1
|
Mills EG, Hewlett K, Smith AB, Griffith MP, Pless L, Sundermann AJ, Harrison LH, Zackular JP, Van Tyne D. Bacteriocin production facilitates nosocomial emergence of vancomycin-resistant Enterococcus faecium. Nat Microbiol 2025; 10:871-881. [PMID: 40119148 PMCID: PMC11964922 DOI: 10.1038/s41564-025-01958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/14/2025] [Indexed: 03/24/2025]
Abstract
Gastrointestinal colonization by the nosocomial pathogen vancomycin-resistant Enterococcus faecium (VREfm) can lead to bloodstream infections with high mortality rates. Shifts in VREfm lineages found within healthcare settings occur, but reasons underlying these changes are not understood. Here we sequenced 710 VREfm clinical isolates collected between 2017 and 2022 from a large tertiary care centre. Genomic analyses revealed a polyclonal VREfm population, although 46% of isolates formed genetically related clusters, suggesting a high transmission rate. Comparing these data to a global collection of 15,631 publicly available VREfm genomes collected between 2002 and 2022 identified replacement of the sequence type (ST) 17 VREfm lineage by emergent ST80 and ST117 lineages at the local and global level. Comparative genomic and functional analyses revealed that emergent lineages encoded bacteriocin T8, which conferred a competitive advantage over bacteriocin T8-negative strains in vitro and upon colonization of the mouse gut. Bacteriocin T8 carriage was also strongly associated with strain emergence in the global genome collection. These data suggest that bacteriocin T8-mediated competition may have contributed to VREfm lineage replacement.
Collapse
Affiliation(s)
- Emma G Mills
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katharine Hewlett
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexander B Smith
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marissa P Griffith
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lora Pless
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander J Sundermann
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lee H Harrison
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph P Zackular
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Microbial Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Luo Z, Qi Z, Luo J, Chen T. Potential applications of engineered bacteria in disease diagnosis and treatment. MICROBIOME RESEARCH REPORTS 2024; 4:10. [PMID: 40207274 PMCID: PMC11977365 DOI: 10.20517/mrr.2024.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 04/11/2025]
Abstract
Probiotics are live microorganisms that confer health benefits to the host when administered in appropriate quantities. This beneficial effect has spurred extensive research in the medical and health fields. With rapid advancements in synthetic biology, the genetic and biological characteristics of a broad array of probiotics have been elucidated. Utilizing these insights, genetic editing technologies now enable the precise modification of probiotics, leading to the development of engineered bacteria. Emerging evidence underscores the significant potential of these engineered bacteria in disease management. This review explores the methodologies for creating engineered bacteria, their preliminary applications in healthcare, and the mechanisms underlying their functions. Engineered bacteria are being developed for roles such as in vivo drug delivery systems, biosensors, and mucosal vaccines, thereby contributing to the treatment, diagnosis, and prevention of conditions including inflammatory bowel disease (IBD), metabolic disorders, cancer, and neurodegenerative diseases. The review concludes by assessing the advantages and limitations of engineered bacteria in the context of disease management.
Collapse
Affiliation(s)
- Zhaowei Luo
- School of Huankui Academy, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Zhanghua Qi
- School of Huankui Academy, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Jie Luo
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| |
Collapse
|
3
|
Mills EG, Smith AB, Griffith MP, Hewlett K, Pless L, Sundermann AJ, Harrison LH, Zackular JP, Van Tyne D. Bacteriocin production facilitates nosocomial emergence of vancomycin-resistant Enterococcus faecium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.01.24311290. [PMID: 39132485 PMCID: PMC11312660 DOI: 10.1101/2024.08.01.24311290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Vancomycin-resistant Enterococcus faecium (VREfm) is a prevalent healthcare-acquired pathogen. Gastrointestinal colonization can lead to difficult-to-treat bloodstream infections with high mortality rates. Prior studies have investigated VREfm population structure within healthcare centers. However, little is known about how and why hospital-adapted VREfm populations change over time. We sequenced 710 healthcare-associated VREfm clinical isolates from 2017-2022 from a large tertiary care center as part of the Enhanced Detection System for Healthcare-Associated Transmission (EDS-HAT) program. Although the VREfm population in our center was polyclonal, 46% of isolates formed genetically related clusters, suggesting a high transmission rate. We compared our collection to 15,631 publicly available VREfm genomes spanning 20 years. Our findings describe a drastic shift in lineage replacement within nosocomial VREfm populations at both the local and global level. Functional and genomic analysis revealed, antimicrobial peptide, bacteriocin T8 may be a driving feature of strain emergence and persistence in the hospital setting.
