1
|
Rademacher K, Doric Z, Haddad D, Mamaligas A, Liao SC, Creed RB, Kano K, Chatterton Z, Fu Y, Garcia JH, Vance V, Sei Y, Kreitzer A, Halliday GM, Nelson AB, Margolis EB, Nakamura K. Chronic hyperactivation of midbrain dopamine neurons causes preferential dopamine neuron degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.05.588321. [PMID: 38645054 PMCID: PMC11030348 DOI: 10.1101/2024.04.05.588321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Parkinson's disease (PD) is characterized by the death of substantia nigra (SNc) dopamine (DA) neurons, but the pathophysiological mechanisms that precede and drive their death remain unknown. The activity of DA neurons is likely altered in PD, but we understand little about if or how chronic changes in activity may contribute to degeneration. To address this question, we developed a chemogenetic (DREADD) mouse model to chronically increase DA neuron activity, and confirmed this increase using ex vivo electrophysiology. Chronic hyperactivation of DA neurons resulted in prolonged increases in locomotor activity during the light cycle and decreases during the dark cycle, consistent with chronic changes in DA release and circadian disturbances. We also observed early, preferential degeneration of SNc projections, recapitulating the PD hallmarks of selective vulnerability of SNc axons and the comparative resilience of ventral tegmental area axons. This was followed by eventual loss of midbrain DA neurons. Continuous DREADD activation resulted in a sustained increase in baseline calcium levels, supporting a role for increased calcium in the neurodegeneration process. Finally, spatial transcriptomics from DREADD mice examining midbrain DA neurons and striatal targets, and cross-validation with human patient samples, provided insights into potential mechanisms of hyperactivity-induced toxicity and PD. Our results thus reveal the preferential vulnerability of SNc DA neurons to increased neural activity, and support a potential role for increased neural activity in driving degeneration in PD.
Collapse
Affiliation(s)
- Katerina Rademacher
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Zak Doric
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
| | - Dominik Haddad
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
| | - Aphroditi Mamaligas
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
| | - Szu-Chi Liao
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA
| | - Rose B. Creed
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA
| | - Kohei Kano
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Zac Chatterton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - YuHong Fu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Joseph H. Garcia
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- School of Medicine, University of California, San Francisco, California, USA
| | - Victoria Vance
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- College of Science, Northeastern University, Boston, MA
| | - Yoshitaka Sei
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Anatol Kreitzer
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- UCSF Department of Physiology, University of California San Francisco, CA
| | - Glenda M Halliday
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Alexandra B. Nelson
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA
| | - Elyssa B. Margolis
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA
| | - Ken Nakamura
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA
- Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco
| |
Collapse
|
2
|
Guo K, Liu J, Yao Z, Tan Z, Yang T. Effect of soluble dietary fiber extracted from Lentinula edodes (Berk.) Pegler on lipid metabolism and liver protection in mice on high-fat diet. Front Nutr 2025; 12:1537569. [PMID: 39949544 PMCID: PMC11821492 DOI: 10.3389/fnut.2025.1537569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
With the increasing annual production of Lentinula edodes, the residues of Lentinus edodes are mass produced and wasted every year. In order to further explore the added value and effective utilization of Lentinus edodes, we studied the lipid-lowering efficacy and liver protective effect of Lentinus edodes soluble dietary fiber in mice on high-fat diet. Project team from Lentinus edodes extracted soluble dietary fiber, and its physicochemical properties, selected 30 male mice, randomly divided into normal group (N), high fat diet group (F), add low dose dietary fiber high fat diet (FL), add medium dose dietary fiber high fat diet group (FM), add high dose dietary fiber high fat diet group (FH) five groups. After 4 weeks, we assessed general state, organ conditions, liver status, blood parameters, expression of hepatic lipid metabolism genes, mRNA levels of key hepatic lipid metabolism genes. The results showed that the molecular weight of soluble dietary fiber is about 17.029 kDa, and the monosaccharides such as galactose, glucose and mannitol are connected by β-glycosidic bond. The soluble dietary fiber of Lentinus edodes can effectively slow the weight growth due to high-fat diet, delay liver tissue lesions, reduce the levels of ALT, AST, ACP, LDL-C, TG, TV, FFA, SOD, GSH and MDA, and increase the levels of γ-GT, HDL-C and CAT in blood. Lentinus edodes soluble dietary fiber decreased the expression of AMPKα and SREBP-2 in the liver, and increased the expression of PPARα, ACS, CPT1a, CYP7A1. It is proved that the soluble dietary fiber of Lentinus edodes can alleviate the organ fat accumulation caused by high-fat diet to some extent, effectively combat the liver injury, oxidative stress pressure and lipid metabolism disorder caused by high-fat diet, and provide an experimental basis for the subsequent effective use of soluble dietary fiber of Lentinus edodes in fat reduction.
Collapse
Affiliation(s)
- Kangxiao Guo
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Department of Pharmacy, Changsha Health Vocational College, Changsha, China
| | - Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zihan Yao
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Tao Yang
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
3
|
Wang Y, Becker S, Finkelstein S, Dyka FM, Liu H, Eminhizer M, Hao Y, Brush RS, Spencer WJ, Arshavsky VY, Ash JD, Du J, Agbaga MP, Vinberg F, Ellis JM, Lobanova ES. Acyl-CoA synthetase 6 controls rod photoreceptor function and survival by shaping the phospholipid composition of retinal membranes. Commun Biol 2024; 7:1027. [PMID: 39169121 PMCID: PMC11339274 DOI: 10.1038/s42003-024-06691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
The retina is light-sensitive neuronal tissue in the back of the eye. The phospholipid composition of the retina is unique and highly enriched in polyunsaturated fatty acids, including docosahexaenoic fatty acid (DHA). While it is generally accepted that a high DHA content is important for vision, surprisingly little is known about the mechanisms of DHA enrichment in the retina. Furthermore, the biological processes controlled by DHA in the eye remain poorly defined as well. Here, we combined genetic manipulations with lipidomic analysis in mice to demonstrate that acyl-CoA synthetase 6 (Acsl6) serves as a regulator of the unique composition of retinal membranes. Inactivation of Acsl6 reduced the levels of DHA-containing phospholipids, led to progressive loss of light-sensitive rod photoreceptor neurons, attenuated the light responses of these cells, and evoked distinct transcriptional response in the retina involving the Srebf1/2 (sterol regulatory element binding transcription factors 1/2) pathway. This study identifies one of the major enzymes responsible for DHA enrichment in the retinal membranes and introduces a model allowing an evaluation of rod functioning and pathology caused by impaired DHA incorporation/retention in the retina.
