1
|
Zolkiewicz K, Ahmar S, Gruszka D. Genetic manipulations of brassinosteroid-related genes improve various agronomic traits and yield in cereals enabling new biotechnological revolution: Achievements and perspectives. Biotechnol Adv 2025; 81:108556. [PMID: 40081782 DOI: 10.1016/j.biotechadv.2025.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Brassinosteroids (BRs) are steroid phytohormones which regulate various developmental and physiological processes throughout plant life cycle, from seed development and germination, up to modulation of reproduction and senescence. Importantly, mutants defective in the BR biosynthesis or response show various degree of plant height reduction (dwarfism or semi-dwarfism). This agronomic trait is of particular importance considering that in contrast to tall cereal varieties, semi-dwarf cereal plants are more tolerant to lodging which occurs during unfavorable weather conditions and constitutes a serious threat to plant reproduction and yield. Moreover, it was shown that the BR deficiency or insensitivity lead to erect stature of cereal plants what enables increase in planting density and yield. The valuable combinations of these traits make the BR-related mutants exceptional alternatives in breeding programs. Noteworthy, BRs play a noticeable role in regulation of grain/kernel shape and size. Therefore, these crucial agronomic traits may be manipulated specifically in BR-dependent manner. Importantly, the semi-dwarf mutants have been successfully introduced into cereal breeding programs in the past, and new semi-dwarf mutants developed through application of gene editing approach have been recently reported as promising alternatives for development of novel, high-yielding cereal cultivars. This review presents a comprehensive description of genetic manipulations of the BR-related genes aimed at improvements of various agronomic traits in the major cereal crops - rice, wheat, maize, and barley. These improvements may be achieved through application of panicle- or grain-specific promoters, overexpression or gain-of-function approaches, gene silencing, and targeted gene editing.
Collapse
Affiliation(s)
- Karolina Zolkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
2
|
Attallah C, Conti G, Zuljan F, Zavallo D, Ariel F. Noncoding RNAs as tools for advancing translational biology in plants. THE PLANT CELL 2025; 37:koaf054. [PMID: 40090356 PMCID: PMC12079378 DOI: 10.1093/plcell/koaf054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 03/18/2025]
Abstract
Noncoding RNAs (ncRNAs), once considered the "dark matter" of the genome, have emerged as critical regulators of gene expression in plants. Research initially focused on model organisms has laid the groundwork for harnessing the potential of ncRNAs in agriculture, particularly for crop protection, improvement, and modulation. This review explores the role of long and small ncRNAs in plant biology, highlighting their application as powerful tools in agricultural biotechnology. We examine the latest strategies for ncRNA expression and delivery in crops, including transgenic and nontransgenic approaches, as well as emerging technologies that enable precise and efficient modulation of gene activity in plants and pathogens. Additionally, we provide a comprehensive overview of the current state-of-the-art in the regulation of RNA-based products, addressing the challenges and opportunities for integrating these innovations into sustainable agricultural practices. As the regulatory landscape evolves, understanding the safety, efficacy, and environmental impact of ncRNA-based technologies will be crucial for their successful deployment. By leveraging the advances in plant science research, long and small ncRNAs hold promise for designing highly specific tools to boost crop productivity while preserving genetic diversity, contributing to global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Carolina Attallah
- APOLO Biotech, Santa Fe de la Vera Cruz, CP3000 Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP1425 Buenos Aires, Argentina
- Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)—Instituto Nacional de Tecnología Agropecuaria (INTA) -CONICET, CP1686 Hurlingham, Buenos Aires, Argentina
- Facultad de Agronomía-Universidad de Buenos Aires (UBA), CP1417 Buenos Aires, Argentina
| | - Federico Zuljan
- APOLO Biotech, Santa Fe de la Vera Cruz, CP3000 Santa Fe, Argentina
| | - Diego Zavallo
- APOLO Biotech, Santa Fe de la Vera Cruz, CP3000 Santa Fe, Argentina
| | - Federico Ariel
- Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, CP1428 Buenos Aires, Argentina
| |
Collapse
|
3
|
Rani V, Rana S, Muthamilarasan M, Joshi DC, Gupta R, Singh R, Yadav D. Identification and characterization of Eco-miR 169-EcNF-YA13 gene regulatory network reveal their role in conferring tolerance to dehydration and salinity stress in finger millet. Sci Rep 2025; 15:12338. [PMID: 40210666 PMCID: PMC11985966 DOI: 10.1038/s41598-025-96233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
The finger millet (Eleusine coracana (L.) Gaertn) genome, comprised 166 conserved microRNAs (miRNAs) belonging to 39 families and three novel miRNAs. The miR169 is one of the most conserved miRNA families, while Eco_N1 is a species-specific miRNA prevalent in finger millet. Its members regulate the expression of genes encoding the Nuclear Factor-Y subunit A (NF-YA) via transcript cleavage. However, the role of miRNA genes in regulating the expression of NF-YA transcription factors in finger millet needs to be deciphered. The present study characterized 166 conserved and novel miRNAs (Eco_N1, Eco_N2 and Eco_N3). Further, secondary structures were predicted, and the potential miR genes targeting the NF-YA transcription factors regulating abiotic stress tolerance were analysed. Twenty-three Eco-miR169 members and one Eco_N1 miRNA targeting EcNF-YA13 were identified in the finger millet genome. The presence of relevant cis-elements such as ABRE (abscisic acid-responsive elements), DRE (dehydration-responsive element), and MYB (myeloblastosis) indicates that the target of Eco-miR169 might be involved in abiotic stress responses. The tissue-specific RNA-seq transcriptomic expression pattern of Eco-miR169 showed variable fold of expression in seedlings compared to the control. At the same time, the expression of EcNF-YA13 (target genes of Eco-miR169 members and Eco_N1) presented a downregulated trend under salinity and dehydration conditions compared to the control. Tissue-specific RNA-seq followed by expression analysis confirmed the antagonistic effect of Eco-miR genes on EcNF-YA13. In a nutshell, the results of this study could be utilized as a platform for further exploration and characterization of finger millet Eco-miR169-EcNF-YA13gene regulatory network.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Sandip University, Nashik, 422213, Maharashtra, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - D C Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, 263601, Uttarakhand, India.
| | - Ramwant Gupta
- Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Rajesh Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India.