Collapse
Affiliation(s)
- Emma G. Mills
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexander B. Smith
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marissa P. Griffith
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katharine Hewlett
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lora Pless
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander J. Sundermann
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lee H. Harrison
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Microbial Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Li J, Qin Z, Zhang B, Wu X, Wu J, Peng L, Xiao Y. Development of transcriptional factor-based whole-cell biosensors to monitor and degrade antibiotics using mutant cells obtained via adaptive laboratory evolution. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134536. [PMID: 38759406 DOI: 10.1016/j.jhazmat.2024.134536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
With the widespread use of antibiotics and increasing environmental concerns regarding antibiotic abuse, the detection and degradation of antibiotic residues in various samples has become a pressing issue. Transcriptional factor (TF)-based whole-cell biosensors are low-cost, easy-to-use, and flexible tools for detecting chemicals and controlling bioprocesses. However, because of cytotoxicity caused by antibiotics, the application of such biosensors is limited in the presence of antibiotics. In this study, we used antibiotic-tolerant mutants obtained via adaptive laboratory evolution (ALE) to develop TF-based whole-cell biosensors for antibiotic monitoring and degradation. The biosensors had high performance and stability in detecting relatively high concentrations of tetracycline (Tc) and nisin. The ALE mutant-based Tc biosensor exhibited a 10-fold larger linear detection range than the wild-type strain-based biosensor. Then, the Tc biosensor was employed to detect residual amounts of Tc in mouse stool, serum, and urine samples and facilitate Tc biodegradation in mouse stool, demonstrating its high utility. Considering that ALE has been demonstrated to enhance cell tolerance to various toxic chemicals, our strategy might facilitate the development of whole-cell biosensors for most antibiotics and other toxic ligands.
Collapse
Affiliation(s)
- Jiawei Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ziqing Qin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Baohui Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaofeng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jing Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lifeng Peng
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
5
|
Design of Lactococcus lactis Strains Producing Garvicin A and/or Garvicin Q, Either Alone or Together with Nisin A or Nisin Z and High Antimicrobial Activity against Lactococcus garvieae. Foods 2023; 12:foods12051063. [PMID: 36900581 PMCID: PMC10000435 DOI: 10.3390/foods12051063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Lactococcus garvieae is a main ichthyopathogen in rainbow trout (Oncorhynchus mykiss, Walbaum) farming, although bacteriocinogenic L. garvieae with antimicrobial activity against virulent strains of this species have also been identified. Some of the bacteriocins characterized, such as garvicin A (GarA) and garvicin Q (GarQ), may show potential for the control of the virulent L. garvieae in food, feed and other biotechnological applications. In this study, we report on the design of Lactococcus lactis strains that produce the bacteriocins GarA and/or GarQ, either alone or together with nisin A (NisA) or nisin Z (NisZ). Synthetic genes encoding the signal peptide of the lactococcal protein Usp45 (SPusp45), fused to mature GarA (lgnA) and/or mature GarQ (garQ) and their associated immunity genes (lgnI and garI, respectively), were cloned into the protein expression vectors pMG36c, which contains the P32 constitutive promoter, and pNZ8048c, which contains the inducible PnisA promoter. The transformation of recombinant vectors into lactococcal cells allowed for the production of GarA and/or GarQ by L. lactis subsp. cremoris NZ9000 and their co-production with NisA by Lactococcus lactis subsp. lactis DPC5598 and L. lactis subsp. lactis BB24. The strains L. lactis subsp. cremoris WA2-67 (pJFQI), a producer of GarQ and NisZ, and L. lactis subsp. cremoris WA2-67 (pJFQIAI), a producer of GarA, GarQ and NisZ, demonstrated the highest antimicrobial activity (5.1- to 10.7-fold and 17.3- to 68.2-fold, respectively) against virulent L. garvieae strains.
