1
|
Wei H, Chen J, Zhang X, Lu Z, Lian B, Liu G, Chen Y, Zhong F, Yu C, Zhang J. Comprehensive analysis of annexin gene family and its expression in response to branching architecture and salt stress in crape myrtle. BMC PLANT BIOLOGY 2024; 24:78. [PMID: 38287275 PMCID: PMC10826223 DOI: 10.1186/s12870-024-04748-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Annexin (ANN) is calcium (Ca2+)-dependent and phospholipid binding protein family, which is involved in plant growth and development and response to various stresses. However, little known about ANN genes were identified from crape myrtle, an ornamental horticultural plant widely cultivated in the world. RESULTS Here, 9 LiANN genes were identified from Lagerstroemia indica, and their characterizations and functions were investigated in L. indica for the first time. The LiANN genes were divided into 2 subfamilies. The gene structure, chromosomal location, and collinearity relationship were also explored. In addition, the GO annotation analysis of these LiANNs indicated that they are enriched in molecular functions, cellular components, and biological processes. Moreover, transcription factors (TFs) prediction analysis revealed that bHLH, MYB, NAC, and other TFs can interact with the LiANN promoters. Interestingly, the LiANN2/4/6-9 were demonstrated to play critical roles in the branching architecture of crape myrtle. Furthermore, the LiANN2/6/8/9 were differentially expressed under salt treatment, and a series of TFs regulating LiANN2/6/8/9 expression were predicted to play essential roles in salt resistance. CONCLUSIONS These results shed light on profile and function of the LiANN gene family, and lay a foundation for further studies of the LiANN genes.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Zixuan Lu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Bilin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China.
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China.
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| |
Collapse
|
2
|
Kim H, Woo OG, Kim JB, Yoon SY, Kim JS, Sul WJ, Hwang JY, Lee JH. Flavobacterium sp. strain GJW24 ameliorates drought resistance in Arabidopsis and Brassica. FRONTIERS IN PLANT SCIENCE 2023; 14:1257137. [PMID: 37900757 PMCID: PMC10613084 DOI: 10.3389/fpls.2023.1257137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 10/31/2023]
Abstract
Candidate strains that contribute to drought resistance in plants have been previously screened using approximately 500 plant growth-promoting rhizobacteria (PGPR) obtained from Gotjawal, South Korea, to further understand PGPR associated with plant drought tolerance. In this study, a selected PGPR candidate, Flavobacterium sp. strain GJW24, was employed to enhance plant drought tolerance. GJW24 application to Arabidopsis increased its survival rate under drought stress and enhanced stomatal closure. Furthermore, GJW24 promoted Arabidopsis survival under salt stress, which is highly associated with drought stress. GJW24 ameliorated the drought/salt tolerance of Brassica as well as Arabidopsis, indicating that the drought-resistance characteristics of GJW24 could be applied to various plant species. Transcriptome sequencing revealed that GJW24 upregulated a large portion of drought- and drought-related stress-inducible genes in Arabidopsis. Moreover, Gene Ontology analysis revealed that GJW24-upregulated genes were highly related to the categories involved in root system architecture and development, which are connected to amelioration of plant drought resistance. The hyper-induction of many drought/salt-responsive genes by GJW24 in Arabidopsis and Brassica demonstrated that the drought/salt stress tolerance conferred by GJW24 might be achieved, at least in part, through regulating the expression of the corresponding genes. This study suggests that GJW24 can be utilized as a microbial agent to offset the detrimental effects of drought stress in plants.