Collapse
Affiliation(s)
- Yixiao Wang
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Silke Becker
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | | | - Frank M Dyka
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Eminhizer
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Ying Hao
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | - Richard S Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean McGee Eye Institute, Oklahoma City, OK, USA
| | - William J Spencer
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - John D Ash
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhai Du
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Martin-Paul Agbaga
- Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean McGee Eye Institute, Oklahoma City, OK, USA
| | - Frans Vinberg
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | | | | |
Collapse
|
4
|
Iwama T, Kano K, Kawana H, Shindou H, Shimizu T, Kono N, Aoki J. Visualization of Phospholipid Synthesis on Tissue Sections Using Functional Mass Spectrometry Imaging. Anal Chem 2024; 96:11771-11779. [PMID: 38995673 DOI: 10.1021/acs.analchem.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Functional mass spectrometry imaging (fMSI) is a potent tool for elucidating the spatial distribution of enzyme activities in tissues at high resolution. In this study, we applied fMSI to probe the intricate biosynthesis of phospholipids, which exist as thousands of molecular species in tissues and exhibit a unique distribution specific to cell type. By using deuterium- and 13C-labeled substrates, we visualized the activities of key enzymes involved in phospholipid synthesis, including glycerol 3-phosphate acyltransferase (GPAT), lysophosphatidic acid acyltransferases (LPAAT), lysophospholipid acyltransferases (LPLAT), and long-chain acyl-CoA synthetase (ACSL). Additionally, we were able to visualize a two-step sequential enzyme reaction involving ACSL and LPLAT. This novel approach unveiled significant variations in enzyme activity distribution depending on the type of fatty acids used as substrates. It will also help to reveal the mechanisms underlying the formation of numerous phospholipid species.
Collapse
Affiliation(s)
- Taiga Iwama
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology. Nara 630-0192, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Institute of Microbial Chemistry, Tokyo 141-0021, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Ryan F, Blex C, Ngo TD, Kopp MA, Michalke B, Venkataramani V, Curran L, Schwab JM, Ruprecht K, Otto C, Jhelum P, Kroner A, David S. Ferroptosis inhibitor improves outcome after early and delayed treatment in mild spinal cord injury. Acta Neuropathol 2024; 147:106. [PMID: 38907771 PMCID: PMC11193702 DOI: 10.1007/s00401-024-02758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
We show that redox active iron can induce a regulated form of non-apoptotic cell death and tissue damage called ferroptosis that can contribute to secondary damage and functional loss in the acute and chronic periods after spinal cord injury (SCI) in young, adult, female mice. Phagocytosis of red blood cells at sites of hemorrhage is the main source of iron derived from hemoglobin after SCI. Expression of hemeoxygenase-1 that induces release of iron from heme, is increased in spinal cord macrophages 7 days after injury. While iron is stored safely in ferritin in the injured spinal cord, it can, however, be released by NCOA4-mediated shuttling of ferritin to autophagosomes for degradation (ferritinophagy). This leads to the release of redox active iron that can cause free radical damage. Expression of NCOA4 is increased after SCI, mainly in macrophages. Increase in the ratio of redox active ferrous (Fe2+) to ferric iron (Fe3+) is also detected after SCI by capillary electrophoresis inductively coupled mass spectrometry. These changes are accompanied by other hallmarks of ferroptosis, i.e., deficiency in various elements of the antioxidant glutathione (GSH) pathway. We also detect increases in enzymes that repair membrane lipids (ACSL4 and LPCAT3) and thus promote on-going ferroptosis. These changes are associated with increased levels of 4-hydroxynonenal (4-HNE), a toxic lipid peroxidation product. Mice with mild SCI (30 kdyne force) treated with the ferroptosis inhibitor (UAMC-3203-HCL) either early or delayed times after injury showed improvement in locomotor recovery and secondary damage. Cerebrospinal fluid and serum samples from human SCI cases show evidence of increased iron storage (ferritin), and other iron related molecules, and reduction in GSH. Collectively, these data suggest that ferroptosis contributes to secondary damage after SCI and highlights the possible use of ferroptosis inhibitors to treat SCI.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The BRAiN Program, The Research Institute of the McGill University Health Centre, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Christian Blex
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - The Dung Ngo
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel A Kopp
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Laura Curran
- Centre for Research in Neuroscience, The BRAiN Program, The Research Institute of the McGill University Health Centre, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Jan M Schwab
- Belford Center for Spinal Cord Injury and Departments of Neurology and Neurosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Klemens Ruprecht
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carolin Otto
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Priya Jhelum
- Centre for Research in Neuroscience, The BRAiN Program, The Research Institute of the McGill University Health Centre, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Samuel David
- Centre for Research in Neuroscience, The BRAiN Program, The Research Institute of the McGill University Health Centre, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada.