| |
Collapse
|
4
|
Estrada R, Rodriguez L, Romero Y, Arteaga L, Ruelas-Calloapaza D, Oha-Humpiri F, Flores N, Coila P, Arbizu CI. Profiling of Known and Novel microRNAs in an Oleaginous Crop Native to the Amazon Basin, Sacha Inchi ( Plukenetia volubilis), Through smallRNA-Seq. Genes (Basel) 2025; 16:417. [PMID: 40282379 PMCID: PMC12026887 DOI: 10.3390/genes16040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play crucial roles in regulating tissue-specific gene expression and plant development. This study explores the identification and functional characterization of miRNAs in Plukenetia volubilis (sacha inchi), an economically and nutritionally significant crop native to the Amazon basin, across three organs: root, stem, and leaf. METHODS Small RNA libraries were sequenced on the Illumina Novaseq 6000 platform, yielding high-quality reads that facilitated the discovery of known and novel miRNAs using miRDeep-P. RESULTS A total of 277 miRNAs were identified, comprising 71 conserved and 206 novel miRNAs, across root, stem, and leaf tissues. In addition, differential expression analysis using DESeq2 identified distinct miRNAs exhibiting tissue-specific regulation. Notably, novel miRNAs like novel_1, novel_88, and novel_189 showed significant roles in processes such as auxin signaling, lignin biosynthesis, and stress response. Functional enrichment analysis of miRNA target genes revealed pathways related to hormonal regulation, structural reinforcement, and environmental adaptation, highlighting tissue-specific functions. The Principal Component Analysis and PERMANOVA confirmed clear segregation of miRNA expression profiles among tissues, underlining organ-specific regulation. Differential expression patterns emphasized unique regulatory roles in each organ: roots prioritized stress response and nutrient uptake, leaves focused on photosynthesis and UV protection, and stems contributed to structural integrity and nutrient transport, suggesting evolutionary adaptations in P. volubilis. CONCLUSIONS This study identified novel miRNA-mediated networks that regulate developmental and adaptive processes in P. volubilis, underscoring its molecular adaptations for resilience and productivity. By characterizing both conserved and novel miRNAs, the findings lay a foundation for genetic improvement and molecular breeding strategies aimed at enhancing agronomic traits, stress tolerance, and the production of bioactive compounds.
Collapse
Affiliation(s)
- Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (L.R.); (Y.R.); (L.A.)
- Instituto de Investigación en Bioinformática y Bioestadística (BIOINFO), Lima 15024, Peru
| | - Lila Rodriguez
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (L.R.); (Y.R.); (L.A.)
- Instituto de Investigación en Bioinformática y Bioestadística (BIOINFO), Lima 15024, Peru
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (L.R.); (Y.R.); (L.A.)
- Instituto de Investigación en Bioinformática y Bioestadística (BIOINFO), Lima 15024, Peru
| | - Linda Arteaga
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (L.R.); (Y.R.); (L.A.)
- Instituto de Investigación en Bioinformática y Bioestadística (BIOINFO), Lima 15024, Peru
| | - Domingo Ruelas-Calloapaza
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, Puno 21001, Peru; (D.R.-C.); (N.F.); (P.C.)
| | - Filiberto Oha-Humpiri
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Micaela Bastidas de Apurímac, Abancay 03001, Peru;
| | - Nils Flores
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, Puno 21001, Peru; (D.R.-C.); (N.F.); (P.C.)
| | - Pedro Coila
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, Puno 21001, Peru; (D.R.-C.); (N.F.); (P.C.)
| | - Carlos I. Arbizu
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas 01001, Peru
- Centro de Investigación en Germoplasma Vegetal y Mejoramiento Genético de Plantas (CIGEMP), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas 01001, Peru
| |
Collapse
|
5
|
Allam G, Sakariyahu SK, McDowell T, Pitambar TA, Papadopoulos Y, Bernards MA, Hannoufa A. miR156 Is a Negative Regulator of Aluminum Response in Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2025; 14:958. [PMID: 40265915 PMCID: PMC11945701 DOI: 10.3390/plants14060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/24/2025]
Abstract
Aluminum (Al) toxicity is a serious environmental constraint facing crop production in acidic soils, primarily due to the oxidative damage it causes to plant tissues. Alfalfa (Medicago sativa), a globally important forage crop, is highly susceptible to Al-induced stress, necessitating the development of Al-tolerant cultivars for sustainable forage production. In this study, we investigated the regulatory role of miR156 in Al stress response in alfalfa. Transcript analysis revealed significant downregulation of miR156 in alfalfa roots after 8 h of Al exposure, suggesting a negative role for miR156 in response to Al. To further investigate the role of miR156 in regulating agronomic traits and alfalfa's Al tolerance, we utilized the short tandem target mimic (STTM) method to silence miR156 in alfalfa (MsSTTM156), which led to an upregulation of SQUAMOSA PROMOTER BINDING-LIKE (SPL) target genes, albeit with variable miR156 dose-dependent effects across different transgenic genotypes. Morphological characterization of MsSTTM156 plants revealed significant negative changes in root architecture, root and shoot biomass, as well as flowering time. Under Al stress, overexpression of miR156 in alfalfa (MsmiR156OE) resulted in stunted growth and reduced biomass, whereas moderate MsmiR156 silencing enhanced root dry weight and increased stem basal diameter. In contrast, MsmiR156OE reduced plant height, stem basal diameter, shoot branching, and overall biomass under Al stress conditions. At the molecular level, silencing miR156 modulated the transcription of cell wall-related genes linked to Al tolerance, such as polygalacturonase 1(MsPG1) and polygalacturonase 4 (MsPG4). Furthermore, miR156 influenced the expression of indole-3-acetic acid (IAA) transport-related genes auxin transporter-like protein (MsAUX1) and auxin efflux carrier components 2 (MsPIN2), with MsSTTM156 and MsmiR156OE plants showing lower and higher transcript levels, respectively, upon Al exposure. These findings reveal the multi-layered role of miR156 in mediating Al tolerance, providing valuable insights into the genetic strategies that regulate response to Al stress in alfalfa.