Collapse
Affiliation(s)
- Hani Kim
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - Og-Geum Woo
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - Ji Bin Kim
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - So-Young Yoon
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - Jong-Shik Kim
- Marine Industry Research Institute for East Sea Rim, Uljin, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Jee-Yeon Hwang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
3
|
Moinoddini F, Mirshamsi Kakhki A, Bagheri A, Jalilian A. Genome-wide analysis of annexin gene family in Schrenkiella parvula and Eutrema salsugineum suggests their roles in salt stress response. PLoS One 2023; 18:e0280246. [PMID: 36652493 PMCID: PMC9847905 DOI: 10.1371/journal.pone.0280246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/24/2022] [Indexed: 01/19/2023] Open
Abstract
Annexins (Anns) play an important role in plant development, growth and responses to various stresses. Although Ann genes have been characterized in some plants, their role in adaptation mechanisms and tolerance to environmental stresses have not been studied in extremophile plants. In this study, Ann genes in Schrenkiella parvula and Eutrema salsugineum were identified using a genome-wide method and phylogenetic relationships, subcellular distribution, gene structures, conserved residues and motifs and also promoter prediction have been studied through bioinformatics analysis. We identified ten and eight encoding putative Ann genes in S. parvula and E. salsugineum genome respectively, which were divided into six subfamilies according to phylogenetic relationships. By observing conservation in gene structures and protein motifs we found that the majority of Ann members in two extremophile plants are similar. Furthermore, promoter analysis revealed a greater number of GATA, Dof, bHLH and NAC transcription factor binding sites, as well as ABRE, ABRE3a, ABRE4, MYB and Myc cis-acting elements in compare to Arabidopsis thaliana. To gain additional insight into the putative roles of candidate Ann genes, the expression of SpAnn1, SpAnn2 and SpAnn6 in S. parvula was studied in response to salt stress, which indicated that their expression level in shoot increased. Similarly, salt stress induced expression of EsAnn1, 5 and 7, in roots and EsAnn1, 2 and 5 in leaves of E. salsugineum. Our comparative analysis implies that both halophytes have different regulatory mechanisms compared to A. thaliana and suggest SpAnn2 gene play important roles in mediating salt stress.
Collapse
Affiliation(s)
- Fatemeh Moinoddini
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amin Mirshamsi Kakhki
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Jalilian
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Wu X, Wang Y, Bian Y, Ren Y, Xu X, Zhou F, Ding H. A critical review on plant annexin: Structure, function, and mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:81-89. [PMID: 36108355 DOI: 10.1016/j.plaphy.2022.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Plant annexins are evolutionary conserved protein family widely exist in almost all plant species, characterized by a shorter N-terminal region and four conservative annexin repeats. Plant annexins have Ca2+ channel-regulating activity and peroxidase as well as ATPase/GTPase activities, which give annexins functional specificity. They are widely involved in regulating diverse aspects of biochemical and cellular processes, plant growth and development, and responses to biotic and abiotic environmental stresses. Though many studies have reviewed the function of annexins, great progress have been made in the study of plant annexins recently. In this review, we outline the current understanding of basic properties of plant annexins and summarize the emerging advances in understanding the functional roles of annexins in plants and highlight the regulation mechanisms of annexin protein in response to stress especially to salt and cold stress. The interesting questions related to plant annexin that remain to be further elucidated are also discussed.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yan Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuhao Bian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yan Ren
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoying Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Fucai Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Shahzad B, Rehman A, Tanveer M, Wang L, Park SK, Ali A. Salt Stress in Brassica: Effects, Tolerance Mechanisms, and Management. JOURNAL OF PLANT GROWTH REGULATION 2022. [PMID: 0 DOI: 10.1007/s00344-021-10338-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
6
|
Singh S, Singh A. A prescient evolutionary model for genesis, duplication and differentiation of MIR160 homologs in Brassicaceae. Mol Genet Genomics 2021; 296:985-1003. [PMID: 34052911 DOI: 10.1007/s00438-021-01797-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
MicroRNA160 is a class of nitrogen-starvation responsive genes which governs establishment of root system architecture by down-regulating AUXIN RESPONSE FACTOR genes (ARF10, ARF16 and ARF17) in plants. The high copy number of MIR160 variants discovered by us from land plants, especially polyploid crop Brassicas, posed questions regarding genesis, duplication, evolution and function. Absence of studies on impact of whole genome and segmental duplication on retention and evolution of MIR160 homologs in descendent plant lineages prompted us to undertake the current study. Herein, we describe ancestry and fate of MIR160 homologs in Brassicaceae in context of polyploidy driven genome re-organization, copy number and differentiation. Paralogy amongst Brassicaceae MIR160a, MIR160b and MIR160c was inferred using phylogenetic analysis of 468 MIR160 homologs from land plants. The evolutionarily distinct MIR160a was found to represent ancestral form and progenitor of MIR160b and MIR160c. Chronology of evolutionary events resulting in origin and diversification of genomic loci containing MIR160 homologs was delineated using derivatives of comparative synteny. A prescient model for causality of segmental duplications in establishment of paralogy in Brassicaceae MIR160, with whole genome duplication accentuating the copy number increase, is being posited in which post-segmental duplication events viz. differential gene fractionation, gene duplications and inversions are shown to drive divergence of chromosome segments. While mutations caused the diversification of MIR160a, MIR160b and MIR160c, duplicated segments containing these diversified genes suffered gene rearrangements via gene loss, duplications and inversions. Yet the topology of phylogenetic and phenetic trees were found congruent suggesting similar evolutionary trajectory. Over 80% of Brassicaceae genomes and subgenomes showed a preferential retention of single copy each of MIR160a, MIR160b and MIR160c suggesting functional relevance. Thus, our study provides a blue-print for reconstructing ancestry and phylogeny of MIRNA gene families at genomics level and analyzing the impact of polyploidy on organismal complexity. Such studies are critical for understanding the molecular basis of agronomic traits and deploying appropriate candidates for crop improvement.
