1
|
Strandvik B, Qureshi AR, Painer J, Backman-Johansson C, Engvall M, Fröbert O, Kindberg J, Stenvinkel P, Giroud S. Elevated plasma phospholipid n-3 docosapentaenoic acid concentrations during hibernation. PLoS One 2023; 18:e0285782. [PMID: 37294822 PMCID: PMC10256182 DOI: 10.1371/journal.pone.0285782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/28/2023] [Indexed: 06/11/2023] Open
Abstract
Factors for initiating hibernation are unknown, but the condition shares some metabolic similarities with consciousness/sleep, which has been associated with n-3 fatty acids in humans. We investigated plasma phospholipid fatty acid profiles during hibernation and summer in free-ranging brown bears (Ursus arctos) and in captive garden dormice (Eliomys quercinus) contrasting in their hibernation patterns. The dormice received three different dietary fatty acid concentrations of linoleic acid (LA) (19%, 36% and 53%), with correspondingly decreased alpha-linolenic acid (ALA) (32%, 17% and 1.4%). Saturated and monounsaturated fatty acids showed small differences between summer and hibernation in both species. The dormice diet influenced n-6 fatty acids and eicosapentaenoic acid (EPA) concentrations in plasma phospholipids. Consistent differences between summer and hibernation in bears and dormice were decreased ALA and EPA and marked increase of n-3 docosapentaenoic acid and a minor increase of docosahexaenoic acid in parallel with several hundred percent increase of the activity index of elongase ELOVL2 transforming C20-22 fatty acids. The highest LA supply was unexpectantly associated with the highest transformation of the n-3 fatty acids. Similar fatty acid patterns in two contrasting hibernating species indicates a link to the hibernation phenotype and requires further studies in relation to consciousness and metabolism.
Collapse
Affiliation(s)
- Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, Stockholm, Sweden
| | | | - Johanna Painer
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
- Department of Clinical Medicine, Aarhus University Health, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- StenoDiabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, University of Agricultural Sciences, Umeå, Sweden
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Peter Stenvinkel
- Division of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
2
|
Omega 3 fatty acids stimulate thermogenesis during torpor in the Arctic Ground Squirrel. Sci Rep 2021; 11:1340. [PMID: 33446684 PMCID: PMC7809411 DOI: 10.1038/s41598-020-78763-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022] Open
Abstract
Omega 3 polyunsaturated fatty acids (PUFAs) influence metabolism and thermogenesis in non-hibernators. How omega 3 PUFAs influence Arctic Ground Squirrels (AGS) during hibernation is unknown. Prior to hibernation we fed AGS chow composed of an omega 6:3 ratio approximately 1:1 (high in omega 3 PUFA, termed Balanced Diet), or an omega 6:3 ratio of 5:1 (Standard Rodent Chow), and measured the influence of diet on core body temperature (Tb), brown adipose tissue (BAT) mass, fatty acid profiles of BAT, white adipose tissue (WAT) and plasma as well as hypothalamic endocannabinoid and endocannabinoid-like bioactive fatty acid amides during hibernation. Results show feeding a diet high in omega 3 PUFAs, with a more balanced omega 6:3 ratio, increases AGS Tb in torpor. We found the diet-induced increase in Tb during torpor is most easily explained by an increase in the mass of BAT deposits of Balanced Diet AGS. The increase in BAT mass is associated with elevated levels of metabolites DHA and EPA in tissue and plasma suggesting that these omega 3 PUFAs may play a role in thermogenesis during torpor. While we did not observe diet-induced change in endocannabinoids, we do report altered hypothalamic levels of some endocannabinoids, and endocannabinoid-like compounds, during hibernation.