Collapse
|
6
|
Kazi TA, Acharya A, Mukhopadhyay BC, Mandal S, Arukha AP, Nayak S, Biswas SR. Plasmid-Based Gene Expression Systems for Lactic Acid Bacteria: A Review. Microorganisms 2022; 10:1132. [PMID: 35744650 PMCID: PMC9229153 DOI: 10.3390/microorganisms10061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023] Open
Abstract
Lactic acid bacteria (LAB) play a very vital role in food production, preservation, and as probiotic agents. Some of these species can colonize and survive longer in the gastrointestinal tract (GIT), where their presence is crucially helpful to promote human health. LAB has also been used as a safe and efficient incubator to produce proteins of interest. With the advent of genetic engineering, recombinant LAB have been effectively employed as vectors for delivering therapeutic molecules to mucosal tissues of the oral, nasal, and vaginal tracks and for shuttling therapeutics for diabetes, cancer, viral infections, and several gastrointestinal infections. The most important tool needed to develop genetically engineered LABs to produce proteins of interest is a plasmid-based gene expression system. To date, a handful of constitutive and inducible vectors for LAB have been developed, but their limited availability, host specificity, instability, and low carrying capacity have narrowed their spectrum of applications. The current review discusses the plasmid-based vectors that have been developed so far for LAB; their functionality, potency, and constraints; and further highlights the need for a new, more stable, and effective gene expression platform for LAB.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Aparupa Acharya
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Bidhan Chandra Mukhopadhyay
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India;
| | - Ananta Prasad Arukha
- Researcher 5 Department of Neurosurgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Subhendu Nayak
- Sr. Scientist, Clorox, Better Health VMS, Durham, NC 27701, USA;
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| |
Collapse
|
7
|
Use of an Interspecies Chimeric Receptor for Inducible Gene Expression Reveals that Metabolic Flux through the Peptidoglycan Biosynthesis Pathway is an Important Driver of Cephalosporin Resistance in Enterococcus faecalis. J Bacteriol 2022; 204:e0060221. [PMID: 35258319 DOI: 10.1128/jb.00602-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cephalosporins are commonly prescribed antibiotics that impair cross-linking of the bacterial cell wall. The Gram-positive opportunistic pathogen, Enterococcus faecalis, is intrinsically resistant to these antibiotics and proliferates substantially during cephalosporin therapy. As a result, the usage of cephalosporins has the potential to lead to life-threatening enterococcal infections. Yet, the molecular mechanisms that drive cephalosporin resistance (CR) are incompletely understood. Previously, we demonstrated that MurAA, an enzyme that catalyzes the first committed step in peptidoglycan (PG) synthesis, is required for CR. However, the mechanism by which MurAA contributes to CR remained unknown. Here, we tested the hypothesis that MurAA drives CR by controlling metabolic flux through the PG synthesis pathway. To do so, we developed and exploited an inducible gene expression system for E. faecalis based on an interspecies chimeric receptor that responds to exogenous nitrate for control of expression from a NisR-regulated promoter (PnisA). We used this tool to demonstrate synthetic lethality of MurAA with its homolog MurAB, to titrate expression of MurAA, and to conditionally deplete multiple PG synthesis enzymes downstream of MurAA that are predicted to be essential. These genetic manipulations, in addition to pharmacological inhibition of the PG synthesis pathway, all led to reductions in PG synthesis that correlated with reductions in CR. Our findings are consistent with a model in which control of metabolic flux through the PG synthesis pathway is a major driver of CR. IMPORTANCE Enterococci are dangerous opportunistic pathogens with the potential to cause life-threatening infections due in part to their intrinsic resistance to cephalosporin antibiotics. Elucidating the molecular mechanisms that provide this resistance is critical for the development of strategies to both prevent and treat enterococcal infections. Here, we report that the cell wall synthesis enzyme, MurAA, drives cephalosporin resistance at least in part by controlling metabolic flux through the peptidoglycan synthesis pathway. To demonstrate this, we designed and validated an inducible gene expression system based on a chimeric receptor that is functional in multiple lineages of E. faecalis. In doing so, we provided a new tool for inducible gene expression with broad applications beyond our studies, including studies of essential genes.
Collapse
|
8
|
Monteiro GA, Duarte SOD. The Effect of Recombinant Protein Production in Lactococcus lactis Transcriptome and Proteome. Microorganisms 2022; 10:microorganisms10020267. [PMID: 35208722 PMCID: PMC8877491 DOI: 10.3390/microorganisms10020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/18/2022] Open
Abstract
Lactococcus lactis is a food-grade, and generally recognized as safe, bacterium, which making it ideal for producing plasmid DNA (pDNA) or recombinant proteins for industrial or pharmaceutical applications. The present paper reviews the major findings from L. lactis transcriptome and proteome studies, with an overexpression of native or recombinant proteins. These studies should provide important insights on how to engineer the plasmid vectors and/or the strains in order to achieve high pDNA or recombinant proteins yields, with high quality standards. L. lactis harboring high copy numbers of plasmids for DNA vaccines production showed altered proteome profiles, when compared with a smaller copy number plasmid. For live mucosal vaccination applications, the cell-wall anchored antigens had shown more promising results, when compared with intracellular or secreted antigens. However, previous transcriptome and proteome studies demonstrated that engineering L. lactis to express membrane proteins, mainly with a eukaryotic background, increases the overall cellular burden. Genome engineering strategies could be used to knockout or overexpress the pinpointed genes, so as to increase the profitability of the process. Studies about the effect of protein overexpression on Escherichia coli and Bacillus subtillis transcriptome and proteome are also included.