Collapse
Affiliation(s)
- Swati Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India.,Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot no. 32-34, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India.
| |
Collapse
|
7
|
Das Laha S, Dutta S, Schäffner AR, Das M. Gene duplication and stress genomics in Brassicas: Current understanding and future prospects. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153293. [PMID: 33181457 DOI: 10.1016/j.jplph.2020.153293] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Polyploidy or whole genome duplication (WGD) is an evolutionary phenomenon that happened in all angiosperms multiple times over millions of years. Extensive studies on the model plant Arabidopsis thaliana genome have revealed that it has undergone five rounds of WGDs followed, in the Brassicaceae tribe, by a characteristic whole genome triplication (WGT). In addition, small-scale events such as tandem or segmental duplications and retrotransposition also enable plants to reshape their genomes. Over the decades, extensive research efforts have been undertaken to understand the evolutionary significance of polyploidy. On the other hand, much less attention has been paid to understanding the impact of gene duplication on the diversification of important stress response genes. The main objective of this review is to discuss key aspects of gene and genome duplications with a focus on genes primarily regulated by osmotic stresses. The focal family is the Brassicaceae, since it (i) underwent multiple rounds of WGDs plus WGTs, (ii) hosts many economically important crops and wild relatives that are tolerant to a range of stresses, and (iii) comprises many species that have already been sequenced. Diverse molecular mechanisms that lead to structural and regulatory alterations of duplicated genes are discussed. Examples are drawn from recent literature to elucidate expanded, stress responsive gene families identified from different Brassica crops. A combined bioinformatic and transcriptomic method has been proposed and tested on a known stress-responsive gene pair to prove that stress-responsive duplicated allelic variants can be identified by this method. Finally, future prospects for engineering these genes into crops to enhance stress tolerance are discussed, and important resources for Brassica genome research are provided.
Collapse
Affiliation(s)
- Shayani Das Laha
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Smritikana Dutta
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Anton R Schäffner
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, München, Germany
| | - Malay Das
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
8
|
Comprehensive analyses of the annexin (ANN) gene family in Brassica rapa, Brassica oleracea and Brassica napus reveals their roles in stress response. Sci Rep 2020; 10:4295. [PMID: 32152363 PMCID: PMC7062692 DOI: 10.1038/s41598-020-59953-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/13/2019] [Indexed: 12/02/2022] Open
Abstract
Annexins (ANN) are a multigene, evolutionarily conserved family of calcium-dependent and phospholipid-binding proteins that play important roles in plant development and stress resistance. However, a systematic comprehensive analysis of ANN genes of Brassicaceae species (Brassica rapa, Brassica oleracea, and Brassica napus) has not yet been reported. In this study, we identified 13, 12, and 26 ANN genes in B. rapa, B. oleracea, and B. napus, respectively. About half of these genes were clustered on various chromosomes. Molecular evolutionary analysis showed that the ANN genes were highly conserved in Brassicaceae species. Transcriptome analysis showed that different group ANN members exhibited varied expression patterns in different tissues and under different (abiotic stress and hormones) treatments. Meanwhile, same group members from Arabidopsis thaliana, B. rapa, B. oleracea, and B. napus demonstrated conserved expression patterns in different tissues. The weighted gene coexpression network analysis (WGCNA) showed that BnaANN genes were induced by methyl jasmonate (MeJA) treatment and played important roles in jasmonate (JA) signaling and multiple stress response in B. napus.