Collapse
|
3
|
Kulterer OC, Niederstaetter L, Herz CT, Haug AR, Bileck A, Pils D, Kautzky-Willer A, Gerner C, Kiefer FW. The Presence of Active Brown Adipose Tissue Determines Cold-Induced Energy Expenditure and Oxylipin Profiles in Humans. J Clin Endocrinol Metab 2020; 105:5825408. [PMID: 32343312 DOI: 10.1210/clinem/dgaa183] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Accumulating evidence links brown adipose tissue (BAT) to increased cold-induced energy expenditure (CIEE) and regulation of lipid metabolism in humans. BAT has also been proposed as a novel source for biologically active lipid mediators including polyunsaturated fatty acids (PUFAs) and oxylipins. However, little is known about cold-mediated differences in energy expenditure and various lipid species between individuals with detectable BAT positive (BATpos) and those without BAT negative (BATneg). METHODS Here we investigated a unique cohort of matched BATpos and BATneg individuals identified by 18F-fluorodeoxyglucose positron emission tomography combined with computed tomography ([18F]-FDG PET/CT). BAT function, CIEE, and circulating oxylipins, were analyzed before and after short-term cold exposure using [18F]-FDG PET/CT, indirect calorimetry, and high-resolution mass spectrometry, respectively. RESULTS We found that active BAT is the major determinant of CIEE since only BATpos individuals experienced significantly increased energy expenditure in response to cold. A single bout of moderate cold exposure resulted in the dissipation of an additional 20 kcal excess energy in BATpos but not in BATneg individuals. The presence of BAT was associated with a unique systemic PUFA and oxylipin profile characterized by increased levels of anti-inflammatory omega-3 fatty acids as well as cytochrome P450 products but decreased concentrations of some proinflammatory hydroxyeicosatetraenoic acids when compared with BATneg individuals. Notably, cold exposure raised circulating levels of various lipids, including the recently identified BAT-derived circulating factors (BATokines) DiHOME and 12-HEPE, only in BATpos individuals. CONCLUSIONS In summary, our data emphasize that BAT in humans is a major contributor toward cold-mediated energy dissipation and a critical organ in the regulation of the systemic lipid pool.
Collapse
Affiliation(s)
- Oana C Kulterer
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Laura Niederstaetter
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Carsten T Herz
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
- Christian-Doppler Laboratory for Applied Metabolomics, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Florian W Kiefer
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Ribot J, Arreguín A, Kuda O, Kopecky J, Palou A, Bonet ML. Novel Markers of the Metabolic Impact of Exogenous Retinoic Acid with A Focus on Acylcarnitines and Amino Acids. Int J Mol Sci 2019; 20:E3640. [PMID: 31349613 PMCID: PMC6696161 DOI: 10.3390/ijms20153640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Treatment with all-trans retinoic acid (ATRA), the carboxylic form of vitamin A, lowers body weight in rodents by promoting oxidative metabolism in multiple tissues including white and brown adipose tissues. We aimed to identify novel markers of the metabolic impact of ATRA through targeted blood metabolomics analyses, with a focus on acylcarnitines and amino acids. Blood was obtained from mice treated with a high ATRA dose (50 mg/kg body weight/day, subcutaneous injection) or placebo (controls) during the 4 days preceding collection. LC-MS/MS analyses with a focus on acylcarnitines and amino acids were conducted on plasma and PBMC. Main results showed that, relative to controls, ATRA-treated mice had in plasma: increased levels of carnitine, acetylcarnitine, and longer acylcarnitine species; decreased levels of citrulline, and increased global arginine bioavailability ratio for nitric oxide synthesis; increased levels of creatine, taurine and docosahexaenoic acid; and a decreased n-6/n-3 polyunsaturated fatty acids ratio. While some of these features likely reflect the stimulation of lipid mobilization and oxidation promoted by ATRA treatment systemically, other may also play a causal role underlying ATRA actions. The results connect ATRA to specific nutrition-modulated biochemical pathways, and suggest novel mechanisms of action of vitamin A-derived retinoic acid on metabolic health.
Collapse
Affiliation(s)
- Joan Ribot
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain.
