1
|
Zhu S, Chang X, Liu N, He Y, Wang J, Wu Z. The composite microbial agent controls tomato bacterial wilt by colonizing the root surface and regulating the rhizosphere soil microbial community. Front Microbiol 2025; 16:1559380. [PMID: 40371121 PMCID: PMC12075239 DOI: 10.3389/fmicb.2025.1559380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Bacterial wilt caused by Ralstonia solanacearum seriously affects the healthy growth of tomato seedlings. Biocontrol microbes have been used to manage tomato bacterial wilt. Herein, we aim to investigate the behavior of the Enterobacter hormaechei Rs-5 and Bacillus subtilis SL-44 composite microbial agent (EB) in the rhizosphere soil, and assess its impact on both the soil microbial community and tomato plant growth in this study. Methods The plate confrontation experiment and the pot experiment were respectively used to explore the control ability of EB against Ralstonia solanacearum and bacterial wilt disease. The absolute quantitative PCR (AQ-PCR) was employed to investigate the migration ability of EB in the rhizosphere of tomatoes, and the chemotactic response of EB to tomato root exudates was analyzed by the swimming plate method. Scanning electron microscopy was utilized to study the biofilm formation of EB during its colonization on the root surface of tomatoes. Finally, high-throughput sequencing was adopted to analyze the impact of EB on the microbial community in the rhizosphere soil of tomatoes after being infected by Ralstonia solanacearum. Results The absolute quantitative PCR and scanning electron microscope showed that the EB could migrate and efficiently colonize the elongation zone of tomato roots to form a biofilm. In addition, the EB exhibits a chemotactic response to tomato root exudates like sucrose, leucine, glutamic acid, and aspartic acid. The pot experiment demonstrated that the EB can reduce the incidence of tomato bacterial wilt from 77.78% to 22.22%, and significantly increase the biomass, physicochemical properties, and rhizosphere soil nutrient contents of tomato seedlings. Besides, the relative abundance of beneficial bacteria such as Massilia, Pseudomonas, Bacillus, and Enterobacter increased, and the fungi community diversity was improved. Conclusion Overall, the EB can reduce the amount of Ralstonia solanacearum in rhizosphere soil, and then control tomato bacterial wilt directly. Besides, the EB can migrate to the root under the induction of tomato root exudates and colonize on the root surface efficiently, thereby indirectly regulating the soil microbial community structure and controlling tomato bacterial wilt.
Collapse
Affiliation(s)
- Shuangxi Zhu
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, School of Environmental and Chemical Engineering, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Xi’an Polytechnic University, Xi’an, China
| | - Xiaojian Chang
- Agricultural Technology Extension Center of Xi’an, Xi’an, China
| | - Nana Liu
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, School of Environmental and Chemical Engineering, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Xi’an Polytechnic University, Xi’an, China
| | - Yanhui He
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, School of Environmental and Chemical Engineering, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Xi’an Polytechnic University, Xi’an, China
| | - Jianwen Wang
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, School of Environmental and Chemical Engineering, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Xi’an Polytechnic University, Xi’an, China
| | - Zhansheng Wu
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, School of Environmental and Chemical Engineering, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Xi’an Polytechnic University, Xi’an, China
| |
Collapse
|
2
|
Khan MB, Sulaman S, Shabaan M, Fatima A, Hameed A, Zulfiqar U, Kabir R, Mohammed Alarjani K, Aljeidi RA. Exploring the phytostabilization potential of ryegrass ( Lolium perenne L.) upon synergistic application of Cd-tolerant Pseudomonas fluorescens and organic amendments. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-15. [PMID: 40298032 DOI: 10.1080/15226514.2025.2494700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Soil Cd contamination limits plant productivity by affecting their key functions and reducing yields. In-situ immobilization of heavy metals (HMs) can achieve 'green' and 'sustainable' ways of HM remediation owing to its lower life cycle environmental footprints. This study explored the effects of Cd-resistant P. fluorescens and OAs such as rice straw, wheat straw and cow dung (1% w/w) on the Cd tolerance of ryegrass under Cd contamination (2.2 mg kg-1). In our findings, Cd exposure reduced plant height (22%), root length (38%), chlorophyll 'a' and 'b' (36 and 38%), and relative water content (32%) in uninoculated plants. However, combined use of P. fluorescens and OAs mitigated these effects by immobilizing Cd in soil, with a 56% increase in residual Cd and higher Cd retention in roots and shoots (77 and 87%). Co-application enhanced plant height (96%), root length (158%), chlorophyll content (90 and 98%), relative water content (168%), flavonoids and phenols (151 and 68%) and NPK uptake (104, 73 and 71%) as compared to uninoculated control. Integration of P. fluorescens and OAs not only reduced Cd uptake but also improved growth and yield. Thus, this approach mitigates Cd stress in ryegrass, improving growth and physiology by reducing Cd uptake.