Collapse
Affiliation(s)
- Gabriel A. Monteiro
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Sofia O. D. Duarte
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
9
|
Febbraio F, Ionata E, Marcolongo L. Forty years of study on the thermostable β-glycosidase from S. solfataricus: Production, biochemical characterization and biotechnological applications. Biotechnol Appl Biochem 2020; 67:602-618. [PMID: 32621790 DOI: 10.1002/bab.1982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this paper is to make the point on the fortieth years study on the β-glycosidase from Sulfolobus solfataricus. This enzyme represents one of the thermophilic biocatalysts, which is more extensively studied as witnessed by the numerous literature reports available since 1980. Comprehensive biochemical studies highlighted its broad substrate specificity for β-d-galacto-, gluco-, and fuco-sides and also showed its remarkable exo-glucosidase and transglycosidase activities. The enzyme demonstrated to be active and stable over a wide range of temperature and pHs, withstanding to several drastic conditions comprising solvents and detergents. Over the years, a great deal of studies were focused on its homotetrameric tridimensional structure, elucidating several structural features involved in the enzyme stability, such as ion pairs and post-translational modifications. Several β-glycosidase mutants were produced in the years in order to understand its peculiar behavior in extreme conditions and/or to improve its functional properties. The β-glycosidase overproduction was also afforded reporting numerous studies dealing with its production in the mesophilic host Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, and Lactococcus lactis. Relevant applications in food, beverages, bioenergy, pharmaceuticals, and nutraceutical fields of this enzyme, both in free and immobilized forms, highlighted its biotechnological relevance.
Collapse
Affiliation(s)
- Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, Italy
| | - Elena Ionata
- Research Institute on Terrestrial Ecosystems, National Research Council (CNR), Naples, 80131, Italy
| | - Loredana Marcolongo
- Research Institute on Terrestrial Ecosystems, National Research Council (CNR), Naples, 80131, Italy
| |
Collapse
|
10
|
Martinez-Jaramillo E, Garza-Morales R, Loera-Arias MJ, Saucedo-Cardenas O, Montes-de-Oca-Luna R, McNally LR, Gomez-Gutierrez JG. Development of Lactococcus lactis encoding fluorescent proteins, GFP, mCherry and iRFP regulated by the nisin-controlled gene expression system. Biotech Histochem 2017; 92:167-174. [PMID: 28318334 PMCID: PMC5638124 DOI: 10.1080/10520295.2017.1289554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Fluorescent proteins are useful reporter molecules for a variety of biological systems. We present an alternative strategy for cloning reporter genes that are regulated by the nisin-controlled gene expression (NICE) system. Lactoccocus lactis was genetically engineered to express green fluorescent protein (GFP), mCherry or near-infrared fluorescent protein (iRFP). The reporter gene sequences were optimized to be expressed by L. lactis using inducible promoter pNis within the pNZ8048 vector. Expression of constructions that carry mCherry or GFP was observed by fluorescence microscopy 2 h after induction with nisin. Expression of iRFP was evaluated at 700 nm using an infrared scanner; cultures induced for 6 h showed greater iRFP expression than non-induced cultures or those expressing GFP. We demonstrated that L. lactis can express efficiently GFP, mCherry and iRFP fluorescent proteins using an inducible expression system. These strains will be useful for live cell imaging studies in vitro or for imaging studies in vivo in the case of iRFP.
Collapse
Affiliation(s)
- E Martinez-Jaramillo
- The Hiram C Polk Jr., MD, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - R Garza-Morales
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - MJ Loera-Arias
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - O Saucedo-Cardenas
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - R Montes-de-Oca-Luna
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, NL, México
| | - LR McNally
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - JG Gomez-Gutierrez
- The Hiram C Polk Jr., MD, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
11
|
Kong W, Kapuganti VS, Lu T. A gene network engineering platform for lactic acid bacteria. Nucleic Acids Res 2016; 44:e37. [PMID: 26503255 PMCID: PMC4770204 DOI: 10.1093/nar/gkv1093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 11/28/2022] Open
Abstract
Recent developments in synthetic biology have positioned lactic acid bacteria (LAB) as a major class of cellular chassis for applications. To achieve the full potential of LAB, one fundamental prerequisite is the capacity for rapid engineering of complex gene networks, such as natural biosynthetic pathways and multicomponent synthetic circuits, into which cellular functions are encoded. Here, we present a synthetic biology platform for rapid construction and optimization of large-scale gene networks in LAB. The platform involves a copy-controlled shuttle for hosting target networks and two associated strategies that enable efficient genetic editing and phenotypic validation. By using a nisin biosynthesis pathway and its variants as examples, we demonstrated multiplex, continuous editing of small DNA parts, such as ribosome-binding sites, as well as efficient manipulation of large building blocks such as genes and operons. To showcase the platform, we applied it to expand the phenotypic diversity of the nisin pathway by quickly generating a library of 63 pathway variants. We further demonstrated its utility by altering the regulatory topology of the nisin pathway for constitutive bacteriocin biosynthesis. This work demonstrates the feasibility of rapid and advanced engineering of gene networks in LAB, fostering their applications in biomedicine and other areas.
