1
|
Mahendran R, Selvaraj SP, Dhanapal AR, Sarasa SB, Mathias BM, Thankappan B, Femil Selta DR, Naveen P, Poorani R, Sundhar N, Pillai MM, Selvakumar R, Huang CY, Eswaran R, Angayarkanni J. Tetrahydrobiopterin from cyanide-degrading bacterium Bacillus pumilus strain SVD06 induces apoptosis in human lung adenocarcinoma cell (A549). Biotechnol Appl Biochem 2023; 70:2052-2068. [PMID: 37731306 DOI: 10.1002/bab.2509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Tetrahydrobiopterin (BH4) is an essential biological cofactor and a derivative of pterin which is considered potent anticancer agents. In continuation of our previous study on the identification of BH4 from cyanide-degrading Bacillus pumilus, the present study focuses on evaluating the anticancer properties of BH4 on A549, a human lung adenocarcinoma. Anticancer activity analysis shows that BH4 inhibited A549 cell growth after 24 h of incubation with 0.02 mg/mL. In acridine orange/ethidium bromide staining, BH4-treated A549 cells showed apoptotic morphology. BH4 treatment caused cell cycle arrest at G0/G1 phase compared to control cells. BH4 augmented p53 expression in alveolar cancer cells by downregulating MDM2 levels. There was downregulation of casp-3 and upregulation of iNOS gene in BH4-treated A549 cells. Further, docking studies indicated that BH4 had significant interactions with the above proteins affirming the apoptosis mechanism. Thus, BH4 could be considered a potential anticancer drug.
Collapse
Affiliation(s)
- Ramasamy Mahendran
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Anand Raj Dhanapal
- Institute of Forest Genetics and Tree Breeding (IFGTB), Forest Campus, Coimbatore, Tamil Nadu, India
| | - Sabna Bhaskaran Sarasa
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Beutline Malgija Mathias
- Computational Science Laboratory, MCC-MRF Innovation Park, Madras Christian College, Chennai, Tamil Nadu, India
| | - Bency Thankappan
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Daniel Raja Femil Selta
- Department of Biochemistry and Cancer Research Center, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Palanivel Naveen
- Department of Chemistry, Sona College of Arts and Science, Salem, Tamil Nadu, India
| | - Rhenghachar Poorani
- Gayatri Vidya parishad Institute of Health Care and Medical Technology, Visakhapatnam, India
| | - Navaneethan Sundhar
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| | - Mamatha M Pillai
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Rajendran Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Raju Eswaran
- Department of Zoology, The Madura College, Madurai, Tamil Nadu, India
| | - Jayaraman Angayarkanni
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Zhang Y, Liu Y, Sun J, Zhang W, Guo Z, Ma Q. Arachidonic acid metabolism in health and disease. MedComm (Beijing) 2023; 4:e363. [PMID: 37746665 PMCID: PMC10511835 DOI: 10.1002/mco2.363] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Arachidonic acid (AA), an n-6 essential fatty acid, is a major component of mammalian cells and can be released by phospholipase A2. Accumulating evidence indicates that AA plays essential biochemical roles, as it is the direct precursor of bioactive lipid metabolites of eicosanoids such as prostaglandins, leukotrienes, and epoxyeicosatrienoic acid obtained from three distinct enzymatic metabolic pathways: the cyclooxygenase pathway, lipoxygenase pathway, and cytochrome P450 pathway. AA metabolism is involved not only in cell differentiation, tissue development, and organ function but also in the progression of diseases, such as hepatic fibrosis, neurodegeneration, obesity, diabetes, and cancers. These eicosanoids are generally considered proinflammatory molecules, as they can trigger oxidative stress and stimulate the immune response. Therefore, interventions in AA metabolic pathways are effective ways to manage inflammatory-related diseases in the clinic. Currently, inhibitors targeting enzymes related to AA metabolic pathways are an important area of drug discovery. Moreover, many advances have also been made in clinical studies of AA metabolic inhibitors in combination with chemotherapy and immunotherapy. Herein, we review the discovery of AA and focus on AA metabolism in relation to health and diseases. Furthermore, inhibitors targeting AA metabolism are summarized, and potential clinical applications are discussed.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Yingxiang Liu
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Jin Sun
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Wei Zhang
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Zheng Guo
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Qiong Ma
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| |
Collapse
|
3
|
Montecillo-Aguado M, Tirado-Rodriguez B, Huerta-Yepez S. The Involvement of Polyunsaturated Fatty Acids in Apoptosis Mechanisms and Their Implications in Cancer. Int J Mol Sci 2023; 24:11691. [PMID: 37511450 PMCID: PMC10380946 DOI: 10.3390/ijms241411691] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is a significant global public health issue and, despite advancements in detection and treatment, the prognosis remains poor. Cancer is a complex disease characterized by various hallmarks, including dysregulation in apoptotic cell death pathways. Apoptosis is a programmed cell death process that efficiently eliminates damaged cells. Several studies have indicated the involvement of polyunsaturated fatty acids (PUFAs) in apoptosis, including omega-3 PUFAs such as alpha-linolenic acid, docosahexaenoic acid, and eicosapentaenoic acid. However, the role of omega-6 PUFAs, such as linoleic acid, gamma-linolenic acid, and arachidonic acid, in apoptosis is controversial, with some studies supporting their activation of apoptosis and others suggesting inhibition. These PUFAs are essential fatty acids, and Western populations today have a high consumption rate of omega-6 to omega-3 PUFAs. This review focuses on presenting the diverse molecular mechanisms evidence in both in vitro and in vivo models, to help clarify the controversial involvement of omega-3 and omega-6 PUFAs in apoptosis mechanisms in cancer.