Collapse
Affiliation(s)
- Gamalat Allam
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Solihu K. Sakariyahu
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Tim McDowell
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
| | - Tevon A. Pitambar
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | | | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| |
Collapse
|
6
|
Khaskhali S, Xiao X, Zhang Z, Solangi F, Hussain S, Chen Y. Expression profile and characterization of respiratory burst oxidase homolog genes in rice under MeJA, SA and Xoo treatments. Sci Rep 2025; 15:5936. [PMID: 39966525 PMCID: PMC11836059 DOI: 10.1038/s41598-025-88731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Respiratory burst oxidase homologs (Rboh) genes is essential for synthesizing reactive oxygen species, which play a crucial role in environmental stress response. The Rboh gene family has been studied in model plants such as Arabidopsis. Nevertheless, Rboh remained largely unexplored in Rice (Oryza sativa L.). Here, we performed characterization of the Rboh genes family in rice (OsRboh) under Xanthomonas oryzae pv. oryzae (Xoo), salicylic acid (SA), and methyl jasmonate (MeJA) treatments. Nine OsRboh genes were retrieved distributed across six chromosomes (1, 5, 8, 9, 11, 12).These genes vary in amino acid sequence length (728-1034), isoelectric point (9.05-9.84), and molecular weight (8.341-115.014 kDa). Analysis of gene structure, motifs and conserved domains showed that OsRboh genes have similar protein sequences and functions. The promoter region of OsRboh genes was found to contain mainly cis-acting elements associated with light, jasmonic acid (JA), abscisic acid (ABA), and SA responsiveness. Predictions of functional protein-protein interaction showed that OsRboh genes were associated with MAPK signaling, plant-pathogen interaction, and other mRNA surveillance pathways. Prediction of miRNA targets and post-translational modification sites indicated that OsRboh genes may be regulated by miRNA and protein phosphorylation. Phylogenetic analysis showed that OsRboh genes were distributed into 7 clusters. Furthermore, 9 OsRboh genes were differentially expressed in different tissues (roots, stems, and leaves). OsRbohA, OsRbohB, and OsRbohD are significant genes in rice defense responses, showing unique and increased expression profiles under (Xoo-PXO99), (MeJA), and (SA) treatments. These genes important function in triggering defense mechanisms is further stressed by the high (> 20-fold) changes in expression they exhibit under these treatments. These findings enhance our understanding of rice OsRboh genes functions and contribute to stress tolerance improvement strategies.
Collapse
Affiliation(s)
- Shahneela Khaskhali
- National Key laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572024, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xiaorong Xiao
- Cereal Crops Institute, Hainan Academy of Agricultural Sciences/Key Laboratory of Crop Genetics and Breeding of Hainan Province, Haikou, 571100, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
| | - Zihe Zhang
- National Key laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572024, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Farheen Solangi
- Research Centre of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, China
| | - Sajjad Hussain
- Environmental Engineering Department, NED University of Engineering and Technology, Karachi, Sindh, Pakistan
| | - Yinhua Chen
- National Key laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572024, China.
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
7
|
Garcia-Oliveira AL, Ortiz R, Sarsu F, Rasmussen SK, Agre P, Asfaw A, Kante M, Chander S. The importance of genotyping within the climate-smart plant breeding value chain - integrative tools for genetic enhancement programs. FRONTIERS IN PLANT SCIENCE 2025; 15:1518123. [PMID: 39980758 PMCID: PMC11839310 DOI: 10.3389/fpls.2024.1518123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 02/22/2025]
Abstract
The challenges faced by today's agronomists, plant breeders, and their managers encompass adapting sustainably to climate variability while working with limited budgets. Besides, managers are dealing with a multitude of issues with different organizations working on similar initiatives and projects, leading to a lack of a sustainable impact on smallholder farmers. To transform the current food systems as a more sustainable and resilient model efficient solutions are needed to deliver and convey results. Challenges such as logistics, labour, infrastructure, and equity, must be addressed alongside adapting to increasingly unstable climate conditions which affect the life cycle of transboundary pathogens and pests. In this context, transforming food systems go far beyond just farmers and plant breeders and it requires substantial contributions from industry, global finances, transportation, energy, education, and country developmental sectors including legislators. As a result, a holistic approach is essential for achieving sustainable and resilient food systems to sustain a global population anticipated to reach 9.7 billion by 2050 and 11.2 billion by 2100. As of 2021, nearly 193 million individuals were affected by food insecurity, 40 million more than in 2020. Meanwhile, the digital world is rapidly advancing with the digital economy estimated at about 20% of the global gross domestic product, suggesting that digital technologies are increasingly accessible even in areas affected by food insecurity. Leveraging these technologies can facilitate the development of climate-smart cultivars that adapt effectively to climate variation, meet consumer preferences, and address human and livestock nutritional needs. Most economically important traits in crops are controlled by multiple loci often with recessive alleles. Considering particularly Africa, this continent has several agro-climatic zones, hence crops need to be adapted to these. Therefore, targeting specific loci using modern tools offers a precise and efficient approach. This review article aims to address how these new technologies can provide a better support to smallholder farmers.
Collapse
Affiliation(s)
- Ana Luísa Garcia-Oliveira
- Genetic Resources Program, Alliance Bioversity International and International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Fatma Sarsu
- Plant Breeding and Genetics Section, Joint FAO/IAEA Center, International Atomic Energy Agency, Vienna, Austria
| | | | - Paterne Agre
- Yam Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Asrat Asfaw
- Yam Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Moctar Kante
- Genetics, Genomics, and Crop Improvement Division, International Potato Center, Lima, Peru
| | - Subhash Chander
- Oilseeds Section, Department of Genetics & Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| |
Collapse
|
8
|
Santoro DF, Marconi G, Capomaccio S, Bocchini M, Anderson AW, Finotti A, Confalonieri M, Albertini E, Rosellini D. Polyploidization-driven transcriptomic dynamics in Medicago sativa neotetraploids: mRNA, smRNA and allele-specific gene expression. BMC PLANT BIOLOGY 2025; 25:108. [PMID: 39856624 PMCID: PMC11763150 DOI: 10.1186/s12870-025-06090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Whole genome duplication (WGD) is a powerful evolutionary mechanism in plants. Autopolyploids have been comparatively less studied than allopolyploids, with sexual autopolyploidization receiving even less attention. In this work, we studied the transcriptomes of neotetraploids (2n = 4x = 32) obtained by crossing two diploid (2n = 2x = 16) plants of Medicago sativa that produce a significant percentage of either 2n eggs or pollen. Diploid progeny from the same cross allowed us to separate the transcriptional outcomes of hybridization from those of WGD. This material can help to elucidate events at the base of the domestication of cultivated 4x alfalfa, the world's most important leguminous forage. Three 2x and three 4x progeny plants and 2x parental plants were used for this study. The RNA-seq data revealed that WGD did not dramatically affect the transcription of leaf protein-coding genes. The two parental genotypes did not contribute equally to the progeny transcriptomes, and genome-wide expression level dominance of the male parent was observed. A large majority of the genes whose expression level changed due to WGD presented increased expression, indicating that the 4x state requires the upregulation of approximately 2.66% of the protein-coding genes. Overall, we estimated that 3.63% of the protein-coding genes were transcriptionally affected by WGD and may contribute to the phenotypic novelty of the neotetraploid plants. Pathway analysis suggested that WGD could affect secondary metabolite biosynthesis, which in turn may influence forage quality. We found four times as many transcription factor genes among the polyploidization-affected genes than among those affected only by hybridization. Several of these belong to classes involved in stress response. Small RNA-seq revealed that very few miRNAs were significantly associated with WGD, but they target several hundred genes, and their role in the WGD response may be relevant. Integrated network analysis led to the identification of putative miRNA: mRNA interactions potentially involved in transcriptome reprogramming. Allele-specific expression analysis indicated that parent-of-origin bias was not a significant outcome of WGD, but we found that parentally biased RNA editing may be a significant source of variation in neopolyploids.