Collapse
Affiliation(s)
- Wentao Kong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Venkata S Kapuganti
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Intracellular and Extracellular Expression of Bacillus thuringiensis Crystal Protein Cry5B in Lactococcus lactis for Use as an Anthelminthic. Appl Environ Microbiol 2015; 82:1286-94. [PMID: 26682852 PMCID: PMC4751831 DOI: 10.1128/aem.02365-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/22/2015] [Indexed: 12/20/2022] Open
Abstract
The Bacillus thuringiensis crystal (Cry) protein Cry5B (140 kDa) and a truncated version of the protein, tCry5B (79 kDa), are lethal to nematodes. Genes encoding the two proteins were separately cloned into a high-copy-number vector with a strong constitutive promoter (pTRK593) in Lactococcus lactis for potential oral delivery against parasitic nematode infections. Western blots using a Cry5B-specific antibody revealed that constitutively expressed Cry5B and tCry5B were present in both cells and supernatants. To increase production, cry5B was cloned into the high-copy-number plasmid pMSP3535H3, carrying a nisin-inducible promoter. Immunoblotting revealed that 3 h after nisin induction, intracellular Cry5B was strongly induced at 200 ng/ml nisin, without adversely affecting cell viability or cell membrane integrity. Both Cry5B genes were also cloned into plasmid pTRK1061, carrying a promoter and encoding a transcriptional activator that invoke low-level expression of prophage holin and lysin genes in Lactococcus lysogens, resulting in a leaky phenotype. Cry5B and tCry5B were actively expressed in the lysogenic strain L. lactis KP1 and released into cell supernatants without affecting culture growth. Lactate dehydrogenase (LDH) assays indicated that Cry5B, but not LDH, leaked from the bacteria. Lastly, using intracellular lysates from L. lactis cultures expressing both Cry5B and tCry5B, in vivo challenges of Caenorhabditis elegans worms demonstrated that the Cry proteins were biologically active. Taken together, these results indicate that active Cry5B proteins can be expressed intracellularly in and released extracellularly from L. lactis, showing potential for future use as an anthelminthic that could be delivered orally in a food-grade microbe.
Collapse
|
13
|
Secreted expression of Leuconostoc mesenteroides glucansucrase in Lactococcus lactis for the production of insoluble glucans. Appl Microbiol Biotechnol 2015; 99:10001-10. [DOI: 10.1007/s00253-015-6854-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/07/2015] [Accepted: 07/15/2015] [Indexed: 02/03/2023]
|
14
|
Kim SR, Nguyen TV, Seo NR, Jung S, An HJ, Mills DA, Kim JH. Comparative proteomics: assessment of biological variability and dataset comparability. BMC Bioinformatics 2015; 16:121. [PMID: 25888384 PMCID: PMC4704264 DOI: 10.1186/s12859-015-0561-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/30/2015] [Indexed: 11/22/2022] Open
Abstract
Background Comparative proteomics in bacteria are often hampered by the differential nature of dataset quality and/or inherent biological deviations. Although common practice compensates by reproducing and normalizing datasets from a single sample, the degree of certainty is limited in comparison of multiple dataset. To surmount these limitations, we introduce a two-step assessment criterion using: (1) the relative number of total spectra (RTS) to determine if two LC-MS/MS datasets are comparable and (2) nine glycolytic enzymes as internal standards for a more accurate calculation of relative amount of proteins. Lactococcus lactis HR279 and JHK24 strains expressing high or low levels (respectively) of green fluorescent protein (GFP) were used for the model system. GFP abundance was determined by spectral counting and direct fluorescence measurements. Statistical analysis determined relative GFP quantity obtained from our approach matched values obtained from fluorescence measurements. Results L. lactis HR279 and JHK24 demonstrates two datasets with an RTS value less than 1.4 accurately reflects relative differences in GFP levels between high and low expression strains. Without prior consideration of RTS and the use of internal standards, the relative increase in GFP calculated by spectral counting method was 3.92 ± 1.14 fold, which is not correlated with the value determined by the direct fluorescence measurement (2.86 ± 0.42 fold) with the p = 0.024. In contrast, 2.88 ± 0.92 fold was obtained by our approach showing a statistically insignificant difference (p = 0.95). Conclusions Our two-step assessment demonstrates a useful approach to: (1) validate the comparability of two mass spectrometric datasets and (2) accurately calculate the relative amount of proteins between proteomic datasets. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0561-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sa Rang Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, 305-764, South Korea.
