1
|
Song N, De Greve H, Wang Q, Hernalsteens JP, Li Z. Plasmid parB contributes to uropathogenic Escherichia coli colonization in vivo by acting on biofilm formation and global gene regulation. Front Mol Biosci 2022; 9:1053888. [PMID: 36589237 PMCID: PMC9800825 DOI: 10.3389/fmolb.2022.1053888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The endogenous plasmid pUTI89 harbored by the uropathogenic Escherichia coli (UPEC) strain UTI89 plays an important role in the acute stage of infection. The partitioning gene parB is important for stable inheritance of pUTI89. However, the function of partitioning genes located on the plasmid in pathogenesis of UPEC still needs to be further investigated. In the present study, we observed that disruption of the parB gene leads to a deficiency in biofilm formation in vitro. Moreover, in a mixed infection with the wild type strain and the parB mutant, in an ascending UTI mouse model, the mutant displayed a lower bacterial burden in the bladder and kidneys, not only at the acute infection stage but also extending to 72 hours post infection. However, in the single infection test, the reduced colonization ability of the parB mutant was only observed at six hpi in the bladder, but not in the kidneys. The colonization capacity in vivo of the parB-complemented strain was recovered. qRT-PCR assay suggested that ParB could be a global regulator, influencing the expression of genes located on both the endogenous plasmid and chromosome, while the gene parA or the operon parAB could not. Our study demonstrates that parB contributes to the virulence of UPEC by influencing biofilm formation and proposes that the parB gene of the endogenous plasmid could regulate gene expression globally.
Collapse
Affiliation(s)
- Ningning Song
- School of Life Science and Technology, Weifang Medical University, Weifang, China,Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Henri De Greve
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quanjun Wang
- SAFE Pharmaceutical Technology Co, Ltd., Beijing, China
| | - Jean-Pierre Hernalsteens
- Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium,*Correspondence: Jean-Pierre Hernalsteens, , Zhaoli Li,
| | - Zhaoli Li
- Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium,SAFE Pharmaceutical Technology Co, Ltd., Beijing, China,*Correspondence: Jean-Pierre Hernalsteens, , Zhaoli Li,
| |
Collapse
|
2
|
Xia TY, Chen XA, Liu YQ, Scharf DH, Zhao QW, Li YQ. Redirection of acyl donor metabolic flux for lipopeptide A40926B0 biosynthesis. Microb Biotechnol 2022; 15:1852-1866. [PMID: 35213090 PMCID: PMC9151331 DOI: 10.1111/1751-7915.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022] Open
Abstract
The metabolic flux of fatty acyl‐CoAs determines lipopeptide biosynthesis efficiency, because acyl donor competition often occurs from polyketide biosynthesis and homologous pathways. We used A40926B0 as a model to investigate this mechanism. The lipopeptide A40926B0 with a fatty acyl group is the active precursor of dalbavancin, which is considered as a new lipoglycopeptide antibiotic. The biosynthetic pathway of fatty acyl‐CoAs in the A40926B0 producer Nonomuraea gerenzanensis L70 was efficiently engineered using endogenous replicon CRISPR (erCRISPR). A polyketide pathway and straight‐chain fatty acid biosynthesis were identified as major competitors in the malonyl‐CoA pool. Therefore, we modified both pathways to concentrate acyl donors for the production of the desired compound. Combined with multiple engineering approaches, including blockage of an acetylation side reaction, overexpression of acetyl‐CoA carboxylase, duplication of the dbv gene cluster and optimization of the fermentation parameters, the final strain produced 702.4 mg l‐1 of A40926B0, a 2.66‐fold increase, and the ratio was increased from 36.2% to 81.5%. Additionally, an efficient erCRISPR‐Cas9 editing system based on an endogenous replicon was specifically developed for L70, which increased conjugation efficiency by 660% and gene‐editing efficiency was up to 90%. Our strategy of redirecting acyl donor metabolic flux can be widely adopted for the metabolic engineering of lipopeptide biosynthesis.
Collapse
Affiliation(s)
- Tian-Yu Xia
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Xin-Ai Chen
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Yan-Qiu Liu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Daniel H Scharf
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Qing-Wei Zhao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| |
Collapse
|
3
|
Szmolka A, Matulova ME, Rychlik I. Impact of fliD and virulence plasmid pSEV on response of chicken embryo fibroblasts to Salmonella Enteritidis. Vet Immunol Immunopathol 2017; 196:1-4. [PMID: 29695318 DOI: 10.1016/j.vetimm.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/08/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023]
Abstract
Salmonella Enteritidis is the main serovar of poultry origin in humans, but its complex interaction with certain avian cells is still not fully understood. Previously we identified several genes significantly induced in chicken embryo fibroblasts (CEFs) by the wild-type strain S. Enteritidis 11 (SE 11). In the present study, we raised the question whether virulence-attenuated mutants of this strain would induce altered expression of the newly identified fibroblast genes associated with immune and non-immune functions of CEFs. Gene expression was evaluated by real-time PCR following challenge by the parental strain SE 11 and its virulence attenuated mutants lacking flagellin gene fliD only or fliD and the serovar-specific virulence plasmid pSEV. As a result, deletion mutants induced a lower expression of all immune genes, but an increased expression of the non-immune genes G0S2 and ENO2 relative to the parental strain. Our data indicate the importance of flagella and pSEV in modulation of virulence and host response in this model. We demonstrated, for the first time ever, an increased induction of survival genes G0S2 and ENO2 by virulence-attenuated mutants of S. Enteritidis.