| | - Andrea Arreguín
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Andreu Palou
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Maria Luisa Bonet
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| |
Collapse
|
5
|
Fan R, Koehler K, Chung S. Adaptive thermogenesis by dietary n-3 polyunsaturated fatty acids: Emerging evidence and mechanisms. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:59-70. [PMID: 29679742 DOI: 10.1016/j.bbalip.2018.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/31/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
Abstract
Brown/beige fat plays a crucial role in maintaining energy homeostasis through non-shivering thermogenesis in response to cold temperature and excess nutrition (adaptive thermogenesis). Although numerous molecular and genetic regulators have been identified, relatively little information is available regarding thermogenic dietary molecules. Recently, a growing body of evidence suggests that high consumption of n-3 polyunsaturated fatty acids (PUFA) or activation of GPR120, a membrane receptor of n-3 PUFA, stimulate adaptive thermogenesis. In this review, we summarize the emerging evidence that n-3 PUFA promote brown/beige fat formation and highlight the potential mechanisms whereby n-3 PUFA require GPR120 as a signaling platform or act independently. Human clinical trials are revisited in the context of energy expenditure. Additionally, we explore some future perspective that n-3 PUFA intake might be a useful strategy to boost or sustain metabolic activities of brown/beige fat at different lifecycle stages of pregnancy and senescence. Given that a high ratio of n-6/n-3 PUFA intake is associated with the development of obesity and type 2 diabetes, understanding the impact of n-6/n-3 ratio on energy expenditure and adaptive thermogenesis will inform the implementation of a novel nutritional strategy for preventing obesity.
Collapse
Affiliation(s)
- Rong Fan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, NE, USA
| | - Karsten Koehler
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, NE, USA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, NE, USA.
| |
Collapse
|
6
|
Botta M, Audano M, Sahebkar A, Sirtori CR, Mitro N, Ruscica M. PPAR Agonists and Metabolic Syndrome: An Established Role? Int J Mol Sci 2018; 19:1197. [PMID: 29662003 PMCID: PMC5979533 DOI: 10.3390/ijms19041197] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Therapeutic approaches to metabolic syndrome (MetS) are numerous and may target lipoproteins, blood pressure or anthropometric indices. Peroxisome proliferator-activated receptors (PPARs) are involved in the metabolic regulation of lipid and lipoprotein levels, i.e., triglycerides (TGs), blood glucose, and abdominal adiposity. PPARs may be classified into the α, β/δ and γ subtypes. The PPAR-α agonists, mainly fibrates (including newer molecules such as pemafibrate) and omega-3 fatty acids, are powerful TG-lowering agents. They mainly affect TG catabolism and, particularly with fibrates, raise the levels of high-density lipoprotein cholesterol (HDL-C). PPAR-γ agonists, mainly glitazones, show a smaller activity on TGs but are powerful glucose-lowering agents. Newer PPAR-α/δ agonists, e.g., elafibranor, have been designed to achieve single drugs with TG-lowering and HDL-C-raising effects, in addition to the insulin-sensitizing and antihyperglycemic effects of glitazones. They also hold promise for the treatment of non-alcoholic fatty liver disease (NAFLD) which is closely associated with the MetS. The PPAR system thus offers an important hope in the management of atherogenic dyslipidemias, although concerns regarding potential adverse events such as the rise of plasma creatinine, gallstone formation, drug-drug interactions (i.e., gemfibrozil) and myopathy should also be acknowledged.
Collapse
Affiliation(s)
- Margherita Botta
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| | - Cesare R Sirtori
- Centro Dislipidemie, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy.
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
7
|
Xu H, Gao Z, Wang P, Xu B, Zhang Y, Long L, Zong C, Guo L, Jiang W, Ye Q, Wang L, Xie J. Biological effects of adipocytes in sulfur mustard induced toxicity. Toxicology 2017; 393:140-149. [PMID: 29129815 DOI: 10.1016/j.tox.2017.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/14/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022]
Abstract
Sulphur mustard (2,2'-dichloroethyl sulfide; SM) is a vesicant chemical warfare agent whose mechanism of acute or chronic action is not known with any certainty and to date there is no effective antidote. SM accumulation in adipose tissue (AT) has been originally verified in our previous study. To evaluate the biological effect caused by the presence of abundant SM in adipocyte and assess the biological role of AT in SM poisoning, in vitro and in vivo experiments were performed. High content analysis revealed multi-cytotoxicity in SM exposed cells in a time and dose dependent manner, and adipocytes showed a relative moderate damage compared with non-adipocytes. Cell co-culture model was established and revealed the adverse effect of SM-exposed adipocyte supernatant on the growth of co-cultured cells. The pathological changes in AT from 10mg/kg SM percutaneously exposed rats were checked and inflammation phenomena were observed. The mRNA and protein levels of inflammation-related adipokines secreted from AT in rats exposed to 1, 3 and 10mg/kg doses of SM were determined by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assays. The expressions of proinflammatory and anti-inflammatory adipokines together promoted the inflammation development in the body. The positive correlations between AT and serum adipokine levels were explored, which demonstrated a substantial role of AT in systemic inflammation responding to SM exposure. Thus, AT is not only a target of SM but also a modulator in the SM toxicity.