Collapse
Affiliation(s)
- Mayra Montecillo-Aguado
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City 04510, Mexico
| | - Belen Tirado-Rodriguez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico
| |
Collapse
|
4
|
Silva JA, Colquhoun A. Effect of Polyunsaturated Fatty Acids on Temozolomide Drug-Sensitive and Drug-Resistant Glioblastoma Cells. Biomedicines 2023; 11:biomedicines11030779. [PMID: 36979758 PMCID: PMC10045395 DOI: 10.3390/biomedicines11030779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Glioblastomas (GBMs) are notoriously difficult to treat, and the development of multiple drug resistance (MDR) is common during the course of the disease. The polyunsaturated fatty acids (PUFAs) gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have been reported to improve MDR in several tumors including breast, bladder, and leukaemia. However, the effects of PUFAs on GBM cell MDR are poorly understood. The present study investigated the effects of PUFAs on cellular responses to temozolomide (TMZ) in U87MG cells and the TMZ-resistant (TMZR) cells derived from U87MG. Cells were treated with PUFAs in the absence or presence of TMZ and dose–response, viable cell counting, gene expression, Western blotting, flow cytometry, gas chromatography-mass spectrometry (GCMS), and drug efflux studies were performed. The development of TMZ resistance caused an increase in ABC transporter ABCB1 and ABCC1 expression. GLA-, EPA-, and DHA-treated cells had altered fatty acid composition and accumulated lipid droplets in the cytoplasm. The most significant reduction in cell growth was seen for the U87MG and TMZR cells in the presence of EPA. GLA and EPA caused more significant effects on ABC transporter expression than DHA. GLA and EPA in combination with TMZ caused significant reductions in rhodamine 123 efflux from U87MG cells but not from TMZR cells. Overall, these findings support the notion that PUFAs can modulate ABC transporters in GBM cells.
Collapse
|
5
|
Montecillo-Aguado M, Tirado-Rodriguez B, Antonio-Andres G, Morales-Martinez M, Tong Z, Yang J, Hammock BD, Hernandez-Pando R, Huerta-Yepez S. Omega-6 Polyunsaturated Fatty Acids Enhance Tumor Aggressiveness in Experimental Lung Cancer Model: Important Role of Oxylipins. Int J Mol Sci 2022; 23:6179. [PMID: 35682855 PMCID: PMC9181584 DOI: 10.3390/ijms23116179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is currently the leading cause of cancer death worldwide; it is often diagnosed at an advanced stage and bears poor prognosis. It has been shown that diet is an important environmental factor that contributes to the risk and mortality of several types of cancers. Intake of ω-3 and ω-6 PUFAs plays an important role in cancer risk and progression. Current Western populations have high consumption of ω-6 PUFAs with a ratio of ω-6/ω-3 PUFAs at 15:1 to 16.7:1 This high consumption of ω-6 PUFAs is related to increased cancer risk and progression. However, whether a diet rich in ω-6 PUFAs can contribute to tumor aggressiveness has not been well investigated. We used a murine model of pulmonary squamous cell carcinoma to study the aggressiveness of tumors in mice fed with a diet rich in ω-6 PUFAs and its relationship with oxylipins. Our results shown that the mice fed a diet rich in ω-6 showed a marked increase in proliferation, angiogenesis and pro-inflammatory markers and decreased expression of pro-apoptotic proteins in their tumors. Oxylipin profiling revealed an upregulation of various pro-tumoral oxylipins including PGs, HETEs, DiHETrEs and HODEs. These results demonstrate for the first time that high intake of ω-6 PUFAs in the diet enhances the malignancy of tumor cells by histological changes on tumor dedifferentiation and increases cell proliferation, angiogenesis, pro-inflammatory oxylipins and molecular aggressiveness targets such as NF-κB p65, YY1, COX-2 and TGF-β.
Collapse
Affiliation(s)
- Mayra Montecillo-Aguado
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City 04510, Mexico;
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Belen Tirado-Rodriguez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Gabriela Antonio-Andres
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Mario Morales-Martinez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Zhen Tong
- Molecular Toxicology Interdepartmental Program and Environmental Health Sciences, University of California, Los Angeles, CA 90095, USA;
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jun Yang
- Comprehensive Cancer Center, Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; (J.Y.); (B.D.H.)
| | - Bruce D. Hammock
- Comprehensive Cancer Center, Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; (J.Y.); (B.D.H.)