Collapse
Affiliation(s)
- D F Santoro
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, via Borgo XX giugno 74, Perugia, 06121, Italy
| | - G Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, via Borgo XX giugno 74, Perugia, 06121, Italy
- Interuniversity Consortium for Biotechnology (CIB), Area Science Park, Padriciano 99, Trieste, 34149, Italy
| | - S Capomaccio
- Interuniversity Consortium for Biotechnology (CIB), Area Science Park, Padriciano 99, Trieste, 34149, Italy
- Department of Veterinary Medicine, University of Perugia, via S. Costanzo 4, Perugia, 06126, Italy
| | - M Bocchini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, via Borgo XX giugno 74, Perugia, 06121, Italy
| | - A W Anderson
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, via Borgo XX giugno 74, Perugia, 06121, Italy
| | - A Finotti
- Interuniversity Consortium for Biotechnology (CIB), Area Science Park, Padriciano 99, Trieste, 34149, Italy
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, via Fossato di Mortara 74, Ferrara, 44121, Italy
| | - M Confalonieri
- CREA Research Centre for Animal Production and Aquaculture (CREA-ZA), Viale Piacenza 29, Lodi, 26900, Italy
| | - E Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, via Borgo XX giugno 74, Perugia, 06121, Italy
- Interuniversity Consortium for Biotechnology (CIB), Area Science Park, Padriciano 99, Trieste, 34149, Italy
| | - D Rosellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, via Borgo XX giugno 74, Perugia, 06121, Italy.
- Interuniversity Consortium for Biotechnology (CIB), Area Science Park, Padriciano 99, Trieste, 34149, Italy.
| |
Collapse
|
9
|
Erokhina TN, Ryabukhina EV, Lyapina IS, Ryazantsev DY, Zavriev SK, Morozov SY. Promising Biotechnological Applications of the Artificial Derivatives Designed and Constructed from Plant microRNA Genes. PLANTS (BASEL, SWITZERLAND) 2025; 14:325. [PMID: 39942887 PMCID: PMC11819897 DOI: 10.3390/plants14030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that are expressed in a tissue-specific manner during the development of plants and animals. The genes of miRNAs have been found to produce the following two products: (i) primary transcripts of these genes (pri-miRNA) are processed to give rise to mature miRNA, and (ii) in some cases, the pri-miRNA molecules can be translated to form small peptides, named as miPEPs. Gene silencing by artificial microRNAs (amiRNAs) is one of the potential crucial methods for the regulation of desired genes to improve horticultural plants. Likewise, external application of chemically synthesized miPEPs may help plants to resist biotic/abiotic stresses and grow faster. These potent and reliable derivatives of miRNA genes can be applied for improving useful traits in crop plants. This review summarizes the progress in research on the artificial gene derivatives involved in regulating plant development, virus and pest diseases, and abiotic stress resistance pathways. We also briefly discuss the molecular mechanisms of relevant target genes for future research on breeding in plants. In general, this review may be useful to researchers who are implementing amiRNA and miPEP for accelerating breeding programs and developmental studies in crop plants.
Collapse
Affiliation(s)
- T. N. Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (T.N.E.); (E.V.R.); (I.S.L.); (D.Y.R.); (S.K.Z.)
| | - Ekaterina V. Ryabukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (T.N.E.); (E.V.R.); (I.S.L.); (D.Y.R.); (S.K.Z.)
| | - Irina S. Lyapina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (T.N.E.); (E.V.R.); (I.S.L.); (D.Y.R.); (S.K.Z.)
| | - Dmitry Y. Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (T.N.E.); (E.V.R.); (I.S.L.); (D.Y.R.); (S.K.Z.)
| | - Sergey K. Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (T.N.E.); (E.V.R.); (I.S.L.); (D.Y.R.); (S.K.Z.)
| | - Sergey Y. Morozov
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Jia Y, Wei K, Qin J, Zhai W, Li Q, Li Y. The Roles of MicroRNAs in the Regulation of Rice-Pathogen Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:136. [PMID: 39795396 PMCID: PMC11722856 DOI: 10.3390/plants14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025]
Abstract
Rice is exposed to attacks by the three most destructive pathogens, Magnaporthe oryzae (M. oryzae), Xanthomonas oryzae pv. oryzae (Xoo), and Rhizoctonia solani (R. solani), which cause substantial yield losses and severely threaten food security. To cope with pathogenic infections, rice has evolved diverse molecular mechanisms to respond to a wide range of pathogens. Among these strategies, plant microRNAs (miRNAs), endogenous single-stranded short non-coding RNA molecules, have emerged as promising candidates in coordinating plant-pathogen interactions. MiRNAs can modulate target gene expression at the post-transcriptional level through mRNA cleavage and/or translational inhibition. In rare instances, they also influence gene expression at the transcriptional level through DNA methylation. In recent years, substantial advancements have been achieved in the investigation of microRNA-mediated molecular mechanisms in rice immunity. Therefore, we attempt to summarize the current advances of immune signaling mechanisms in rice-pathogen interactions that are regulated by osa-miRNAs, including their functions and molecular mechanisms. We also focus on recent findings concerning the role of osa-miRNAs that respond to M. oryzae, Xoo, and R. solani, respectively. These insights enhance our understanding of how the mechanisms of osa-miRNAs mediate rice immunity and may facilitate the development of improved strategies for breeding pathogen-resistant rice varieties.
Collapse
Affiliation(s)
- Yanfeng Jia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Kai Wei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Jiawang Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.J.); (K.W.); (J.Q.)