| |
Collapse
|
6
|
Mares J, Costa AP, Dartora WJ, Wartchow KM, Lazarian A, Bennett DA, Nuriel T, Menon V, McIntire LBJ. Brain and serum lipidomic profiles implicate Lands cycle acyl chain remodeling association with APOEε4 and mild cognitive impairment. Front Aging Neurosci 2024; 16:1419253. [PMID: 38938596 PMCID: PMC11210445 DOI: 10.3389/fnagi.2024.1419253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction At least one-third of the identified risk alleles from Genome-Wide Association Studies (GWAS) of Alzheimer's disease (AD) are involved in lipid metabolism, lipid transport, or direct lipid binding. In fact, a common genetic variant (ε4) in a cholesterol and phospholipid transporter, Apolipoprotein E (APOEε4), is the primary genetic risk factor for late-onset AD. In addition to genetic variants, lipidomic studies have reported severe metabolic dysregulation in human autopsy brain tissue, cerebrospinal fluid, blood, and multiple mouse models of AD. Methods We aimed to identify an overarching metabolic pathway in lipid metabolism by integrating analyses of lipidomics and transcriptomics from the Religious Order Study and Rush Memory Aging Project (ROSMAP) using differential analysis and network correlation analysis. Results Coordinated differences in lipids were found to be dysregulated in association with both mild cognitive impairment (MCI) and APOEε4 carriers. Interestingly, these correlations were weakened when adjusting for education. Indeed, the cognitively non-impaired APOEε4 carriers have higher education levels in the ROSMAP cohort, suggesting that this lipid signature may be associated with a resilience phenotype. Network correlation analysis identified multiple differential lipids within a single module that are substrates and products in the Lands Cycle for acyl chain remodeling. In addition, our analyses identified multiple genes in the Lands Cycle acyl chain remodeling pathway, which were associated with cognitive decline independent of amyloid-β (Aβ) load and tau tangle pathologies. Discussion Our studies highlight the critical differences in acyl chain remodeling in brain tissue from APOEε4 carriers and individual non-carriers with MCI. A coordinated lipid profile shift in dorsolateral prefrontal cortex from both APOEε4 carriers and MCI suggests differences in lipid metabolism occur early in disease stage and highlights lipid homeostasis as a tractable target for early disease modifying intervention.
Collapse
Affiliation(s)
- Jason Mares
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Ana Paula Costa
- Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - William J. Dartora
- Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Krista M. Wartchow
- Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Artur Lazarian
- Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Tal Nuriel
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Laura Beth J. McIntire
- Lipidomics and Biomarker Discovery Lab, Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
7
|
Okeke ES, Feng W, Luo M, Mao G, Chen Y, Zhao T, Wu X, Yang L. RNA-Seq analysis offers insight into the TBBPA-DHEE-induced endocrine-disrupting effect and neurotoxicity in juvenile zebrafish (Danio rerio). Gen Comp Endocrinol 2024; 350:114469. [PMID: 38360373 DOI: 10.1016/j.ygcen.2024.114469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) is the major TBBPA derivative. It has been detected in different environmental samples. Previous studies show that TBBPA-DHEE caused neurotoxicity in rats. In this study, juvenile zebrafish were exposed to various concentrations of TBBPA-DHEE to ascertain the potential neurotoxicity of TBBPA-DHEE, the chemical, and its possible molecular mechanism of action. Behavioral analysis revealed that TBBPA-DHEE could significantly increase the swimming distance and speed in the 1.5 mg/L group compared to the control. In contrast, the swimming distance and speed were significantly reduced in the 0.05 and 0.3 mg/L groups, affecting learning, memory, and neurodevelopment. Similarly, TBBPA-DHEE exposure caused a concentration-dependent significant increase in the levels of excitatory neurotransmitters, namely, dopamine, norepinephrine, and epinephrine, which could be attributed to the change observed in zebrafish behavior. This demonstrates the neurotoxicity of TBBPA-DHEE on juvenile zebrafish. The concentration-dependent increase in the IBR value revealed by the IBR index reveals the noticeable neurotoxic effect of TBBPA-DHEE. Transcriptomic analysis shows that TBBPA-DHEE exposure activated the PPAR signaling pathways, resulting in a disturbance of fatty acid (FA) metabolism and changes in the transcript levels of genes involved in these pathways, which could lead to lipotoxicity and hepatotoxicity. Our findings demonstrate a distinct endocrine-disrupting response to TBBPA-DHEE exposure, possibly contributing to abnormal behavioral alterations. This study provides novel insights into underlying the mechanisms and effects of TBBPA-DHEE on aquatic organisms, which may be helpful forenvironmental/human health risk assessments of the emerging pollutant.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China.
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Ting Zhao
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
8
|
Li J, Dong Y, Zhou T, Tian H, Huang X, Zhang YQ, Wang Y, Lam SM, Shui G. Long-chain acyl-CoA synthetase regulates systemic lipid homeostasis via glycosylation-dependent lipoprotein production. LIFE METABOLISM 2024; 3:loae004. [PMID: 39872215 PMCID: PMC11749247 DOI: 10.1093/lifemeta/loae004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/30/2025]
Abstract
Interorgan lipid transport is crucial for organism development and the maintenance of physiological function. Here, we demonstrate that Drosophila long-chain acyl-CoA synthetase (dAcsl), which catalyzes the conversion of fatty acids into acyl-coenzyme As (acyl-CoAs), plays a critical role in regulating systemic lipid homeostasis. dAcsl deficiency in the fat body led to the ectopic accumulation of neutral lipids in the gut, along with significantly reduced lipoprotein contents in both the fat body and hemolymph. The aberrant phenotypes were rescued by fat body-specific overexpression of apolipophorin. A multi-omics investigation comprising lipidomics, metabolomics, and proteomics in conjunction with genetic screening revealed that glycosylation processes were suppressed in dAcsl knockdown flies. Overexpression of CG9035, human ortholog of which is implicated in the congenital disorder of glycosylation, ameliorated gut lipid accumulation in Drosophila. Aberrant lipoprotein glycosylation led to accelerated proteasome-related degradation and induced ER stress in dAcsl knockdown flies, impairing lipoprotein release into the circulation which compromised interorgan lipid transport between the fat body and the gut. Inhibition of ubiquitin-proteasome-dependent degradation alleviated the phenotype of gut ectopic fat accumulation in dAcsl knockdown flies. Finally, we verified that ACSL4, the human homolog of dAcsl, also regulated lipoprotein levels in HepG2 cells, indicating that the role of dAcsl in modulating lipoprotein secretion and systemic lipid homeostasis is possibly conserved in humans.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences , Beijing 100101, China
| | - Yue Dong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences , Beijing 100101, China
| | - Tianxing Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences , Beijing 100101, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences , Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences , Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences , Beijing 100101, China
| |
Collapse
|
9
|
Oladapo A, Jackson T, Menolascino J, Periyasamy P. Role of pyroptosis in the pathogenesis of various neurological diseases. Brain Behav Immun 2024; 117:428-446. [PMID: 38336022 PMCID: PMC10911058 DOI: 10.1016/j.bbi.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death process, has recently garnered significant attention due to its pivotal role in various neurological diseases. This review delves into the intricate molecular signaling pathways governing pyroptosis, encompassing both caspase-1 dependent and caspase-1 independent routes, while emphasizing the critical role played by the inflammasome machinery in initiating cell death. Notably, we explore the Nucleotide-binding domain leucine-rich repeat (NLR) containing protein family, the Absent in melanoma 2-like receptor family, and the Pyrin receptor family as essential activators of pyroptosis. Additionally, we comprehensively examine the Gasdermin family, renowned for their role as executioner proteins in pyroptosis. Central to our review is the interplay between pyroptosis and various central nervous system (CNS) cell types, including astrocytes, microglia, neurons, and the blood-brain barrier (BBB). Pyroptosis emerges as a significant factor in the pathophysiology of each cell type, highlighting its far-reaching impact on neurological diseases. This review also thoroughly addresses the involvement of pyroptosis in specific neurological conditions, such as HIV infection, drug abuse-mediated pathologies, Alzheimer's disease, and Parkinson's disease. These discussions illuminate the intricate connections between pyroptosis, chronic inflammation, and cell death in the development of these disorders. We also conducted a comparative analysis, contrasting pyroptosis with other cell death mechanisms, thereby shedding light on their unique aspects. This approach helps clarify the distinct contributions of pyroptosis to neuroinflammatory processes. In conclusion, this review offers a comprehensive exploration of the role of pyroptosis in various neurological diseases, emphasizing its multifaceted molecular mechanisms within various CNS cell types. By elucidating the link between pyroptosis and chronic inflammation in the context of neurodegenerative disorders and infections, it provides valuable insights into potential therapeutic targets for mitigating these conditions.