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Science and Nutrition, Salvador Zubiran (INCNSZ), Mexico City 14080, Mexico;
| | - Sara Huerta-Yepez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Das UN. Molecular pathobiology of scleritis and its therapeutic implications. Int J Ophthalmol 2020; 13:163-175. [PMID: 31956585 DOI: 10.18240/ijo.2020.01.23] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/12/2019] [Indexed: 11/23/2022] Open
Abstract
Scleritis and other autoimmune diseases are characterized by an imbalance in the levels of pro-inflammatory and anti-inflammatory molecules with the balance tilted more towards the former due to the failure of recognition of self. The triggering of inflammatory process could be ascribed to the presence of cytoplasmic DNA/chromatin that leads to activation of cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway and enhanced expression of NF-κB that results in an increase in the production of pro-inflammatory bioactive lipids. Bioactive lipids gamma-linolenic acid (GLA), dihomo-GLA (DGLA), prostaglandin E1 (PGE1), prostacyclin (PGI2) and lipoxin A4, resolvins, protectins and maresins have anti-inflammatory actions, bind to DNA to render it non-antigenic and are decreased in autoimmune diseases. These results suggest that efforts designed to enhance the production of anti-inflammatory bioactive lipids may form a new approach to autoimmune diseases. Local injection or infusion of lipoxins, resolvins, protectins and maresins or their precursors such as arachidonic acid may be exploited in the prevention and management of autoimmune diseases including scleritis, uveitis and lupus/rheumatoid arthritis.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, Battle Ground, WA 98604, USA.,BioScience Research Centre and Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India
| |
Collapse
|
7
|
Hari AD, Vegi NG, Das UN. Arachidonic and eicosapentaenoic acids induce oxidative stress to suppress proliferation of human glioma cells. Arch Med Sci 2020; 16:974-983. [PMID: 32542101 PMCID: PMC7286332 DOI: 10.5114/aoms.2020.92293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/20/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Anasuya Devi Hari
- BioScience Research Centre, GVP College of Engineering Campus, Visakhapatnam, India
| | | | - Undurti N. Das
- UND Life Sciences, USA
- Corresponding author: Undurti N. Das MD, DSc, FAMS, FRSC, UND Life Sciences, 2221 NW 5 St, 98604, Battle Ground, USA, Phone: 2162315548, E-mail:
| |
Collapse
|
8
|
Abstract
Our own studies and those of others have shown that defects in essential fatty acid (EFA) metabolism occurs in age-related disorders such as obesity, type 2 diabetes mellitus, hypertension, atherosclerosis, coronary heart disease, immune dysfunction and cancer. It has been noted that in all these disorders there could occur a defect in the activities of desaturases, cyclo-oxygenase (COX), and lipoxygenase (LOX) enzymes leading to a decrease in the formation of their long-chain products gamma-linolenic acid (GLA), arachidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). This leads to an increase in the production of pro-inflammatory prostaglandin E2 (PGE2), thromboxanes (TXs), and leukotrienes (LTs) and a decrease in anti-inflammatory lipoxin A4, resolvins, protectins and maresins. All these bioactive molecules are termed as bioactive lipids (BALs). This imbalance in the metabolites of EFAs leads to low-grade systemic inflammation and at times acute inflammatory events at specific local sites that trigger the development of various age-related disorders such as obesity, type 2 diabetes mellitus, hypertension, coronary heart disease, atherosclerosis, and immune dysfunction as seen in rheumatoid arthritis, lupus, nephritis and other localized inflammatory conditions. This evidence implies that methods designed to restore BALs to normal can prevent age-related disorders and enhance longevity and health.
Collapse
|
9
|
Das UN. Bioactive lipids as modulators of immune check point inhibitors. Med Hypotheses 2019; 135:109473. [PMID: 31733534 DOI: 10.1016/j.mehy.2019.109473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
Abstract
It is proposed that arachidonic acid (AA, 20:4 n-6) and other polyunsaturated fatty acids (PUFAs) in combination with immune check point inhibitors and tumor infiltrating lymphocytes (TILs) enhances the activity of T and NK cells and macrophages and thus, aids in the elimination of tumor cells and suppresses inflammatory side effects due to immune check point inhibitors.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA; BioScience Research Centre, GVP College of Engineering Campus and Department of Medicine, GVP Hospital and Medical College, Visakhapatnam 530048, India.
| |
Collapse
|
10
|
Das UN. Can Bioactive Lipids Augment Anti-cancer Action of Immunotherapy and Prevent Cytokine Storm? Arch Med Res 2019; 50:342-349. [DOI: 10.1016/j.arcmed.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022]
|