Collapse
|
9
|
Mir ZA, Ali S, Shivaraj SM, Bhat JA, Singh A, Yadav P, Rawat S, Paplao PK, Grover A. Genome-wide identification and characterization of Chitinase gene family in Brassica juncea and Camelina sativa in response to Alternaria brassicae. Genomics 2019; 112:749-763. [PMID: 31095998 DOI: 10.1016/j.ygeno.2019.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
Chitinases belong to the group of Pathogenesis-related (PR) proteins that provides protection against fungal pathogens. This study presents the, genome-wide identification and characterization of chitinase gene family in two important oilseed crops B. juncea and C. sativa belonging to family Brassicaceae. We have identified 47 and 79 chitinase genes in the genomes of B. juncea and C. sativa, respectively. Phylogenetic analysis of chitinases in both the species revealed four distinct sub-groups, representing different classes of chitinases (I-V). Microscopic and biochemical study reveals the role of reactive oxygen species (ROS) scavenging enzymes in disease resistance of B. juncea and C. sativa. Furthermore, qRT-PCR analysis showed that expression of chitinases in both B. juncea and C. sativa was significantly induced after Alternaria brassicae infection. However, the fold change in chitinase gene expression was considerably higher in C. sativa compared to B. juncea, which further proves their role in C. sativa disease resistance to A. brassicae. This study provides comprehensive analysis on chitinase gene family in B. juncea and C. sativa and in future may serve as a potential candidate for improving disease resistance in B. juncea through transgenic approach.
Collapse
Affiliation(s)
- Zahoor Ahmad Mir
- National Research Centre on Plant Biotechnology, NRCPB, New Delhi, India; Amity Institute of Biotechnology, Amity University Noida, India
| | - Sajad Ali
- National Research Centre on Plant Biotechnology, NRCPB, New Delhi, India; Centre of Research for Development, University of Kashmir, Srinagar, India
| | | | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity University Noida, India
| | - Prashant Yadav
- National Research Centre on Plant Biotechnology, NRCPB, New Delhi, India
| | - Sandhya Rawat
- National Research Centre on Plant Biotechnology, NRCPB, New Delhi, India
| | | | - Anita Grover
- National Research Centre on Plant Biotechnology, NRCPB, New Delhi, India.
| |
Collapse
|
10
|
Bai L, Sun HB, Liang RT, Cai BY. iTRAQ Proteomic Analysis of Continuously Cropped Soybean Root Inoculated With Funneliformis mosseae. Front Microbiol 2019; 10:61. [PMID: 30761109 PMCID: PMC6362899 DOI: 10.3389/fmicb.2019.00061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/15/2019] [Indexed: 11/15/2022] Open
Abstract
Soybean (Glycine max) is susceptible to root rot when subjected to continuous cropping, and this disease can seriously diminish the crop yield. Proteomics analyses can show the difference of protein expression in different treatment samples. Herein, isobaric tag for relative and absolute quantitation (iTRAQ) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were employed for proteomic analysis of continuously cropped soybean inoculated with the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae. The AMF can reduce the incidence of root rot and increase plant height, biomass index in 1, 2, and 4 year of continuous cropping. Differential expression of proteins in soybean roots was determined following 1 year of continuous cropping. A total of 131 differentially expressed proteins (DEPs) were identified in F. mosseae-treated samples, of which 49 and 82 were up- and down-regulated, respectively. The DEPs were annotated with 117 gene ontology (GO) terms, with 48 involved in biological processes, 31 linked to molecular functions, and 39 associated with cell components. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis mapped the DEPs to 113 mainly metabolic pathways including oxidative phosphorylation, glycolysis, and amino acid metabolism. Expression of glucan 1,3-beta-glucosidase, chalcone isomerase, calcium-dependent phospholipid binding and other defense-related proteins was up-regulated by F. mosseae, suggesting inoculation promotes the growth and development of soybean and increases disease resistance. The findings provide an experimental basis for further research on the molecular mechanisms of AMF in resolving problems associated with continuous soybean cropping.