Collapse
Affiliation(s)
- Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Thomas Jackson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Jueliet Menolascino
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
10
|
Taha AY, Gaudioso Á, Moran-Garrido M, Camunas-Alberca SM, Bachiller-Hernández J, Sáiz J, Ledesma MD, Barbas C. Neurons regulate the esterification of bioactive lipid mediators in the brain of acid sphingomyelinase deficient mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110896. [PMID: 37956788 DOI: 10.1016/j.pnpbp.2023.110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Acid sphingomyelinase deficiency is a neurodegenerative lysosomal storage disorder caused by mutations in the sphingomyelin-degrading enzyme acid sphingomyelinase (ASM) gene. Upregulated neuroinflammation has been well-characterized in an ASM knockout mouse model of acid sphingomyelinase deficiency disease, but lipid mediator pathways involved in 'mediating' inflammation and inflammation-resolution have yet to be characterized. In this study, we 1) measured free (bioactive) and esterified (inactive) lipid mediators involved in inflammation and inflammation resolution in cerebellum and neuronal cultures of ASM knockout (ASMko) mice and wildtype (WT) controls, and 2) quantified the esterification of labeled pro-resolving free d11-14(15)-epoxyeicosatrienoic acid in cultured neurons from ASMko and WT mice. We found elevated concentrations of esterified pro-resolving lipid mediators and hydroxyeicosatrienoic acids typically destined for pro-resolving lipid mediator synthesis (e.g. lipoxins) in the cerebellum and neurons of ASMko mice compared to controls. Free d11-14(15)-epoxyeicosatrienoic acid esterification within neurons of ASMko mice was significantly elevated compared to WT. Our findings show evidence of increased inactivation of free pro-resolving lipid mediators through esterification in ASMko mice, suggesting impaired resolution as a new pathway underlying ASM deficiency pathogenesis.
Collapse
Affiliation(s)
- Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, 95616 Davis, CA, USA; West Coast Metabolomics Center, Genome Center, University of California, 95616 Davis, CA, USA; Center for Neuroscience, University of California, Davis, One Shields Avenue, 95616 Davis, CA, USA
| | - Ángel Gaudioso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Maria Moran-Garrido
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Sandra M Camunas-Alberca
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Jaime Bachiller-Hernández
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Jorge Sáiz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | | | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
11
|
Xiao X, Li R, Cui B, Lv C, Zhang Y, Zheng J, Hui R, Wang Y. Liver ACSM3 deficiency mediates metabolic syndrome via a lauric acid-HNF4α-p38 MAPK axis. EMBO J 2024; 43:507-532. [PMID: 38191811 PMCID: PMC10897460 DOI: 10.1038/s44318-023-00020-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Metabolic syndrome combines major risk factors for cardiovascular disease, making deeper insight into its pathogenesis important. We here explore the mechanistic basis of metabolic syndrome by recruiting an essential patient cohort and performing extensive gene expression profiling. The mitochondrial fatty acid metabolism enzyme acyl-CoA synthetase medium-chain family member 3 (ACSM3) was identified to be significantly lower expressed in the peripheral blood of metabolic syndrome patients. In line, hepatic ACSM3 expression was decreased in mice with metabolic syndrome. Furthermore, Acsm3 knockout mice showed glucose and lipid metabolic abnormalities, and hepatic accumulation of the ACSM3 fatty acid substrate lauric acid. Acsm3 depletion markedly decreased mitochondrial function and stimulated signaling via the p38 MAPK pathway cascade. Consistently, Acsm3 knockout mouse exhibited abnormal mitochondrial morphology, decreased ATP contents, and enhanced ROS levels in their livers. Mechanistically, Acsm3 deficiency, and lauric acid accumulation activated nuclear receptor Hnf4α-p38 MAPK signaling. In line, the p38 inhibitor Adezmapimod effectively rescued the Acsm3 depletion phenotype. Together, these findings show that disease-associated loss of ACSM3 facilitates mitochondrial dysfunction via a lauric acid-HNF4a-p38 MAPK axis, suggesting a novel therapeutic vulnerability in systemic metabolic dysfunction.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruofei Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Lv
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Zheng
- Rizhao Port Hospital, Shandong, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Clark AM, Yu D, Neiswanger G, Zhu D, Zou J, Maschek JA, Burgoyne T, Yang J. Disruption of CFAP418 interaction with lipids causes widespread abnormal membrane-associated cellular processes in retinal degenerations. JCI Insight 2024; 9:e162621. [PMID: 37971880 PMCID: PMC10906455 DOI: 10.1172/jci.insight.162621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
Syndromic ciliopathies and retinal degenerations are large heterogeneous groups of genetic diseases. Pathogenic variants in the CFAP418 gene may cause both disorders, and its protein sequence is evolutionarily conserved. However, the disease mechanism underlying CFAP418 mutations has not been explored. Here, we apply quantitative lipidomic, proteomic, and phosphoproteomic profiling and affinity purification coupled with mass spectrometry to address the molecular function of CFAP418 in the retina. We show that CFAP418 protein binds to the lipid metabolism precursor phosphatidic acid (PA) and mitochondrion-specific lipid cardiolipin but does not form a tight and static complex with proteins. Loss of Cfap418 in mice disturbs membrane lipid homeostasis and membrane-protein associations, which subsequently causes mitochondrial defects and membrane-remodeling abnormalities across multiple vesicular trafficking pathways in photoreceptors, especially the endosomal sorting complexes required for transport (ESCRT) pathway. Ablation of Cfap418 also increases the activity of PA-binding protein kinase Cα in the retina. Overall, our results indicate that membrane lipid imbalance is a pathological mechanism underlying syndromic ciliopathies and retinal degenerations which is associated with other known causative genes of these diseases.