| | - Tuong Vi Nguyen
- Department of Food and Nutrition, Chungnam National University, Daejeon, 305-764, South Korea.
| | - Na Ri Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764, South Korea.
| | - Seunghup Jung
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764, South Korea.
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764, South Korea.
| | - David A Mills
- Robert Mondavi Institute for Wine and Food Science, Department of Food Science, University of California, Davis, CA, 95616, USA.
| | - Jae Han Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, 305-764, South Korea.
| |
Collapse
|
15
|
Renye JA, Somkuti GA. Nisin-induced expression of a recombinant antihypertensive peptide in dairy lactic acid bacteria. Biotechnol Lett 2015; 37:1447-54. [DOI: 10.1007/s10529-015-1817-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
16
|
Kong W, Lu T. Cloning and optimization of a nisin biosynthesis pathway for bacteriocin harvest. ACS Synth Biol 2014; 3:439-45. [PMID: 24847677 DOI: 10.1021/sb500225r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nisin is an important antimicrobial peptide that has enormous applications in biotechnology. Despite many encouraging efforts, its overproduction has been a long-standing challenge due to the complexity of the underlying pathway and the difficulty in genetic modification of lactic acid bacteria. Here, we cloned an entire nisin biosynthesis pathway from a nisin-producing strain (Lactococcus lactis K29) into a plasmid and transplanted the plasmid into a nisin deficient strain Lactococcus lactis MG1363, resulting in successful heterologous expression of bioactive recombinant nisin. To increase nisin harvest, we also overexpressed nisA, a gene responsible for nisin precursor production, with a set of constitutive promoters. To further optimize nisin yield, we minimized the metabolic cost of the engineered strains by integrating nisA overexpression cassettes and the recombinant pathway into a single circuit. With our rational construction and optimization, our engineered optimized strain is able to produce bioactive nisin with a yield of 1098 IU/mL, which is more than six times higher than that of the original strain.
Collapse
Affiliation(s)
- Wentao Kong
- Department
of Bioengineering and Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ting Lu
- Department
of Bioengineering and Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Yu L, O'Sullivan D. Production of galactooligosaccharides using a hyperthermophilic β-galactosidase in permeabilized whole cells of Lactococcus lactis. J Dairy Sci 2014; 97:694-703. [DOI: 10.3168/jds.2013-7492] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/26/2013] [Indexed: 12/22/2022]
|
18
|
From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 2013; 31:764-88. [DOI: 10.1016/j.biotechadv.2013.03.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 11/21/2022]
|
19
|
Wassinger A, Zhang L, Tracy E, Munson RS, Kathariou S, Wang HH. Role of a GntR-family response regulator LbrA in Listeria monocytogenes biofilm formation. PLoS One 2013; 8:e70448. [PMID: 23894658 PMCID: PMC3720924 DOI: 10.1371/journal.pone.0070448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 06/21/2013] [Indexed: 01/08/2023] Open
Abstract
The formation of Listeria monocytogenes biofilms contributes to persistent contamination in food processing facilities. A microarray comparison of L. monocytogenes between the transcriptome of the strong biofilm forming strain (Bfms) Scott A and the weak biofilm forming (Bfmw) strain F2365 was conducted to identify genes potentially involved in biofilm formation. Among 951 genes with significant difference in expression between the two strains, a GntR-family response regulator encoding gene (LMOf2365_0414), designated lbrA, was found to be highly expressed in Scott A relative to F2365. A Scott A lbrA-deletion mutant, designated AW3, formed biofilm to a much lesser extent as compared to the parent strain by a rapid attachment assay and scanning electron microscopy. Complementation with lbrA from Scott A restored the Bfms phenotype in the AW3 derivative. A second microarray assessment using the lbrA deletion mutant AW3 and the wild type Scott A revealed a total of 304 genes with expression significantly different between the two strains, indicating the potential regulatory role of LbrA in L. monocytogenes. A cloned copy of Scott A lbrA was unable to confer enhanced biofilm forming potential in F2365, suggesting that additional factors contributed to weak biofilm formation by F2365.