Collapse
Affiliation(s)
- Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Zhongcai Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China; The Rocket Force General Hospital, PLA, No. 16, Xinjiekouwai Street, Xicheng District, Beijing 100088, China
| | - Peng Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Long Long
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Cheng Zong
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Weijian Jiang
- The Rocket Force General Hospital, PLA, No. 16, Xinjiekouwai Street, Xicheng District, Beijing 100088, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Lili Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China.
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Yan Y, Wang Z, Greenwald J, Kothapalli KSD, Park HG, Liu R, Mendralla E, Lawrence P, Wang X, Brenna JT. BCFA suppresses LPS induced IL-8 mRNA expression in human intestinal epithelial cells. Prostaglandins Leukot Essent Fatty Acids 2017; 116:27-31. [PMID: 28088291 DOI: 10.1016/j.plefa.2016.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/28/2022]
Abstract
Branched chain fatty acids (BCFA) are components of common food fats and are major constituents of the normal term human newborn GI tract. Polyunsaturated fatty acids (PUFA) have been suggested to reduce the risk and development of inflammatory bowel diseases (IBD); however, little is known about the influence of BCFA on inflammation. We investigated the effect of BCFA on interleukin (IL)-8 and NF-κB production in a human intestinal epithelial cell line (Caco-2). Cells were pre-treated with specific BCFA, or DHA, or EPA, and then activated with lipopolysaccharide (LPS). Both anteiso- and iso- BCFA reduce IL-8. Anteiso-BCFA more effectively suppressed IL-8 than iso-BCFA in LPS stimulated Caco-2 cells. However BCFA in general were less effective than DHA or EPA. Activated BCFA-treated cells expressed less of the cell surface Toll-like receptor 4 (TLR-4) compared to controls. These are the first data to show the reduction of pro-inflammatory markers in human cells mediated by BCFA.
Collapse
Affiliation(s)
- Y Yan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Z Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - J Greenwald
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - K S D Kothapalli
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - H G Park
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - R Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - E Mendralla
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - P Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - X Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - J T Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
Huang CW, Chien YS, Chen YJ, Ajuwon KM, Mersmann HM, Ding ST. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans. Int J Mol Sci 2016; 17:ijms17101689. [PMID: 27735847 PMCID: PMC5085721 DOI: 10.3390/ijms17101689] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/05/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
The incidence of obesity and its comorbidities, such as insulin resistance and type II diabetes, are increasing dramatically, perhaps caused by the change in the fatty acid composition of common human diets. Adipose tissue plays a role as the major energy reservoir in the body. An excess of adipose mass accumulation caused by chronic positive energy balance results in obesity. The n-3 polyunsaturated fatty acids (n-3 PUFA), DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) exert numerous beneficial effects to maintain physiological homeostasis. In the current review, the physiology of n-3 PUFA effects in the body is delineated from studies conducted in both human and animal experiments. Although mechanistic studies in human are limited, numerous studies conducted in animals and models in vitro provide potential molecular mechanisms of the effects of these fatty acids. Three aspects of n-3 PUFA in adipocyte regulation are discussed: (1) lipid metabolism, including adipocyte differentiation, lipolysis and lipogenesis; (2) energy expenditure, such as mitochondrial and peroxisomal fatty acid β-oxidation; and (3) inflammation, including adipokines and specialized pro-resolving lipid mediators. Additionally, the mechanisms by which n-3 PUFA regulate gene expression are highlighted. The beneficial effects of n-3 PUFA may help to reduce the incidence of obesity and its comorbidities.
Collapse
Affiliation(s)
- Chao-Wei Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Yi-Shan Chien
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Yu-Jen Chen
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| | - Kolapo M Ajuwon
- Department of Animal Science, Purdue University, West Lafayette, IN 47907-2054, USA.
| | - Harry M Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|