Collapse
Affiliation(s)
- Anna M. Clark
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Dongmei Yu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Grace Neiswanger
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Daniel Zhu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
| | - J. Alan Maschek
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, and
- Department of Otolaryngology, and
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Mu K, Fu J, Gai J, Ravichandran H, Zheng L, Sun WC. Genetic alterations in the neuronal development genes are associated with changes of the tumor immune microenvironment in pancreatic cancer. ANNALS OF PANCREATIC CANCER 2023; 6:10.21037/apc-23-13. [PMID: 38495381 PMCID: PMC10942730 DOI: 10.21037/apc-23-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis and is highly metastatic. Our prior studies have demonstrated the critical role of axon guidance pathway genes in PDAC and the connection between neuronal development and the tumor microenvironment. A recent study newly identified 20 neuronal development genes [disks large homolog 2 (DLG2), neuron-glial-related cell adhesion molecule (NRCAM), neurexin3 (NRXN3), mitogen-activated protein kinase 10 (MAPK10), platelet-derived growth factor D (PDGFD), protein kinase C epsilon (PRKCE), potassium calcium-activated channel subfamily M alpha 1 (KCNMA1), polycystic kidney and hepatic disease 1 (PKHD1), neural cell adhesion molecule 1 (NCAM1), neuregulin-1 (NRG1), zinc finger protein 667 (ZNF667), cystic fibrosis transmembrane conductance regulator (CFTR), acyl-CoA medium-chain synthetase-3 (ACSM3), complement 6 (C6), protein tyrosine phosphatase receptor type M (PTPRM), hypoxia-inducible factor 1 alpha (HIF1A), adenylyl cyclase 5 (ADCY5), adherens junctions-associated protein 1 (AJAP1), neurobeachin (NBEA), sodium voltage-gated channel alpha subunit 9 (SCN9A)] that are associated with perineural invasion and poor prognosis of PDAC. The relationship between genetic alterations in these 20 genes and tumor immune microenvironment (TME) has not previously been investigated. Methods We hence applied the sequential multiplex immunohistochemistry results of biopsy specimens from 63 PDAC patients to investigate this relationship. Results We found that, except for PTPRM and NBEA, genetic alterations involving these 20 genes are associated with significant changes in the densities of major immune cell subtypes. Except for AJAP1, the copy number loss involving this panel of neuronal development genes is significantly associated with changes in immune cell infiltrates. In contrast, the copy number gain in fewer genes, including NRXN3, ZNF667, ACSM3, C6, ADCY5, SCN9A, and PRKCE, is significantly associated with changes in immune cell infiltrates. Conclusions Our study suggested that neuronal development genes play a role in modulating TME in a pancreatic cancer setting.
Collapse
Affiliation(s)
- Kaiyi Mu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan Fu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica Gai
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harshitha Ravichandran
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei-Chih Sun
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Fernandez RF, Wilson ES, Diaz V, Martínez-Gardeazabal J, Foguth R, Cannon JR, Jackson SN, Hermann BP, Eells JB, Ellis JM. Lipid metabolism in dopaminergic neurons influences light entrainment. J Neurochem 2023; 165:379-390. [PMID: 36815399 PMCID: PMC10155601 DOI: 10.1111/jnc.15793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Dietary lipids, particularly omega-3 polyunsaturated fatty acids, are speculated to impact behaviors linked to the dopaminergic system, such as movement and control of circadian rhythms. However, the ability to draw a direct link between dopaminergic omega-3 fatty acid metabolism and behavioral outcomes has been limited to the use of diet-based approaches, which are confounded by systemic effects. Here, neuronal lipid metabolism was targeted in a diet-independent manner by manipulation of long-chain acyl-CoA synthetase 6 (ACSL6) expression. ACSL6 performs the initial reaction for cellular fatty acid metabolism and prefers the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA). The loss of Acsl6 in mice (Acsl6-/- ) depletes neuronal membranes of DHA content and results in phenotypes linked to dopaminergic control, such as hyperlocomotion, impaired short-term spatial memory, and imbalances in dopamine neurochemistry. To investigate the role of dopaminergic ACSL6 on these outcomes, a dopaminergic neuron-specific ACSL6 knockout mouse was generated (Acsl6DA-/- ). Acsl6DA-/- mice demonstrated hyperlocomotion and imbalances in striatal dopamine neurochemistry. Circadian rhythms of both the Acsl6-/- and the Acsl6DA-/- mice were similar to control mice under basal conditions. However, upon light entrainment, a mimetic of jet lag, both the complete knockout of ACSL6 and the dopaminergic-neuron-specific loss of ACSL6 resulted in a longer recovery to entrainment compared to control mice. In conclusion, these data demonstrate that ACSL6 in dopaminergic neurons alters dopamine metabolism and regulation of light entrainment suggesting that DHA metabolism mediated by ACSL6 plays a role in dopamine neuron biology.