Collapse
Affiliation(s)
- Andrew Wassinger
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, United States of America
| | - Lu Zhang
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, United States of America
| | - Erin Tracy
- The Research Institute at Nationwide Children’s Hospital, and the Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Robert S. Munson
- The Research Institute at Nationwide Children’s Hospital, and the Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Sophia Kathariou
- Department of Food Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Hua H. Wang
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
20
|
Cloning, production, and functional expression of the bacteriocin enterocin A, produced by Enterococcus faecium T136, by the yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans. Appl Environ Microbiol 2012; 78:5956-61. [PMID: 22685156 DOI: 10.1128/aem.00530-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacteriocin enterocin A (EntA) produced by Enterococcus faecium T136 has been successfully cloned and produced by the yeasts Pichia pastoris X-33EA, Kluyveromyces lactis GG799EA, Hansenula polymorpha KL8-1EA, and Arxula adeninivorans G1212EA. Moreover, P. pastoris X-33EA and K. lactis GG799EA produced EntA in larger amounts and with higher antimicrobial and specific antimicrobial activities than the EntA produced by E. faecium T136.
Collapse
|
21
|
Renye J, Somkuti G, Garabal J, Du L. Heterologous production of pediocin for the control of Listeria monocytogenes in dairy foods. Food Control 2011. [DOI: 10.1016/j.foodcont.2011.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Borrero J, Jiménez JJ, Gútiez L, Herranz C, Cintas LM, Hernández PE. Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria. J Biotechnol 2011; 156:76-86. [PMID: 21839785 DOI: 10.1016/j.jbiotec.2011.07.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 11/27/2022]
Abstract
Replacement of the leader sequence (LS) of the bacteriocin enterocin A (LS(entA)) by the signal peptides (SP) of the protein Usp45 (SP(usp45)), and the bacteriocins enterocin P (SP(entP)), and hiracin JM79 (SP(hirJM79)) permits the production, secretion, and functional expression of EntA by different lactic acid bacteria (LAB). Chimeric genes encoding the SP(usp45), the SP(entP), and the SP(hirJM79) fused to mature EntA plus the EntA immunity genes (entA+entiA) were cloned into the expression vectors pNZ8048 and pMSP3545, under control of the inducible P(nisA) promoter, and in pMG36c, under control of the constitutive P(32) promoter. The amount, antimicrobial activity, and specific antimicrobial activity of the EntA produced by the recombinant Lactococcus lactis, Enterococcus faecium, E. faecalis, Lactobacillus sakei and Pediococcus acidilactici hosts varied depending on the signal peptide, the expression vector, and the host strain. However, the antimicrobial activity and the specific antimicrobial activity of the EntA produced by most of the LAB transformants was lower than expected from their production. The supernatants of the recombinant L. lactis NZ9000 (pNZUAI) and L. lactis NZ9000 (pNZHAI), overproducers of EntA, showed a 1.2- to 5.1-fold higher antimicrobial activity than that of the natural producer E. faecium T136 against different Listeria spp.
Collapse
Affiliation(s)
- Juan Borrero
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Tang L, Li Y. Oral immunization of mice with recombinant Lactococcus lactis expressing porcine transmissible gastroenteritis virus spike glycoprotein. Virus Genes 2011; 39:238-45. [PMID: 19629668 PMCID: PMC7089002 DOI: 10.1007/s11262-009-0390-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 07/09/2009] [Indexed: 11/29/2022]
Abstract
Lactococcus lactis NZ9000 was selected as an antigen delivery vehicle for mucosal immunization against porcine transmissible gastroenteritis virus (TGEV) infection. An approximately 70 kDa fragment of the N-terminal globular domain of the spike (S) protein (SN protein) from the coronavirus TGEV was used as the transmissible gastroenteritis virus antigen model. Recombinant L. lactis, expressing the SN protein, was constructed with the pNZ8112 plasmid. Expression and localization of the transcribed SN protein from the recombinant LNZ9000-rTGEV-SN were detected via SDS-PAGE, Western blot, and immunofluorescence. BALB/c mice, orally immunized with LNZ9000-rTGEV-SN, produced local mucosal immune responses against TGEV. The induced antibodies demonstrated neutralizing effects on TGEV infection. These data indicated that the recombinant L. lactis could be a valuable tool in the development of future vaccines against TGEV.