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Quanlin Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Yalan Li
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
11
|
Bambil D, Costa M, Alencar Figueiredo LFD. PmiR-Select ® - a computational approach to plant pre-miRNA identification in genomes. Mol Genet Genomics 2025; 300:12. [PMID: 39751956 DOI: 10.1007/s00438-024-02221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Precursors of microRNAs (pre-miRNAs) are less used in silico to mine miRNAs. This study developed PmiR-Select® based on covariance models (CMs) to identify new pre-miRNAs, detecting conserved secondary structural features across RNA sequences and eliminating the redundancy. The pipeline preceded PmiR-Select® filtered 20% plant pre-miRNAs (from 38589 to 8677) from miRBase. The second filter reduced pre-miRNAs by 7% (from 8677 to 8045) through length limit to pre-miRNAs (70-300 nt) and miRNAs (20-24 nt). The 80% redundancy threshold was statistically the best, eliminating 55% pre-miRNAs (from 8045 to 3608). Angiosperms retained the highest number of pre-miRNAs and their families (2981 and 2202), followed by gymnosperms (362 and 271), bryophytes (183 and 119), and algae (82 and 78). Thirty-seven conserved pre-miRNA families happened among plant land clades, but none with algae. The PmiR-Select® was applied to the rice genome, producing 8536 pre-miRNAs from 36 families. The 80% redundancy threshold retained 3% pre-miRNAs (n = 264) from 36 families, valuable experimental and computational research resources. 14% (n = 1216) of 8536 were new pre-miRNAs from 19 new families in rice. Only 16 new sequences from six families overlapped (39 to 54% identities) with rice pre-miRNAs and five species on miRBase. The validation against mature miRNAs identified 8086 pre-miRNAs from 13 families. Eleven ones have already been recorded, but two new and abundant pre-miRNAs [miR437 (n = 296) and miR1435 (n = 725)] scattered in all 12-rice chromosomes. PmiR-Select® identified pre-miRNAs, decreased the redundancy, and discovered new miRNAs. These findings pave the way to delineating benchtop and computational experiments.
Collapse
Affiliation(s)
- Deborah Bambil
- Department of Cell Biology, Biology Institute, University of Brasília (UnB), Brasília, DF, 70910-900, Brazil.
- Federal Institute of Brasília (IFB), Brasília, DF, 70830-450, Brazil.
- Department of Botany, Biology Institute, UnB, Brasília, DF, 70910-900, Brazil.
| | - Mirele Costa
- Department of Computation, UnB, Brasília, DF, 70910-900, Brazil
| | | |
Collapse
|
12
|
Mishra A, Yadav P, Singh K. Host Response of Arabidopsis thaliana Interaction with Fungal Endophytes Involves microRNAs. Mol Biotechnol 2025; 67:294-303. [PMID: 38367181 DOI: 10.1007/s12033-024-01051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/29/2023] [Indexed: 02/19/2024]
Abstract
Plant and fungus interaction is a complex process involving many molecular factors determining the nature of relationship. The enigmatic methodology by which fungal endophytes are able to colonise a plant harmoniously is still inexplicable. Small RNAs have been identified as major regulatory elements under various biotic interactions. However, their role in endophytic plant-fungal interactions remain to be elucidated. Therefore, transcript expression data available on Gene Expression Omnibus for Arabidopsis thaliana was utilised for miRNAs identification under endophytism. The analysis predicted 15 miRNAs with differential expression of which the ath-miRNA398b modulation was significant. Application of psRNAtarget, C-mii, pmiREN, and TarDB provided a pool of 357 target genes for these miRNAs. Protein-protein interaction analysis identified major hub proteins, including BTB/POZ domain-containing protein, beta-Xylosidase-2 (AtBXL2), and Copper/Zinc Superoxide Dismutase-2 (AtSOD2). The quantitative real-time PCR validated the computational prediction and expression for selected target genes AtSOD2, AtBXL2, and AtRCA along with ath-miRNA398b under endophytism. Overall, results indicate that miRNAs have a significant role in regulating Arabidopsis thaliana-endophytic fungal interaction.
Collapse
Affiliation(s)
- Anand Mishra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, India
| | - Pooja Yadav
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kunal Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Rakhmetullina A, Lukasik A, Zielenkiewicz P. An Overview of miRNA and miRNA Target Analysis Tools. Methods Mol Biol 2025; 2900:43-71. [PMID: 40380052 DOI: 10.1007/978-1-0716-4398-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
MicroRNA molecules have been shown to play various significant roles in many physiological and pathophysiological processes in living organisms. The tremendous interest in these molecules has led to the significant development and constant release of a number of computational tools useful for basic as well as advanced miRNA-related analyses. These approaches have various constantly evolving utilities, such as detection, target prediction, functional annotation, and many others. In this chapter, we provide an overview of several computational tools useful for broadly defined plant miRNA analysis. We have added to the Tools4miRs new databases that provide extensive information on small noncoding RNA sequences. Additionally, several tools within the platform have been updated, now featuring comprehensive references and accessible links, ensuring users have access to the most recent and relevant research findings.
Collapse
Affiliation(s)
- Aizhan Rakhmetullina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Lukasik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
- Department of Plant Molecular Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
14
|
Bravo-Vázquez LA, García-Ortega M, Medina-Feria S, Srivastava A, Paul S. Identification and expression profiling of microRNAs in leaf tissues of Foeniculum vulgare Mill. under salinity stress. PLANT SIGNALING & BEHAVIOR 2024; 19:2361174. [PMID: 38825852 DOI: 10.1080/15592324.2024.2361174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
Foeniculum vulgare Mill. commonly known as fennel, is a globally recognized aromatic medicinal plant and culinary herb with widespread popularity due to its antimicrobial, antioxidant, carminative, and diuretic properties, among others. Although the phenotypic effects of salinity stress have been previously explored in fennel, the molecular mechanisms underlying responses to elevated salinity in this plant remain elusive. MicroRNAs (miRNAs) are tiny, endogenous, and extensively conserved non-coding RNAs (ncRNAs) typically ranging from 20 to 24 nucleotides (nt) in length that play a major role in a myriad of biological functions. In fact, a number of miRNAs have been extensively associated with responses to abiotic stress in plants. Consequently, employing computational methodologies and rigorous filtering criteria, 40 putative miRNAs belonging to 25 different families were characterized from fennel in this study. Subsequently, employing the psRNATarget tool, a total of 67 different candidate target transcripts for the characterized fennel miRNAs were predicted. Additionally, the expression patterns of six selected fennel miRNAs (i.e. fvu-miR156a, fvu-miR162a-3p, fvu-miR166a-3p, fvu-miR167a-5p, fvu-miR171a-3p, and fvu-miR408-3p) were analyzed under salinity stress conditions via qPCR. This article holds notable significance as it identifies not only 40 putative miRNAs in fennel, a non-model plant, but also pioneers the analysis of their expression under salinity stress conditions.