Collapse
Affiliation(s)
- Regina F. Fernandez
- Department of Physiology and East Carolina Diabetes and Obesity institute, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Emily S. Wilson
- Department of Physiology and East Carolina Diabetes and Obesity institute, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Victoria Diaz
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas San Antonio, San Antonio, Texas, USA
| | | | - Rachel Foguth
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Shelley N. Jackson
- National Institute on Drug Abuse, Intramural Research Program, Translational Analytical Core, Baltimore, Maryland, USA
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Jeffrey B. Eells
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, North Carolina, USA
| | - Jessica M. Ellis
- Department of Physiology and East Carolina Diabetes and Obesity institute, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
15
|
Moiseenok AG, Kanunnikova NP. Brain CoA and Acetyl CoA Metabolism in Mechanisms of Neurodegeneration. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:466-480. [PMID: 37080933 DOI: 10.1134/s000629792304003x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The processes of biotransformation of pantothenic acid (Pan) in the biosynthesis and hydrolysis of CoA, key role of pantothenate kinase (PANK) and CoA synthetase (CoASY) in the formation of the priority mitochondrial pool of CoA, with a high metabolic turnover of the coenzyme and limited transport of Pan across the blood-brain barrier are considered. The system of acetyl-CoA, a secondary messenger, which is the main substrate of acetylation processes including formation of N-acetyl aspartate and acetylcholine, post-translational modification of histones, predetermines protection of the neurons against degenerative signals and cholinergic neurotransmission. Biochemical mechanisms of neurodegenerative syndromes in the cases of PANK and CoASY defects, and the possibility of correcting of CoA biosynthesis in the models with knockouts of these enzymes have been described. The data of a post-mortem study of the brains from the patients with Huntington's and Alzheimer's diseases are presented, proving Pan deficiency in the CNS, which is especially pronounced in the pathognomonic neurostructures. In the frontal cortex of the patients with Parkinson's disease, combined immunofluorescence of anti-CoA- and anti-tau protein was detected, reflecting CoAlation during dimerization of the tau protein and its redox sensitivity. Redox activity and antioxidant properties of the precursors of CoA biosynthesis were confirmed in vitro with synaptosomal membranes and mitochondria during modeling of aluminum neurotoxicity accompanied by the decrease in the level of CoA in CNS. The ability of CoA biosynthesis precursors to stabilize glutathione pool in neurostructures, in particular, in the hippocampus, is considered as a pathogenetic protection mechanism during exposure to neurotoxins, development of neuroinflammation and neurodegeneration, and justifies the combined use of Pan derivatives (for example, D-panthenol) and glutathione precursors (N-acetylcysteine). Taking into account the discovery of new functions of CoA (redox-dependent processes of CoAlation of proteins, possible association of oxidative stress and deficiency of Pan (CoA) in neurodegenerative pathology), it seems promising to study bioavailability and biotransformation of Pan derivatives, in particular of D-panthenol, 4'-phospho-pantetheine, its acylated derivatives, and compositions with redox pharmacological compounds, are promising for their potential use as etiopathogenetic agents.
Collapse
Affiliation(s)
- Andrey G Moiseenok
- Institute of Biochemistry of Biologically Active Substances, National Academy of Sciences of Belarus, Grodno, 230023, Belarus.
| | - Nina P Kanunnikova
- Institute of Biochemistry of Biologically Active Substances, National Academy of Sciences of Belarus, Grodno, 230023, Belarus
- Yanka Kupala's Grodno State University, Grodno, 230023, Belarus
| |
Collapse
|
16
|
Kannan M, Sil S, Oladapo A, Thangaraj A, Periyasamy P, Buch S. HIV-1 Tat-mediated microglial ferroptosis involves the miR-204–ACSL4 signaling axis. Redox Biol 2023; 62:102689. [PMID: 37023693 PMCID: PMC10106521 DOI: 10.1016/j.redox.2023.102689] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023] Open
Abstract
This study was focused on exploring the role of the HIV-1 Tat protein in mediating microglial ferroptosis. Exposure of mouse primary microglial cells (mPMs) to HIV-1 Tat protein resulted in induction of ferroptosis, which was characterized by increased expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4), in turn, leading to increased generation of oxidized phosphatidylethanolamine, elevated levels of lipid peroxidation, upregulated labile iron pool (LIP) and ferritin heavy chain-1 (FTH1), decreased glutathione peroxidase-4 and mitochondrial outer membrane rupture. Also, inhibition of ferroptosis by ferrostatin-1 (Fer-1) or deferoxamine (DFO) treatment suppressed ferroptosis-related changes in mPMs. Similarly, the knockdown of ACSL4 by gene silencing also inhibited ferroptosis induced by HIV-1 Tat. Furthermore, increased lipid peroxidation resulted in increased release of proinflammatory cytokines, such as TNFα, IL6, and IL1β and microglial activation. Pretreatment of mPMs with Fer-1 or DFO further blocked HIV-1 Tat-mediated microglial activation in vitro and reduced the expression and release of proinflammatory cytokines. We identified miR-204 as an upstream modulator of ACSL4, which was downregulated in mPMs exposed to HIV-1 Tat. Transient transfection of mPMs with miR-204 mimics reduced the expression of ACSL4 while inhibiting HIV-1 Tat-mediated ferroptosis and the release of proinflammatory cytokines. These in vitro findings were further validated in HIV-1 transgenic rats as well as HIV + ve human brain samples. Overall, this study underscores a novel mechanism(s) underlying HIV-1 Tat-mediated ferroptosis and microglial activation involving miR-204-ACSL4 signaling.