Collapse
Affiliation(s)
- Muhammad Babar Khan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
- Department of Environmental Science, Government College University Faisalabad, Pakistan
| | - Saira Sulaman
- Department of Soil Science and Plant Nutrition, Akdeniz University, Anatalya, Turkey
| | - Muhammad Shabaan
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Arooj Fatima
- Department of Environmental Science, Government College University Faisalabad, Pakistan
- College of Agriculture and Environmental Sciences, Government College and University, Faisalabad, Pakistan
| | - Ashir Hameed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rehmat Kabir
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Reem A Aljeidi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Liu R, Wang T, Wang J, Yan D, Lian Y, Lu Z, Hong Y, Yuan X, Wang Y, Li R. The Physiological Mechanism of Exogenous Melatonin on Improving Seed Germination and the Seedling Growth of Red Clover ( Trifolium pretense L.) under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2527. [PMID: 39274011 PMCID: PMC11397702 DOI: 10.3390/plants13172527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Salt stress can affect various physiological processes in plants, ultimately hindering their growth and development. Melatonin (MT) can effectively resist multiple abiotic stresses, improving plant stress resistance. To analyze the mechanism of exogenous MT to enhance salt tolerance in red clover, we conducted a comprehensive study to examine the influence of exogenous MT on various parameters, including seed germination indices, seedling morphological traits, and physiological and photosynthetic indicators, using four distinct red clover varieties (H1, H2, H3, and H4). This investigation was performed under various salt stress conditions with differing pH values, specifically utilizing NaCl, Na2SO4, NaHCO3, and Na2CO3 as the salt stressors. The results showed that MT solution immersion significantly improved the germination indicators of red clover seeds under salt stress. The foliar spraying of 50 μM and 25 μM MT solution significantly increased SOD activity (21-127%), POD activity, soluble sugar content, proline content (22-117%), chlorophyll content (2-66%), and the net photosynthetic rate. It reduced the MDA content (14-55%) and intercellular CO2 concentration of red clover seedlings under salt stress. Gray correlation analysis and the Mantel test further verified that MT is a key factor in enhancing seed germination and seedling growth of red clover under salt stress; the most significant improvement was observed for NaHCO3 stress. MT is demonstrated to improve the salt tolerance of red clover through a variety of mechanisms, including an increase in antioxidant enzyme activity, osmoregulation ability, and cell membrane stability. Additionally, it improves photosynthetic efficiency and plant architecture, promoting energy production, growth, and optimal resource allocation. These mechanisms function synergistically, enabling red clover to sustain normal growth and development under salt stress.