Collapse
Affiliation(s)
| | - Mariana García-Ortega
- School of Engineering and Sciences, Tecnologico de Monterrey, San Pablo, Queretaro, Mexico
| | - Sara Medina-Feria
- School of Engineering and Sciences, Tecnologico de Monterrey, San Pablo, Queretaro, Mexico
| | | | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, San Pablo, Queretaro, Mexico
| |
Collapse
|
15
|
Zolkiewicz K, Gruszka D. Take a deep BReath: Manipulating brassinosteroid homeostasis helps cereals adapt to environmental stress. PLANT PHYSIOLOGY 2024; 197:kiaf003. [PMID: 39761526 PMCID: PMC11781206 DOI: 10.1093/plphys/kiaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/20/2024] [Accepted: 12/07/2024] [Indexed: 02/01/2025]
Abstract
Global climate change leads to the increased occurrence of environmental stress (including drought and heat stress) during the vegetative and reproductive stages of cereal crop development. Thus, more attention should be given to developing new cereal cultivars with improved tolerance to environmental stress. However, during the development of new stress-tolerant cereal cultivars, the balance between improved stress responses (which occur at the expense of growth) and plant yield needs to be maintained. Thus, the urgent need for developing new cereal germplasm with improved stress tolerance could be fulfilled using semidwarf cereal mutants defective in brassinosteroid (BR) biosynthesis or signaling. BRs are steroid phytohormones that regulate various developmental and physiological processes throughout the plant life cycle. Mutants defective in BR biosynthesis or responses show reduced plant height (dwarfism or semi-dwarfism). Importantly, numerous reports indicate that genetic modification or biotechnological manipulation of BR biosynthesis or signaling genes in cereals such as rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum), and barley (Hordeum vulgare), which are of crucial importance for global agriculture, may facilitate the development of cereal germplasm with improved stress tolerance. This review presents a comprehensive overview of the genetic manipulation of BR homeostasis in the above-mentioned cereal crops aimed at improving plant responses to various environmental stresses, such as drought, salinity, oxidative stress, thermal stress, and biotic stresses. We highlight target BR-related genes and the effects of genetic manipulation (gene editing, overexpression, and silencing or microRNA-mediated regulation) on plant adaptability to various stresses and provide future perspectives.
Collapse
Affiliation(s)
- Karolina Zolkiewicz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-032 Katowice, Poland
| | - Damian Gruszka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-032 Katowice, Poland
| |
Collapse
|
16
|
Raza A, Li Y, Rizwan HM, Khan A, Peng Y, Guo C, Hu Z. Harnessing light-harvesting chlorophyll a/b-binding proteins for multiple abiotic stress tolerance in Chlamydomonas reinhardtii: Insights from genomic and physiological analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14653. [PMID: 39663819 DOI: 10.1111/ppl.14653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Light-harvesting chlorophyll a/b-binding proteins (LHC) of photosystem II perform key functions in various processes, e.g., photosynthesis, development, and abiotic stress responses. Nonetheless, comprehensive genome-wide investigation of LHC family genes (CrLHCs) has not been well-reported in single-cell alga (Chlamydomonas reinhardtii). Here, we discovered 61 putative CrLHC genes in the C. reinhardtii genome and observed that most genes demonstrate stable exon-intron and motif configurations. We predicted five phytohormones- and six abiotic stress-interrelated cis-regulatory elements in promoter regions of CrLHC. Likewise, 19 miRNAs targeting 42 CrLHC genes from 16 unique families were discovered. Besides, we identified 400 transcription factors from 13 families, including ERF, GATA, CPP, bZIP, C3H, MYB, SBP, Dof, bHLH, C2H2, G2-like, etc. Protein-protein interactions and 3D structures provided insight into CrLHC proteins. Gene ontology and KEGG-based enrichment advocated their role in light responses, photosynthesis, and energy metabolisms. Expression analysis highlighted the shared and unique roles of many CrLHC genes against different abiotic stresses (UV-C, green light, heat, nitric oxide, cadmium, nitrogen starvation, and salinity). Under salinity stress, antioxidant enzyme activity, reactive oxygen species markers, photosynthesis-related traits and pigments were significantly affected. Briefly, this comprehensive genomic and physiological study shed light on the impact of CrLHC genes in abiotic stress tolerance and set the path for future genetic engineering experiments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yiran Li
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hafiz Muhammad Rizwan
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Asadullah Khan
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yuqi Peng
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chunli Guo
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
Charagh S, Wang H, Wang J, Raza A, Hui S, Cao R, Zhou L, Tang S, Hu P, Hu S. Leveraging multi-omics tools to comprehend responses and tolerance mechanisms of heavy metals in crop plants. Funct Integr Genomics 2024; 24:194. [PMID: 39441418 DOI: 10.1007/s10142-024-01481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Extreme anthropogenic activities and current farming techniques exacerbate the effects of water and soil impurity by hazardous heavy metals (HMs), severely reducing agricultural output and threatening food safety. In the upcoming years, plants that undergo exposure to HM might cause a considerable decline in the development as well as production. Hence, plants have developed sophisticated defensive systems to evade or withstand the harmful consequences of HM. These mechanisms comprise the uptake as well as storage of HMs in organelles, their immobilization via chemical formation by organic chelates, and their removal using many ion channels, transporters, signaling networks, and TFs, amid other approaches. Among various cutting-edge methodologies, omics, most notably genomics, transcriptomics, proteomics, metabolomics, miRNAomics, phenomics, and epigenomics have become game-changing approaches, revealing information about the genes, proteins, critical metabolites as well as microRNAs that govern HM responses and resistance systems. With the help of integrated omics approaches, we will be able to fully understand the molecular processes behind plant defense, enabling the development of more effective crop protection techniques in the face of climate change. Therefore, this review comprehensively presented omics advancements that will allow resilient and sustainable crop plants to flourish in areas contaminated with HMs.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
18
|
Shen E, Zhao T, Zhu QH. Are miRNAs applicable for balancing crop growth and defense trade-off? THE NEW PHYTOLOGIST 2024; 243:1670-1680. [PMID: 38952260 DOI: 10.1111/nph.19939] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Securing agricultural supplies for the increasing population without negative impacts on environment demands new crop varieties with higher yields, better quality, and stronger stress resilience. But breeding such super crop varieties is restrained by growth-defense (G-D) trade-off. MicroRNAs (miRNAs) are versatile regulators of plant growth and immune responses, with several being demonstrated to simultaneously regulate crop growth and defense against biotic stresses and to balance G-D trade-off. Increasing evidence also links miRNAs to the metabolism and signaling of phytohormones, another type of master regulator of plant growth and defense. Here, we synthesize the reported functions of miRNAs in crop growth, development, and responses to bio-stressors, summarize the regulatory scenarios of miRNAs based on their relationship with target(s), and discuss how miRNAs, particularly those involved in crosstalk with phytohormones, can be applied in balancing G-D trade-off in crops. We also propose several open questions to be addressed for adopting miRNAs in balancing crop G-D trade-off.