Collapse
Affiliation(s)
- Li Bai
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, China.,Department of Food and Environmental Engineering, East University of Heilongjiang, Harbin, China
| | - Hai-Bing Sun
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, China
| | - Rui-Ting Liang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, China
| | - Bai-Yan Cai
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, China.,Department of Food and Environmental Engineering, East University of Heilongjiang, Harbin, China
| |
Collapse
|
11
|
Ahmed I, Yadav D, Shukla P, Kirti PB. Heterologous expression of Brassica juncea annexin, AnnBj2 confers salt tolerance and ABA insensitivity in transgenic tobacco seedlings. Funct Integr Genomics 2018; 18:569-579. [PMID: 29744759 DOI: 10.1007/s10142-018-0614-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/05/2023]
Abstract
Annexins are multifunctional proteins with roles in plant development and alleviation of stress tolerance. In the present communication, we report on the effect of heterologous expression of Brassica juncea annexin, AnnBj2 in tobacco. Transgenic tobacco plants expressing AnnBj2 exhibited salt-tolerant and abscisic acid (ABA)-insensitive phenotype at the seedling stage. Biochemical analysis showed that AnnBj2 transgenic plants retained higher chlorophyll and proline content, and lower malondialdehyde (MDA) levels compared to the null line under salt stress. They exhibited better water retention capacity compared to the null segregant (NS) line. AnnBj2 overexpression altered the transcript levels of several stress-related marker genes involved in reactive oxygen species (ROS) scavenging and abiotic stress signaling. Taken together, these results suggest a positive role for AnnBj2 in salt stress response upon heterologous expression in tobacco.
Collapse
Affiliation(s)
- Israr Ahmed
- Lab F-43, Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| | - Deepanker Yadav
- Lab F-43, Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 7505101, Rishon LeZion, Israel
| | - Pawan Shukla
- Lab F-43, Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
- Central Sericultural Research and Training Institute, Central Silk Board, NH-1A, Gallandar, Pampore, Jammu and Kashmir, 192 121, India
| | - P B Kirti
- Lab F-43, Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
12
|
Singh S, Das S, Geeta R. A segmental duplication in the common ancestor of Brassicaceae is responsible for the origin of the paralogs KCS6-KCS5, which are not shared with other angiosperms. Mol Phylogenet Evol 2018; 126:331-345. [PMID: 29698723 DOI: 10.1016/j.ympev.2018.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022]
Abstract
Novel morphological structures allowed adaptation to dry conditions in early land plants. The cuticle, one such novelty, plays diverse roles in tolerance to abiotic and biotic stresses and plant development. Cuticular waxes represent a major constituent of the cuticle and are comprised of an assortment of chemicals that include, among others, very long chain fatty acids (VLCFAs). Members of the β-ketoacyl coenzyme A synthases (KCS) gene family code for enzymes that are essential for fatty acid biosynthesis. The gene KCS6 (CUT1) is known to be a key player in the production of VLCFA precursors essential for the synthesis of cuticular waxes in the model plant Arabidopsis thaliana (Brassicaceae). Despite its functional importance, relatively little is known about the evolutionary history of KCS6 or its paralog KCS5 in Brassicaceae or beyond. This lacuna becomes important when we extrapolate understanding of mechanisms gained from the model plant to its containing clades Brassicaceae, flowering plants, or beyond. The Brassicaceae, with several sequenced genomes and a known history of paleoploidy, mesopolyploidy and neopolyploidy, offer a system in which to study the evolution and diversification of the KCS6-KCS5 paralogy. Our phylogenetic analyses across green plants, combined with comparative genomic, microsynteny and evolutionary rates analyses across nine genomes of Brassicaceae, reveal that (1) the KCS6-KCS5 paralogy arose as the result of a large segmental duplication in the ancestral Brassicaceae, (2) the KCS6-KCS5 lineage is represented by a single copy in other flowering plant lineages, (3) the duplicated segments undergo different degrees of retention and loss, and (4) most of the genes in the KCS6 and KCS5 gene blocks (including KCS6 and KCS5 themselves) are under purifying selection. The last also true for most members of the KCS gene family in Brassicaceae, except for KCS8, KCS9 and KCS17, which are under positive selection and may be undergoing functional evolution, meriting further investigation. Overall, our results clearly establish that the ancestral KCS6/5 gene duplicated in the Brassicaceae lineage. It is possible that any specialized functions of KCS5 found in Brassicaceae are either part of a set of KCS6/5 gene functions in the rest of the flowering plants, or unique to Brassicaceae.