Collapse
Affiliation(s)
- Rui Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ting Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jiajie Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Di Yan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yijia Lian
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhengzong Lu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yue Hong
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xue Yuan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ye Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Runzhi Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| |
Collapse
|
4
|
Rouhi-Kelarlou T, Golchin A, Soltani Toularoud AA. Ecotoxicological impact of butisanstar and clopyralid herbicides on soil microbial respiration and the enzymatic activities. CHEMOSPHERE 2024; 357:142029. [PMID: 38626812 DOI: 10.1016/j.chemosphere.2024.142029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/08/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
The application of herbicides in soil has been noted for its detrimental effect on the soil microbial community, crucial for various biochemical processes. This study provides a comprehensive assessment of the impact of butisanstar and clopyralid herbicides, both individually and in combination at different dosage (recommended field dose (RFD), ½, 2 and 5-times RFD). The assessment focuses on soil basal respiration (SBR), cumulative microbial respiration (CMR), and the activities dehydrogenase (DH), catalase (CAT), urease, acid and alkaline phosphatases (Ac-P and Alk-P) enzymes, along with their variations on days 10, 30, 60, and 90 post-herbicide application. Results indicate that, although herbicides, even at lower doses of RFD, demonstrate inhibitory effects on DH, CAT, and microbial respiration, they paradoxically lead to a significant enhancement in urease and phosphatase activities, even at higher doses. The inhibitory/enhancing intensity varies based on herbicide type, incubation period, and dosage. Co-application of herbicides manifests synergistic effects compared to individual applications. The most notable inhibitory effects on DH, CAT, and SBR are observed on the 30th day, coinciding with the highest activities of urease and phosphatases on the same day. The persistent inability to restore respiration and enzyme activities to initial soil (control) levels emphasizes the lasting adverse and inhibitory effects of herbicides, especially clopyralid, over the long term. It becomes apparent that soil microorganisms require an extended duration to decompose and acclimate to the presence of herbicides. Consequently, these agrochemical compounds pose a potential risk to crucial biochemical processes, such as nutrient cycling, ultimately impacting crop production.
Collapse
Affiliation(s)
- Tohid Rouhi-Kelarlou
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Ahmad Golchin
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | | |
Collapse
|
5
|
Komal, Shabaan M, Ali Q, Asghar HN, Zahir ZA, Yousaf K, Aslam N, Zulfiqar U, Ejaz M, Alwahibi MS, Ali MA. Exploring the synergistic effect of chromium (Cr) tolerant Pseudomonas aeruginosa and nano zero valent iron (nZVI) for suppressing Cr uptake in Aloe Vera. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1474-1485. [PMID: 38488053 DOI: 10.1080/15226514.2024.2327838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Chromium (Cr) contamination of soil has substantially deteriorated soil health and has interfered with sustainable agricultural production worldwide and therefore, its remediation is inevitable. Inoculation of plant growth promoting rhizobacteria (PGPR) in association with nanotechnology has exerted broad based impacts in agriculture, and there is an urgent need to exploit their synergism in contaminated soils. Here, we investigated the effect of co-application of Cr-tolerant "Pseudomonas aeruginosa CKQ9" strain and nano zerovalent iron (nZVI) in improving the phytoremediation potential of aloe vera (Aloe barbadensis L.) under Cr contamination. Soil was contaminated by using potassium dichromate (K2Cr2O7) salt and 15 mg kg-1 contamination level in soil was maintained via spiking and exposure to Cr lasted throughout the duration of the experiment (120 days). We observed that the co-application alleviated the adverse impacts of Cr on aloe vera, and improved various plant attributes such as plant height, root area, number of leaves and gel contents by 51, 137, 67 and 49% respectively as compared to control treatment under Cr contamination. Similarly, significant boost in the activities of various antioxidants including catalase (124%), superoxide dismutase (87%), ascorbate peroxidase (36%), peroxidase (89%) and proline (34%) was pragmatic under contaminated soil conditions. In terms of soil Cr concentration and its plant uptake, co-application of P. aeruginosa and nZVI also reduced available Cr concentration in soil (50%), roots (77%) and leaves (84%), while simultaneously increasing the relative production index by 225% than un-inoculated control. Hence, integrating PGPR with nZVI can be an effective strategy for enhancing the phytoremediation potential of aloe vera.
Collapse
Affiliation(s)
- Komal
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shabaan
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Qasim Ali
- Department of Soil Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Kashmala Yousaf
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Noreen Aslam
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mukkaram Ejaz
- Institute of Physics-Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Gliwice, Poland
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|