Collapse
|
17
|
Wang W, Li Z, Zhang X, Zhang J, Ru S. Bisphenol S Impairs Behaviors through Disturbing Endoplasmic Reticulum Function and Reducing Lipid Levels in the Brain of Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:582-594. [PMID: 36520979 DOI: 10.1021/acs.est.2c07828] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The number of neurotoxic pollutants is increasing, but their mechanism of action is unclear. Here, zebrafish were exposed to 0, 1, 10, and 100 μg/L bisphenol S (BPS) for different durations beginning at 2 h postfertilization (hpf) to explore the neurotoxic mechanisms of BPS. Zebrafish larvae exposed to BPS displayed abnormal neurobehaviors. At 48 and 120 hpf, BPS inhibited yolk lipid consumption and reduced the lipid distribution in the zebrafish brain. Moreover, BPS downregulated the mRNA levels of genes involved in fatty acid elongation in the endoplasmic reticulum (ER) and activated ER stress pathways at 48 and 120 hpf, and KEGG analysis after RNA-seq showed that the protein processing pathway in the ER was significantly enriched after BPS exposure. Exposure to ER toxicants (thapsigargin and tunicamycin), two positive controls, induced neurotoxic effects on zebrafish embryos and larvae similar to those of BPS exposure. These data suggested that BPS and ER toxicants disturbed ER function and reduced brain lipid levels. Continued exposure to BPS into adulthood not only inhibited brain fatty acid elongation and ER function but also caused abnormal swelling of the ER in zebrafish. Our data provide new insights into the neurotoxic mechanism of BPS.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
18
|
Dong H, Zhong W, Zhang W, Hao L, Guo W, Yue R, Sun X, Sun Z, Bataller R, Zhou Z. Loss of long-chain acyl-CoA synthetase 1 promotes hepatocyte death in alcohol-induced steatohepatitis. Metabolism 2023; 138:155334. [PMID: 36349655 DOI: 10.1016/j.metabol.2022.155334] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Alcohol consumption has been shown to disrupt hepatic lipid homeostasis. Long-chain acyl-CoA synthetase 1 (ACSL1) critically regulates hepatic fatty acid metabolism and lipid homeostasis by channeling fatty acids to lipid metabolic pathways. However, it remains unclear how ACSL1 contributes to the development of alcohol-associated liver disease (ALD). METHODS We performed chronic alcohol feeding animal studies with hepatocyte-specific ACSL1 knockout (ACSL1Δhep) mice, hepatocyte-specific STAT5 knockout (STAT5Δhep) mice, and ACSL1Δhep based-STAT5B overexpression (Stat5b-OE) mice. Cell studies were conducted to define the causal role of ACSL1 deficiency in the pathogenesis of alcohol-induced liver injury. The clinical relevance of the STAT5-ACSL1 pathway was examined using liver tissues from patients with alcoholic hepatitis (AH) and normal subjects (Normal). RESULTS We found that chronic alcohol consumption reduced hepatic ACSL1 expression in AH patients and ALD mice. Hepatocyte-specific ACSL1 deletion exacerbated alcohol-induced liver injury by increasing free fatty acids (FFA) accumulation and cell death. Cell studies revealed that FFA elicited the translocation of BAX and p-MLKL to the lysosomal membrane, resulting in lysosomal membrane permeabilization (LMP) and thereby initiating lysosomal-mediated cell death pathway. Furthermore, we identified that the signal transducer and activator of transcription 5 (STAT5) is a novel transcriptional regulator of ACSL1. Deletion of STAT5 exacerbated alcohol-induced liver injury in association with downregulation of ACSL1, and reactivation of ACSL1 by STAT5 overexpression effectively ameliorated alcohol-induced liver injury. In addition, ACSL1 expression was positively correlated with STAT5 and negatively correlated with cell death was also validated in the liver of AH patients. CONCLUSIONS ACSL1 deficiency due to STAT5 inactivation critically mediates alcohol-induced lipotoxicity and cell death in the development of ALD. These findings provide insights into alcohol-induced liver injury.
Collapse
Affiliation(s)
- Haibo Dong
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA; Department of Nutrition, the University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Wenliang Zhang
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Liuyi Hao
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Wei Guo
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Ruichao Yue
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Xinguo Sun
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ramon Bataller
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA; Department of Nutrition, the University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
19
|
Shen Q, Otoki Y, Sobel RA, Nagra RM, Taha AY. Evidence of increased sequestration of pro-resolving lipid mediators within brain esterified lipid pools of multiple sclerosis patients. Mult Scler Relat Disord 2022; 68:104236. [PMID: 36308971 DOI: 10.1016/j.msard.2022.104236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Unresolved inflammation in multiple sclerosis (MS) is associated with progressive demyelination and symptom worsening. In the brain, both inflammation and resolution pathways are mediated by free lipid mediators (i.e., oxylipins) that can be derived from the enzymatic hydrolysis of esterified oxylipins . It is not known whether disturbances in the turnover of free lipid mediators from esterified pools exist in postmortem brain of MS patients. We hypothesized that resolution pathways are impaired in MS patients because of disturbances in the turnover of free pro-resolving lipid mediators from esterified lipids. The objective was to characterize free and esterified oxylipins in postmortem prefrontal cortex of MS and unaffected control participants. METHODS Oxylipins in free, neutral lipid and phospholipid pools were extracted from prefrontal cortex of 10 MS participants and 5 unaffected controls, separated by solid phase extraction columns, and quantified by ultra-high-pressure liquid chromatography-tandem mass spectrometry. Significant differences between the control and MS groups were determined by an unpaired t-test with Benjamini and Hochberg False Discovery Rate correction (10%) applied to oxylipins within each lipid pool. RESULTS The concentration of 7 esterified pro-resolving fatty acid epoxides within neutral lipids were significantly higher by 126%-285% in postmortem prefrontal cortex of MS compared to control participants. The concentration of esterified linoleic acid-derived 9(10)-epoxy-octadecenoic acid, a pro-inflammatory epoxide, was higher by 206% in MS compared to controls. No significant changes were observed in free or phospholipid-bound oxylipins. CONCLUSION In MS, several pro-resolving lipid mediators are trapped within prefrontal cortex neutral lipids, potentially limiting their supply and availability in the free bioactive form. This may explain why inflammation resolution is impaired in MS patients.
Collapse
Affiliation(s)
- Qing Shen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Raymond A Sobel
- Veterans Affairs Health Care System, Palo Alto, CA 94304, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rashed M Nagra
- Neurology Research, West Los Angeles VA Medical Center, Los Angeles, CA 90073, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Center for Neuroscience, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
20
|
Poudyal NR, Paul KS. Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms. Front Cell Infect Microbiol 2022; 12:949409. [PMID: 36478671 PMCID: PMC9719944 DOI: 10.3389/fcimb.2022.949409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei spp. causes African Sleeping Sickness in humans and nagana, a wasting disease, in cattle. As T. brucei goes through its life cycle in its mammalian and insect vector hosts, it is exposed to distinct environments that differ in their nutrient resources. One such nutrient resource is fatty acids, which T. brucei uses to build complex lipids or as a potential carbon source for oxidative metabolism. Of note, fatty acids are the membrane anchoring moiety of the glycosylphosphatidylinositol (GPI)-anchors of the major surface proteins, Variant Surface Glycoprotein (VSG) and the Procyclins, which are implicated in parasite survival in the host. While T. brucei can synthesize fatty acids de novo, it also readily acquires fatty acids from its surroundings. The relative contribution of parasite-derived vs. host-derived fatty acids to T. brucei growth and survival is not known, nor have the molecular mechanisms of fatty acid uptake been defined. To facilitate experimental inquiry into these important aspects of T. brucei biology, we addressed two questions in this review: (1) What is known about the availability of fatty acids in different host tissues where T. brucei can live? (2) What is known about the molecular mechanisms mediating fatty acid uptake in T. brucei? Finally, based on existing biochemical and genomic data, we suggest a model for T. brucei fatty acid uptake that proposes two major routes of fatty acid uptake: diffusion across membranes followed by intracellular trapping, and endocytosis of host lipoproteins.