Collapse
Affiliation(s)
- Ama Szmolka
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, 1143 Budapest, Hungary.
| | | | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| |
Collapse
|
4
|
Song N, Xu J, Li Z, Hernalsteens JP. Curing a large endogenous plasmid by single substitution of a partitioning gene. Plasmid 2015; 82:10-6. [PMID: 26123974 DOI: 10.1016/j.plasmid.2015.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/30/2022]
Abstract
To investigate whether plasmid-free cells of pathogenic Escherichia coli can be isolated by disrupting a single gene in an endogenous plasmid without further treatment, the effect of the disruption of partitioning genes on the inheritance of the endogenous plasmid pUTI89 of the uropathogenic E. coli strain UTI89 was studied. We found that mutation of parB, which encodes a type Ib partitioning protein, could cause loss of the endogenous plasmid at a ratio of about 1%. Clones derived from parB mutants, identified by antibiotic sensitivity, were all plasmid free. Plasmid instability caused by the parB mutation was found to correlate with a negative effect on host cell growth. Thus, in this pathogenic E. coli, an endogenous plasmid as large as 114 kbp could be cured effectively by targeting a single type Ib partitioning gene followed by passaging, which may facilitate further investigations on the function of endogenous plasmids in their natural hosts.
Collapse
Affiliation(s)
- Ningning Song
- State Key Lab of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 150001 Harbin, China; Microbiology Research Group, Faculty of Science and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jie Xu
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, 200127 Shanghai, China
| | - Zhaoli Li
- State Key Lab of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 150001 Harbin, China; Viral Genetics Research Group, Faculty of Science and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Jean-Pierre Hernalsteens
- Viral Genetics Research Group, Faculty of Science and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
5
|
Feng J, Gu Y, Wang J, Song C, Yang C, Xie H, Zhang W, Wang S. Curing the plasmid pMC1 from the poly (γ-glutamic acid) producing Bacillus amyloliquefaciens LL3 strain using plasmid incompatibility. Appl Biochem Biotechnol 2013; 171:532-42. [PMID: 23873640 DOI: 10.1007/s12010-013-0382-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/01/2013] [Indexed: 11/26/2022]
Abstract
Bacillus amyloliquefaciens LL3 is a glutamate-independent poly-γ-glutamic acid (γ-PGA) producing strain which consists of a circular chromosome (3,995,227 bp) and an endogenous plasmid pMC1 (6,758 bp). The study of the function of native plasmid and the genome-size reduction of the B. amyloliquefaciens LL3 strain requires elimination of the endogenous plasmid. Traditional plasmid-curing procedures using sodium dodecyl sulfate (SDS) or acridine orange combined with heat treatment have been shown to be ineffective in this strain. Plasmid incompatibility is an effective method for curing which has been studied before. In our research, the hypothetical Rep protein gene and the origin of replication of the endogenous plasmid were cloned into the temperature-sensitive vector yielding the incompatible plasmid pKSV7-rep-ori. This plasmid was transformed into LL3 by electroporation. The analysis of the strain bearing incompatible plasmids after incubation at 30 °C for 30 generations showed the production of plasmid cured strains. High frequency of elimination was achieved with more than 93 % of detected strains showing to be plasmid-cured. This is the first report describing plasmid cured in a γ-PGA producing strain using this method. The plasmid-cured strains showed an increase of γ-PGA production by 6 % and led to a yield of 4.159 g/l, compared to 3.918 g/l in control and cell growth increased during the early stages of the exponential phase. Gel permeation chromatography (GPC) characterization revealed that the γ-PGA produced by plasmid-cured strains and the wild strains were identical in terms of molecular weight. What is more, the further study of plasmid function showed that curing of the endogenous plasmid did not affect its sporulation efficiency.