Collapse
Affiliation(s)
- Enhui Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou, 310058, China
| | - Tianlun Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Institute of Hainan, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
19
|
Gill SS, Khan NA, Agarwala N, Singh K, Sunkar R, Tuteja N. ncRNAs in plant development and stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108950. [PMID: 39034172 DOI: 10.1016/j.plaphy.2024.108950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Affiliation(s)
- Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124 001, Haryana, India.
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati, Assam, 781014, India.
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India.
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), New Delhi, India.
| |
Collapse
|
20
|
Sharif R, Zhu Y, Huang Y, Sohail H, Li S, Chen X, Qi X. microRNA regulates cytokinin induced parthenocarpy in cucumber (Cucumis sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108681. [PMID: 38776825 DOI: 10.1016/j.plaphy.2024.108681] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Parthenocarpy is one of the most important agronomic traits for fruit yield in cucumbers. However, the precise gene regulation and the posttranscriptional mechanism are elusive. In the presented study, one parthenocarpic line DDX and non-parthenocarpic line ZK were applied to identify the microRNAs (miRNAs) involved in parthenocarpic fruit formation. The differential expressed miRNAs among parthenocarpic fruit of forchlorfenuron (CPPU) treated ZK (ZK-CPPU), pollinated ZK (ZK-P), non-pollinated DDX (DDX-NP) were compared with the non-parthenocarpic fruits of non-pollinated ZK (ZK-NP). It indicated 98 miRNAs exhibited differential expression were identified. Notably, a significant proportion of these miRNAs were enriched in the signal transduction pathway of plant hormones, as identified by the KEGG pathway analysis. qRT-PCR validation indicated that CsmiR156 family was upregulated in the ZK-NP while downregulated in ZK-CPPU, ZK-P, and DDX-NP at 1 day after anthesis. Meanwhile, the opposite trend was observed for CsmiR164a. In ZK-CPPU, ZK-P, and DDX-NP, CsmiRNA156 genes (CsSPL16 and CsARR9-like) were upregulated while CsmiRNA164a genes (CsNAC6, CsCUC1, and CsNAC100) were downregulated. The GUS and dual luciferase assay validated that CsmiR156a inhibited while CsmiR164a induced their target genes' transcription. This study presents novel insights into the involvement of CsmiR156a and CsmiR164a in the CK-mediated posttranscriptional regulation of cucumber parthenocarpy, which will aid future breeding programs.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Yamei Zhu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Yaoyue Huang
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Hamza Sohail
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Su Li
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
21
|
Yuan Y, Huang C, Pan K, Yao W, Xia R, Zhang M. Small RNA and Degradome Deep Sequencing Reveal Regulatory Roles of MicroRNAs in Response to Sugarcane Mosaic Virus Infection on Two Contrasting Sugarcane Cultivars. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:583-593. [PMID: 38598845 DOI: 10.1094/mpmi-12-23-0220-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
MicroRNAs (miRNAs) play an essential regulatory role in plant-virus interaction. However, few studies have focused on the roles of miRNAs and their targets after sugarcane mosaic virus (SCMV) infection in sugarcane. To address this issue, we conducted small RNA (sRNA) and degradome sequencing on two contrasting sugarcanes (SCMV-resistant 'Fuoguo1' [FG1] and susceptible 'Badila') infected by SCMV at five time points. A total of 1,578 miRNAs were profiled from 30 sRNA libraries, comprising 660 known miRNAs and 380 novel miRNAs. Differential expression analysis of miRNAs revealed that most were highly expressed during the SCMV exponential phase in Badila at 18 h postinfection, with expression profiles positively correlated with virus replication dynamics as observed through clustering. Analysis of degradome data indicated a higher number of differential miRNA targets in Badila compared to FG1 at 18 h postinfection. Gene ontology (GO) enrichment analysis significantly enriched the stimulus-response pathway, suggesting negative regulatory roles to SCMV resistance. Specifically, miR160 upregulated expression patterns and validated in Badila through quantitative real-time PCR (qRT-PCR) in the early stages of SCMV multiplication. Our research provides new insights into the dynamic response of plant miRNA and virus replication and contributes valuable information on the intricate interplay between miRNAs and SCMV infection dynamics. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Agro-Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530005, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 570105, China
| | - Cuilin Huang
- State Key Laboratory for Conservation and Utilization of Agro-Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Kaiyuan Pan
- State Key Laboratory for Conservation and Utilization of Agro-Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Agro-Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Agro-Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530005, China
| |
Collapse
|
22
|
Zhou X, Zhong T, Wu M, Li Q, Yu W, Gan L, Xiang X, Zhang Y, Shi Y, Zhou Y, Chen P, Zhang C. Multiomics analysis of a resistant European turnip ECD04 during clubroot infection reveals key hub genes underlying resistance mechanism. FRONTIERS IN PLANT SCIENCE 2024; 15:1396602. [PMID: 38845850 PMCID: PMC11153729 DOI: 10.3389/fpls.2024.1396602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
The clubroot disease has become a worldwide threat for crucifer crop production, due to its soil-borne nature and difficulty to eradicate completely from contaminated field. In this study we used an elite resistant European fodder turnip ECD04 and investigated its resistance mechanism using transcriptome, sRNA-seq, degradome and gene editing. A total of 1751 DEGs were identified from three time points after infection, among which 7 hub genes including XTH23 for cell wall assembly and two CPK28 genes in PTI pathways. On microRNA, we identified 17 DEMs and predicted 15 miRNA-target pairs (DEM-DEG). We validated two pairs (miR395-APS4 and miR160-ARF) by degradome sequencing. We investigated the miR395-APS4 pair by CRISPR-Cas9 mediated gene editing, the result showed that knocking-out APS4 could lead to elevated clubroot resistance in B. napus. In summary, the data acquired on transcriptional response and microRNA as well as target genes provide future direction especially gene candidates for genetic improvement of clubroot resistance on Brassica species.