Collapse
Affiliation(s)
- Nava Raj Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| |
Collapse
|
21
|
Ramsden CE, Keyes GS, Calzada E, Horowitz MS, Zamora D, Jahanipour J, Sedlock A, Indig FE, Moaddel R, Kapogiannis D, Maric D. Lipid Peroxidation Induced ApoE Receptor-Ligand Disruption as a Unifying Hypothesis Underlying Sporadic Alzheimer's Disease in Humans. J Alzheimers Dis 2022; 87:1251-1290. [PMID: 35466940 DOI: 10.3233/jad-220071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sporadic Alzheimer's disease (sAD) lacks a unifying hypothesis that can account for the lipid peroxidation observed early in the disease, enrichment of ApoE in the core of neuritic plaques, hallmark plaques and tangles, and selective vulnerability of entorhinal-hippocampal structures. OBJECTIVE We hypothesized that 1) high expression of ApoER2 (receptor for ApoE and Reelin) helps explain this anatomical vulnerability; 2) lipid peroxidation of ApoE and ApoER2 contributes to sAD pathogenesis, by disrupting neuronal ApoE delivery and Reelin-ApoER2-Dab1 signaling cascades. METHODS In vitro biochemical experiments; Single-marker and multiplex fluorescence-immunohistochemistry (IHC) in postmortem specimens from 26 individuals who died cognitively normal, with mild cognitive impairment or with sAD. RESULTS ApoE and ApoER2 peptides and proteins were susceptible to attack by reactive lipid aldehydes, generating lipid-protein adducts and crosslinked ApoE-ApoER2 complexes. Using in situ hybridization alongside IHC, we observed that: 1) ApoER2 is strongly expressed in terminal zones of the entorhinal-hippocampal 'perforant path' projections that underlie memory; 2) ApoE, lipid aldehyde-modified ApoE, Reelin, ApoER2, and the downstream Reelin-ApoER2 cascade components Dab1 and Thr19-phosphorylated PSD95 accumulated in the vicinity of neuritic plaques in perforant path terminal zones in sAD cases; 3) several ApoE/Reelin-ApoER2-Dab1 pathway markers were higher in sAD cases and positively correlated with histological progression and cognitive deficits. CONCLUSION Results demonstrate derangements in multiple ApoE/Reelin-ApoER2-Dab1 axis components in perforant path terminal zones in sAD and provide proof-of-concept that ApoE and ApoER2 are vulnerable to aldehyde-induced adduction and crosslinking. Findings provide the foundation for a unifying hypothesis implicating lipid peroxidation of ApoE and ApoE receptors in sAD.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA.,Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Gregory S Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Elizabeth Calzada
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Mark S Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jahandar Jahanipour
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Fred E Indig
- Confocal Imaging Facility, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Human Neuroscience Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| |
Collapse
|
22
|
Fernandez RF, Pereyra AS, Diaz V, Wilson ES, Litwa KA, Martínez-Gardeazabal J, Jackson SN, Brenna JT, Hermann BP, Eells JB, Ellis JM. Acyl-CoA synthetase 6 is required for brain docosahexaenoic acid retention and neuroprotection during aging. JCI Insight 2021; 6:e144351. [PMID: 34100386 PMCID: PMC8262339 DOI: 10.1172/jci.insight.144351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
The omega-3 fatty acid docosahexaenoic acid (DHA) inversely relates to neurological impairments with aging; however, limited nondietary models manipulating brain DHA have hindered a direct linkage. We discovered that loss of long-chain acyl-CoA synthetase 6 in mice (Acsl6–/–) depletes brain membrane phospholipid DHA levels, independent of diet. Here, Acsl6–/– brains contained lower DHA compared with controls across the life span. The loss of DHA- and increased arachidonate-enriched phospholipids were visualized by MALDI imaging predominantly in neuron-rich regions where single-molecule RNA in situ hybridization localized Acsl6 to neurons. ACSL6 is also astrocytic; however, we found that astrocyte-specific ACSL6 depletion did not alter membrane DHA because astrocytes express a non–DHA-preferring ACSL6 variant. Across the life span, Acsl6–/– mice exhibited hyperlocomotion, impairments in working spatial memory, and increased cholesterol biosynthesis genes. Aging caused Acsl6–/– brains to decrease the expression of membrane, bioenergetic, ribosomal, and synaptic genes and increase the expression of immune response genes. With age, the Acsl6–/– cerebellum became inflamed and gliotic. Together, our findings suggest that ACSL6 promotes membrane DHA enrichment in neurons, but not in astrocytes, and is important for neuronal DHA levels across the life span. The loss of ACSL6 impacts motor function, memory, and age-related neuroinflammation, reflecting the importance of neuronal ACSL6-mediated lipid metabolism across the life span.
Collapse
Affiliation(s)
- Regina F Fernandez
- Department of Physiology, Brody School of Medicine, and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Andrea S Pereyra
- Department of Physiology, Brody School of Medicine, and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Victoria Diaz
- Department of Biology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Emily S Wilson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Karen A Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | | | - Shelley N Jackson
- Structural Biology Core, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, Maryland, USA
| | - J Thomas Brenna
- Departments of Pediatrics, Chemistry, and Nutrition and.,Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Brian P Hermann
- Department of Biology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Jeffrey B Eells
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Jessica M Ellis
- Department of Physiology, Brody School of Medicine, and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|