, Zhang J. Construction of Genetic Map and QTL Mapping for Seed Size and Quality Traits in Soybean ( Glycine max L.). Int J Mol Sci 2024; 25:2857. [PMID: 38474104 DOI: 10.3390/ijms25052857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Soybean (Glycine max L.) is the main source of vegetable protein and edible oil for humans, with an average content of about 40% crude protein and 20% crude fat. Soybean yield and quality traits are mostly quantitative traits controlled by multiple genes. The quantitative trait loci (QTL) mapping for yield and quality traits, as well as for the identification of mining-related candidate genes, is of great significance for the molecular breeding and understanding the genetic mechanism. In this study, 186 individual plants of the F2 generation derived from crosses between Changjiangchun 2 and Yushuxian 2 were selected as the mapping population to construct a molecular genetic linkage map. A genetic map containing 445 SSR markers with an average distance of 5.3 cM and a total length of 2375.6 cM was obtained. Based on constructed genetic map, 11 traits including hundred-seed weight (HSW), seed length (SL), seed width (SW), seed length-to-width ratio (SLW), oil content (OIL), protein content (PRO), oleic acid (OA), linoleic acid (LA), linolenic acid (LNA), palmitic acid (PA), stearic acid (SA) of yield and quality were detected by the multiple- d size traits and 113 QTLs related to quality were detected by the multiple QTL model (MQM) mapping method across generations F2, F2:3, F2:4, and F2:5. A total of 71 QTLs related to seed size traits and 113 QTLs related to quality traits were obtained in four generations. With those QTLs, 19 clusters for seed size traits and 20 QTL clusters for quality traits were summarized. Two promising clusters, one related to seed size traits and the other to quality traits, have been identified. The cluster associated with seed size traits spans from position 27876712 to 29009783 on Chromosome 16, while the cluster linked to quality traits spans from position 12575403 to 13875138 on Chromosome 6. Within these intervals, a reference genome of William82 was used for gene searching. A total of 36 candidate genes that may be involved in the regulation of soybean seed size and quality were screened by gene functional annotation and GO enrichment analysis. The results will lay the theoretical and technical foundation for molecularly assisted breeding in soybean.
Collapse
Affiliation(s)
- Weiran Gao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Ronghan Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xi Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jiaqi Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Aohua Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Pingting Tan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Guoxi Xiong
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Chengzhang Du
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Jijun Zhang
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Xiaochun Zhang
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Xiaomei Fang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Zelin Yi
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jian Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Li W, Zhu L, Wu B, Liu Y, Li J, Xu L, Huangfu X, Shi D, Gu L, Chen C. Improving mesophilic anaerobic digestion of food waste by side-stream thermophilic reactor: Activation of methanogenic, key enzymes and metabolism. WATER RESEARCH 2023; 241:120167. [PMID: 37290195 DOI: 10.1016/j.watres.2023.120167] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) is a favorable way to convert organic pollutants, such as food waste (FW), into clean energy through microbial action. This work adopted a side-stream thermophilic anaerobic digestion (STA) strategy to improve a digestive system's efficiency and stability. Results showed that the STA strategy brought higher methane production as well as higher system stability. It quickly adapted to thermal stimulation and increased the specific methane production from 359 mL CH4/g·VS to 439 mL CH4/g·VS, which was also higher than 317 mL CH4/g·VS from single-stage thermophilic anaerobic digestion. Further exploration of the mechanism of STA using metagenomic and metaproteomic analysis revealed enhanced activity of key enzymes. The main metabolic pathway was up-regulated, while the dominant bacteria were concentrated, and the multifunctional Methanosarcina was enriched. These results indicate that STA optimized organic metabolism patterns, comprehensively promoted methane production pathways, and formed various energy conservation mechanisms. Further, the system's limited heating avoided adverse effects from thermal stimulation, and activated enzyme activity and heat shock proteins through circulating slurries, which improved the metabolic process, showing great application potential.
Collapse
Affiliation(s)
- Wen Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Lirong Zhu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Baocun Wu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Yongli Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Jinze Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Linji Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Xiaoliu Huangfu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Dezhi Shi
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Cong Chen
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| |
Collapse
|
5
|
Liu W, Ji X, Cao H, Huo C, He L, Peng X, Yang Y, Yang F, Xiong S. Comparative Transcriptome Analysis Reveals the Effect of miR156a Overexpression on Mineral Nutrient Homeostasis in Nicotiana tabacum. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091739. [PMID: 37176797 PMCID: PMC10181358 DOI: 10.3390/plants12091739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Mineral nutrition plays an important role in crop growth, yield and quality. MiR156 is a regulatory hub for growth and development. To date, the understanding of miR156-mediated mineral homeostasis is limited. In this study, we overexpressed Nta-miR156a in the tobacco cultivar TN90 and analyzed the effects of miR156 on mineral element homeostasis in tobacco by comparative transcriptome analysis. The results showed that the overexpression of miR156a caused significant morphological changes in transgenic tobacco. Chlorophyll and three anti-resistance markers, proline, total phenolics, and total flavonoids, were altered due to increased miR156 expression levels. Interestingly, the distribution of Cu, Mn, Zn, and Fe in different tissues of transgenic tobacco was disordered compared with that of the wild type. Comparative transcriptome analysis showed that the overexpression of miR156 resulted in 2656 significantly differentially expressed genes. The expression levels of several metal-transport-related genes, such as NtABC, NtZIP, NtHMA, and NtCAX, were significantly increased or decreased in transgenic tobacco. These results suggest that miR156 plays an essential role in regulating mineral homeostasis. Our study provides a new perspective for the further study of mineral nutrient homeostasis in plants.
Collapse
Affiliation(s)
- Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xue Ji
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Hanping Cao
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chunsong Huo
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiang Peng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ya Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Fang Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Shu Xiong
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing 404120, China
| |
Collapse
|