Collapse
Affiliation(s)
- Swati Singh
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi 110007, India
| | - R Geeta
- Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
13
|
Ahmed I, Yadav D, Shukla P, Vineeth TV, Sharma PC, Kirti PB. Constitutive expression of Brassica juncea annexin, AnnBj2 confers salt tolerance and glucose and ABA insensitivity in mustard transgenic plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:12-28. [PMID: 29223333 DOI: 10.1016/j.plantsci.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/09/2017] [Accepted: 09/16/2017] [Indexed: 05/20/2023]
Abstract
Annexins belong to a plasma membrane binding (in a calcium dependent manner), multi-gene family of proteins, which play ameliorating roles in biotic and abiotic stresses. The expression of annexin AnnBj2 of Indian mustard is tissue specific with higher expression in roots and under treatments with sodium chloride and abscisic acid (ABA) at seedling stage. The effect of constitutive expression of AnnBj2 in mustard was analyzed in detail. AnnBj2 OE (over expression) plants exhibited insensitivity to ABA, glucose and sodium chloride. The insensitivity/tolerance of the transgenic plants was associated with enhanced total chlorophylls, relative water content, proline, calcium and potassium with reduced thiobarbituric acid reactive substances and sodium ion accumulation. The altered ABA insensitivity of AnnBj2 OE lines is linked to downregulation of ABI4 and ABI5 transcription factors and upregulation of ABA catabolic gene CYP707A2. Furthermore, we found that overexpression of AnnBj2 upregulated the expression of ABA-dependent RAB18 and ABA-independent DREB2B stress marker genes suggesting that the tolerance phenotype exhibited by AnnBj2 OE lines is probably controlled by both ABA-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Israr Ahmed
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| | - Deepanker Yadav
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Pawan Shukla
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - T V Vineeth
- Central Soil Salinity Research Institute, Karnal, Haryana, India
| | - P C Sharma
- Central Soil Salinity Research Institute, Karnal, Haryana, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
14
|
Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco. PLANTS 2016; 5:plants5020018. [PMID: 27135239 PMCID: PMC4931398 DOI: 10.3390/plants5020018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/11/2023]
Abstract
Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in plants. To achieve this, we need a deeper understanding of the plant gene regulatory mechanisms involved in stress responses. Understanding the roles of different members of plant gene families involved in different stress responses, would be a step in this direction. Arabidopsis, which served as a model system for the plant research, is also the most suitable system for the functional characterization of plant gene families. Annexin family in Arabidopsis also is one gene family which has not been fully explored. Eight annexin genes have been reported in the genome of Arabidopsis thaliana. Expression studies of different Arabidopsis annexins revealed their differential regulation under various abiotic stress conditions. AnnAt8 (At5g12380), a member of this family has been shown to exhibit ~433 and ~175 fold increase in transcript levels under NaCl and dehydration stress respectively. To characterize Annexin8 (AnnAt8) further, we have generated transgenic Arabidopsis and tobacco plants constitutively expressing AnnAt8, which were evaluated under different abiotic stress conditions. AnnAt8 overexpressing transgenic plants exhibited higher seed germination rates, better plant growth, and higher chlorophyll retention when compared to wild type plants under abiotic stress treatments. Under stress conditions transgenic plants showed comparatively higher levels of proline and lower levels of malondialdehyde compared to the wild-type plants. Real-Time PCR analyses revealed that the expression of several stress-regulated genes was altered in AnnAt8 over-expressing transgenic tobacco plants, and the enhanced tolerance exhibited by the transgenic plants can be correlated with altered expressions of these stress-regulated genes. Our findings suggest a role for AnnAt8 in enhancing abiotic stress tolerance at different stages of plant growth and development.
Collapse
|