Collapse
Affiliation(s)
- Lijie Tang
- Life Science Department, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | | |
Collapse
|
24
|
Renye JA, Somkuti GA. Nisin-induced expression of pediocin in dairy lactic acid bacteria. J Appl Microbiol 2009; 108:2142-51. [PMID: 19929951 DOI: 10.1111/j.1365-2672.2009.04615.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To test whether a single vector, nisin-controlled expression (NICE) system could be used to regulate expression of the pediocin operon in Streptococcus thermophilus, Lactococcus lactis subsp. lactis and Lactobacillus casei. METHODS AND RESULTS The intact pediocin operon was cloned immediately into pMSP3535 downstream of the nisA promoter (PnisA). The resulting vector, pRSNPed, was electrotransformed into Strep. thermophilus ST128, L. lactis subsp. lactis ML3 and Lact. casei C2. Presence of the intact vector was confirmed by PCR, resulting in the amplification of a 0.8-kb DNA fragment, and inhibition zones were observed for all lactic acid bacteria (LAB) transformants following induction with 50 ng ml(-1) nisin, when Listeria monocytogenes Scott A was used as the target bacterium. Using L. monocytogenes NR30 as target, the L. lactis transformants produced hazy zones of inhibition, while the Lact. casei transformants produced clear zones of inhibition. Zones of inhibition were not observed when the Strep. thermophilus transformants were tested against NR30. CONCLUSIONS The LAB hosts were able to produce enough pediocin to inhibit the growth of L. monocytogenes Scott A; the growth of L. monocytogenes NR30 was effectively inhibited only by the Lact. casei transformants. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first time that the NICE system has been used to express the intact pediocin operon in these LAB hosts. This system could allow for the in situ production of pediocin in fermented dairy foods supplemented with nisin to prevent listeria contamination.
Collapse
Affiliation(s)
- J A Renye
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.
| | | |
Collapse
|
25
|
Oddone GM, Mills DA, Block DE. Dual inducible expression of recombinant GFP and targeted antisense RNA in Lactococcus lactis. Plasmid 2009; 62:108-18. [DOI: 10.1016/j.plasmid.2009.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 06/04/2009] [Accepted: 06/04/2009] [Indexed: 12/21/2022]
|
26
|
Zhu Y, Zhang Y, Li Y. Understanding the industrial application potential of lactic acid bacteria through genomics. Appl Microbiol Biotechnol 2009; 83:597-610. [DOI: 10.1007/s00253-009-2034-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/04/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
|
27
|
Oddone GM, Mills DA, Block DE. Incorporation of nisI-mediated nisin immunity improves vector-based nisin-controlled gene expression in lactic acid bacteria. Plasmid 2009; 61:151-8. [DOI: 10.1016/j.plasmid.2008.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
|
28
|
Berlec A, Strukelj B. Large increase in brazzein expression achieved by changing the plasmid /strain combination of the NICE system in Lactococcus lactis. Lett Appl Microbiol 2009; 48:750-5. [PMID: 19413801 DOI: 10.1111/j.1472-765x.2009.02608.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To evaluate brazzein production in Lactococcus lactis using the nisin-controlled expression (NICE) system. The approach is through analysis of different plasmid/strain combinations. METHODS AND RESULTS Two plasmid/strain combinations of the NICE system were used in brazzein expression: L. lactis NZ9000 harbouring plasmid pNZ8148, and L. lactis IL1403 harbouring plasmid pMSP3545. The former combination proved superior, with a >800-fold increase in His-tagged brazzein expression (to 1.65 mg l(-1) of fermentation broth), comparable to expression levels in Escherichia coli. Improved expression resulted in a minor increase in secretion to the medium with the use of the Usp45 signal peptide. The yield of wild-type brazzein corresponded to that of His-tagged brazzein. Wild-type brazzein was partially soluble and low-intensity sweetness was detected. CONCLUSIONS The plasmid/strain combination of the NICE system has a significant impact on the expression of brazzein where a >800-fold increase was achieved. The greatly increased expression of brazzein resulted in minor improvement in secretion and low-intensity sweetness. SIGNIFICANCE AND IMPACT OF THE STUDY The choice of the plasmid/strain combination of the NICE system was shown to be of extreme importance in brazzein expression.
Collapse
Affiliation(s)
- A Berlec
- Department of Biotechnology, JoZef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | | |
Collapse
|
29
|
Kim MD, Cho JW, Park EH, Eom HJ, Han NS, Lee HY, Seo JH. Proteomic approaches to identify constitutive promoter genes in Leuconostoc mesenteroides. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.1767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|