Collapse
Affiliation(s)
- Jun Feng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Virulence plasmid harbored by uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infect Immun 2010; 78:1457-67. [PMID: 20123719 DOI: 10.1128/iai.01260-09] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Urinary tract infections (UTIs), the majority of which are caused by uropathogenic Escherichia coli (UPEC), afflict nearly 60% of women within their lifetimes. Studies in mice and humans have revealed that UPEC strains undergo a complex pathogenesis cycle that involves both the formation of intracellular bacterial communities (IBC) and the colonization of extracellular niches. Despite the commonality of the UPEC pathogenesis cycle, no specific urovirulence genetic profile has been determined; this is likely due to the fluid nature of the UPEC genome as the result of horizontal gene transfer and numerous genes of unknown function. UTI89 has a large extrachromosomal element termed pUTI89 with many characteristics of UPEC pathogenicity islands and that likely arose due to horizontal gene transfer. The pUTI89 plasmid has characteristics of both F plasmids and other known virulence plasmids. We sought to determine whether pUTI89 is important for virulence. Both in vitro and in vivo assays were used to examine the function of pUTI89 using plasmid-cured UTI89. No differences were observed between UTI89 and plasmid-cured UTI89 based on growth, type 1 pilus expression, or biofilm formation. However, in a mouse model of UTI, a significant decrease in bacterial invasion, CFU and IBC formation of the pUTI89-cured strain was observed at early time points postinfection compared to the wild type. Through directed deletions of specific operons on pUTI89, the cjr operon was partially implicated in this observed defect. Our findings implicate pUTI89 in the early aspects of infection.
Collapse
|
7
|
Characterization of the contribution to virulence of three large plasmids of avian pathogenic Escherichia coli chi7122 (O78:K80:H9). Infect Immun 2010; 78:1528-41. [PMID: 20086082 DOI: 10.1128/iai.00981-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Despite the fact that the presence of multiple large plasmids is a defining feature of extraintestinal pathogenic Escherichia coli (ExPEC), such as avian pathogenic E. coli (APEC), and despite the fact that these bacteria pose a considerable threat to both human and animal health, characterization of these plasmids is still limited. In this study, after successfully curing APEC of its plasmids, we were able to investigate, for the first time, the contribution to virulence of three plasmids, pAPEC-1 (103 kb), pAPEC-2 (90 kb), and pAPEC-3 (60 kb), from APEC strain chi7122 individually as well as in all combinations in the wild-type background. Characterization of the different strains revealed unique features of APEC virulence. In vivo assays showed that curing the three plasmids resulted in severe attenuation of virulence. The presence of different plasmids and combinations of plasmids resulted in strains with different pathotypes and levels of virulence, reflecting the diversity of APEC strains associated with colibacillosis in chickens. Unexpectedly, our results associated the decrease in growth of some strains in some media with the virulence of APEC, and the mechanism was associated with some combinations of plasmids that included pAPEC-1. This study provided new insights into the roles of large plasmids in the virulence, growth, and evolution of APEC by showing for the first time that both the nature of plasmids and combinations of plasmids have an effect on these phenomena. It also provided a plausible explanation for some of the conflicting results related to the virulence of ExPEC strains. This study should help us understand the virulence of other ExPEC strains and design more efficient infection control strategies.
Collapse
|
8
|
Ni B, Du Z, Guo Z, Zhang Y, Yang R. Curing of four different plasmids in Yersinia pestis using plasmid incompatibility. Lett Appl Microbiol 2009; 47:235-40. [PMID: 19241516 DOI: 10.1111/j.1472-765x.2008.02426.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Plasmids are critical for the pathogenicity of Yersinia pestis. In order to carry out a systematic investigation of their role in pathogenesis, we cured plasmids from Y. pestis. METHODS AND RESULTS Each plasmid's replicon of Y. pestis was cloned into plasmid pEX18Gm containing a counter-selectable sacB gene, and was then introduced into Y. pestis strain 201 by electroporation. Strains containing recombinant plasmids were cultivated under antibiotic selection. The resultant plasmid-curing colonies, identified by specific polymerase chain reactions, were then cured off pEX18Gm under sucrose pressure. This method was used to successfully cure all four plasmids of Y. pestis, singly or in different combinations. CONCLUSIONS Naturally evolving plasmids in Y. pestis are difficult to remove by conventional curing methods. We employed a method based on plasmid incompatibility to cure the plasmids from Y. pestis, which confirmed the efficacy of this method for curing plasmids with different types of replicons from one bacterium. SIGNIFICANCE AND IMPACT OF THE STUDY There have been no reports on the curing of multiple plasmids by using replication mechanisms from one bacterium with this technique. In the present study, we were able to successfully apply this methodology to cure four plasmids from Y. pestis, confirming its feasibility.
Collapse
Affiliation(s)
- B Ni
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | | | | | | | | |
Collapse
|
9
|
Abstract
Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the successful propagation and long-term continued existence of these extra-chromosomal elements is extensive. Apart from the accessory genetic elements that may provide plasmid-harboring cells a selective advantage, special focus is placed on the mechanisms conjugative plasmids employ to ensure their stable maintenance in the host cell. These importantly include the ability to self-mobilize in a process termed conjugative transfer, which may occur across species barriers. Other plasmid stabilizing mechanisms include the multimer resolution system, active partitioning, and post-segregational-killing of plasmid-free cells. Finally, various molecular adaptations of plasmids to better match the genetic background of their bacterial host cell will be described.
Collapse
|