Collapse
Affiliation(s)
- Xueqing Zhou
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ting Zhong
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Meixiu Wu
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Li
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Wenlin Yu
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longcai Gan
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianyu Xiang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunyun Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yaru Shi
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanwei Zhou
- Rice and Oil Research Institute, Yichang Academy of Agricultural Science, Yichang, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav AL, Rani L. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120326. [PMID: 38387349 DOI: 10.1016/j.jenvman.2024.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.
Collapse
Affiliation(s)
- Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar-Pradesh, India
| | - Mukesh Kumar
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
24
|
Li S, Zhao Y, Tan S, Li Z. Non-coding RNAs and leaf senescence: Small molecules with important roles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108399. [PMID: 38277833 DOI: 10.1016/j.plaphy.2024.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Non-coding RNAs (ncRNAs) are a special class of functional RNA molecules that are not translated into proteins. ncRNAs have emerged as pivotal regulators of diverse developmental processes in plants. Recent investigations have revealed the association of ncRNAs with the regulation of leaf senescence, a complex and tightly regulated developmental process. However, a comprehensive review of the involvement of ncRNAs in the regulation of leaf senescence is still lacking. This manuscript aims to summarize the molecular mechanisms underlying ncRNAs-mediated leaf senescence and the potential applications of ncRNAs to manipulate the onset and progression of leaf senescence. Various classes of ncRNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are discussed in terms of their regulatory mechanisms in leaf senescence. Furthermore, we explore the interactions between ncRNA and the key regulators of senescence, including transcription factors as well as core components in phytohormone signaling pathways. We also discuss the possible challenges and approaches related to ncRNA-mediated leaf senescence. This review contributes to a further understanding of the intricate regulatory network involving ncRNAs in leaf senescence.
Collapse
Affiliation(s)
- Shichun Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuya Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
25
|
Lin JX, Ali A, Chu N, Fu HY, Huang MT, Mbuya SN, Gao SJ, Zhang HL. Identification of ARF transcription factor gene family and its defense responses to bacterial infection and salicylic acid treatment in sugarcane. Front Microbiol 2023; 14:1257355. [PMID: 37744907 PMCID: PMC10513436 DOI: 10.3389/fmicb.2023.1257355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Auxin response factor (ARF) is a critical regulator in the auxin signaling pathway, involved in a variety of plant biological processes. Here, gene members of 24 SpapARFs and 39 SpnpARFs were identified in two genomes of Saccharum spontaneum clones AP85-441 and Np-X, respectively. Phylogenetic analysis showed that all ARF genes were clustered into four clades, which is identical to those ARF genes in maize (Zea mays) and sorghum (Sorghum bicolor). The gene structure and domain composition of this ARF family are conserved to a large degree across plant species. The SpapARF and SpnpARF genes were unevenly distributed on chromosomes 1-8 and 1-10 in the two genomes of AP85-441 and Np-X, respectively. Segmental duplication events may also contribute to this gene family expansion in S. spontaneum. The post-transcriptional regulation of ARF genes likely involves sugarcane against various stressors through a miRNA-medicated pathway. Expression levels of six representative ShARF genes were analyzed by qRT-PCR assays on two sugarcane cultivars [LCP85-384 (resistant to leaf scald) and ROC20 (susceptible to leaf scald)] triggered by Acidovorax avenae subsp. avenae (Aaa) and Xanthomonas albilineans (Xa) infections and salicylic acid (SA) treatment. ShARF04 functioned as a positive regulator under Xa and Aaa stress, whereas it was a negative regulator under SA treatment. ShARF07/17 genes played positive roles against both pathogenic bacteria and SA stresses. Additionally, ShARF22 was negatively modulated by Xa and Aaa stimuli in both cultivars, particularly LCP85-384. These findings imply that sugarcane ARFs exhibit functional redundancy and divergence against stressful conditions. This work lays the foundation for further research on ARF gene functions in sugarcane against diverse environmental stressors.
Collapse
Affiliation(s)
- Jia-Xin Lin
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Na Chu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sylvain Ntambo Mbuya
- Faculté des Sciences Agronomiques, Département de production végétale, Laboratoire de Recherche en Biofortification, Defense et Valorisation des Cultures (BioDev), Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui-Li Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
26
|
Hidalgo M, Ramos C, Zolla G. Analysis of lncRNAs in Lupinus mutabilis (Tarwi) and Their Potential Role in Drought Response. Noncoding RNA 2023; 9:48. [PMID: 37736894 PMCID: PMC10514842 DOI: 10.3390/ncrna9050048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Lupinus mutabilis is a legume with high agronomic potential and available transcriptomic data for which lncRNAs have not been studied. Therefore, our objective was to identify, characterize, and validate the drought-responsive lncRNAs in L. mutabilis. To achieve this, we used a multilevel approach based on lncRNA prediction, annotation, subcellular location, thermodynamic characterization, structural conservation, and validation. Thus, 590 lncRNAs were identified by at least two algorithms of lncRNA identification. Annotation with the PLncDB database showed 571 lncRNAs unique to tarwi and 19 lncRNAs with homology in 28 botanical families including Solanaceae (19), Fabaceae (17), Brassicaceae (17), Rutaceae (17), Rosaceae (16), and Malvaceae (16), among others. In total, 12 lncRNAs had homology in more than 40 species. A total of 67% of lncRNAs were located in the cytoplasm and 33% in exosomes. Thermodynamic characterization of S03 showed a stable secondary structure with -105.67 kcal/mol. This structure included three regions, with a multibranch loop containing a hairpin with a SECIS-like element. Evaluation of the structural conservation by CROSSalign revealed partial similarities between L. mutabilis (S03) and S. lycopersicum (Solyc04r022210.1). RT-PCR validation demonstrated that S03 was upregulated in a drought-tolerant accession of L. mutabilis. Finally, these results highlighted the importance of lncRNAs in tarwi improvement under drought conditions.
Collapse
Affiliation(s)
- Manuel Hidalgo
- Programa de Estudio de Medicina Humana, Universidad Privada Antenor Orrego, Av. América Sur 3145, Trujillo 13008, Peru; (M.H.); (C.R.)
| | - Cynthia Ramos
- Programa de Estudio de Medicina Humana, Universidad Privada Antenor Orrego, Av. América Sur 3145, Trujillo 13008, Peru; (M.H.); (C.R.)
| | - Gaston Zolla
- Laboratorio de Fisiología Molecular de Plantas del Programa de Cereales y Granos Nativos, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Lima 12, Peru
| |
Collapse
|