1
|
Xing H, Bai Y, Ding Q, Wang H, Gao G, Hu Z, Yu Y, Fan H, Meng X, Cui N. Transcriptomic analysis of regulating the growth and development of tomato seedlings by the crosstalk between JA and TOR signaling. PLANT CELL REPORTS 2025; 44:82. [PMID: 40126670 DOI: 10.1007/s00299-025-03476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 03/26/2025]
Abstract
KEY MESSAGE Transcription factors MYB, WRKY, bHLH, bZIP and NAC were identified as key candidate genes for JA and TOR regulation of tomato seedling growth and development. Jasmonic acid (JA) and Target of Rapamycin (TOR) signaling pathways interact to regulate plant growth, development, and stress responses. In this study, transcriptomic and weighted gene co-expression network analysis (WGCNA) were conducted on tomato wild-type (WT) and spr2 mutant lines treated with the TOR inhibitor RAP and activator MHY1485. We identified key roles of MAPK kinase and ethylene signaling in mediating JA-TOR interaction. Core transcription factors, including MYB, WRKY, bHLH, bZIP, and NAC, were highlighted as central regulators within the interaction between JA and TOR signaling network. These findings advance our understanding of how JA and TOR signaling coordinate plant growth and stress adaptation.
Collapse
Affiliation(s)
- Hongyun Xing
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yipeng Bai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qi Ding
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haoran Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Guorui Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziqiang Hu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Chen H, Shi Y, An L, Yang X, Liu J, Dai Z, Zhang Y, Li T, Ahammed GJ. Overexpression of SlWRKY6 enhances drought tolerance by strengthening antioxidant defense and stomatal closure via ABA signaling in Solanum lycopersicum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108855. [PMID: 38917736 DOI: 10.1016/j.plaphy.2024.108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Drought is a major handicap for plant growth and development. WRKY proteins comprise one of the largest families of plant transcription factors, playing important roles in plant growth and stress tolerance. In tomato (Solanum lycopersicum L.), different WRKY transcription factors differentially (positively or negatively) regulate drought tolerance, however, the role of SlWRKY6 in drought response and the associated molecular mechanisms of stress tolerance remain unclear. Here we report that SlWRKY6, a member of the WRKYII-b group, is involved in the functional aspects of drought resistance in tomato. Transcriptional activation assays show that SlWRKY6 is transcriptionally active in yeast cells, while the subcellular localization assay indicates that SlWRKY6 is localized in the nucleus. Overexpression of SlWRKY6 in tomato plants resulted in stronger antioxidant capacity and drought resistance as manifested by increased photosynthetic capacity and decreased reactive oxygen species accumulation, malondialdehyde content and relative electrolyte leakage in transgenic tomato plants compared with wild-type under drought stress. Moreover, increased abscisic acid (ABA) content and transcript abundance of ABA synthesis and signaling genes (NCED1, NCED4, PYL4, AREB1 and SnRK2.6) in the transgenic tomato plants indicated potential involvement of the ABA pathway in SlWRKY6-induced drought resistance in tomato plants. Inspection of 2-kb sequences upstream of the predicted binding sites in the promoter of SlNCED1/4 identified two copies of the core W-box (TTGACC/T) sequence in the promoter of SlNCED1/4, which correlates well with the expression of these genes in response to drought, further suggesting the involvement of ABA-dependent pathway in SlWRKY6-induced drought resistance. The study unveils a critical role of SlWRKY6, which can be useful to further reveal the drought tolerance mechanism and breeding of drought-resistant tomato varieties for sustainable vegetable production in the era of climate change.
Collapse
Affiliation(s)
- Haoting Chen
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yu Shi
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Lu An
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaohui Yang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jie Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zemin Dai
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yi Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
3
|
Liu W, Wang T, Liang X, Ye Q, Wang Y, Han J, Han D. MbWRKY53, a M. baccata WRKY Transcription Factor, Contributes to Cold and Drought Stress Tolerance in Transgenic Arabidopsis thaliana. Int J Mol Sci 2024; 25:7626. [PMID: 39062869 PMCID: PMC11276640 DOI: 10.3390/ijms25147626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Apple is an important horticultural crop, but various adverse environmental factors can threaten the quality and yield of its fruits. The ability of apples to resist stress mainly depends on the rootstock. Malus baccata (L.) Borkh. is a commonly used rootstock in Northeast China. In this study, it was used as the experimental material, and the target gene MbWRKY53 was screened through transcriptome analysis and Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR) after cold and drought treatment. Bioinformatics analysis revealed that this transcription factor (TF) belonged to the WRKY TF family, and its encoded protein was localized in the nucleus. RT-qPCR showed that the gene was more easily expressed in roots and young leaves and is more responsive to cold and drought stimuli. Functional validation in Arabidopsis thaliana confirmed that MbWRKY53 can enhance plant tolerance to cold and drought stress. Furthermore, by analyzing the expression levels of genes related to cold and drought stress in transgenic Arabidopsis lines, it was inferred that this gene can regulate the expression of stress-related genes through multiple pathways such as the CBF pathway, SOS pathway, Pro synthesis pathway, and ABA-dependent pathways, enhancing the adaptability of transgenic Arabidopsis to cold and drought environments.
Collapse
Affiliation(s)
- Wanda Liu
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150069, China (T.W.); (Y.W.); (J.H.)
| | - Tianhe Wang
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150069, China (T.W.); (Y.W.); (J.H.)
| | - Xiaoqi Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150038, China;
| | - Qinglei Ye
- Heilongjiang Agricultural Technology Extension Station, Harbin 150090, China;
| | - Yu Wang
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150069, China (T.W.); (Y.W.); (J.H.)
| | - Jilong Han
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150069, China (T.W.); (Y.W.); (J.H.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150038, China;
| |
Collapse
|
4
|
Qu J, Xiao P, Zhao ZQ, Wang YL, Zeng YK, Zeng X, Liu JH. Genome-wide identification, expression analysis of WRKY transcription factors in Citrus ichangensis and functional validation of CiWRKY31 in response to cold stress. BMC PLANT BIOLOGY 2024; 24:617. [PMID: 38937686 PMCID: PMC11212357 DOI: 10.1186/s12870-024-05320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Ichang papeda (Citrus ichangensis), a wild perennial plant of the Rutaceae family, is a cold-hardy plant. WRKY transcription factors are crucial regulators of plant growth and development as well as abiotic stress responses. However, the WRKY genes in C. ichangensis (CiWRKY) and their expression patterns under cold stress have not been thoroughly investigated, hindering our understanding of their role in cold tolerance. RESULTS In this study, a total of 52 CiWRKY genes identified in the genome of C. ichangensis were classified into three main groups and five subgroups based on phylogenetic analysis. Comprehensive analyses of motif features, conserved domains, and gene structures were performed. Segmental duplication plays a significant role in the CiWRKY gene family expansion. Cis-acting element analysis revealed the presence of various stress-responsive elements in the promoters of the majority of CiWRKYs. Gene ontology (GO) analysis and protein-protein interaction predictions indicate that the CiWRKYs exhibit crucial roles in regulation of both development and stress response. Expression profiling analysis demonstrates that 14 CiWRKYs were substantially induced under cold stress. Virus-induced gene silencing (VIGS) assay confirmed that CiWRKY31, one of the cold-induced WRKYs, functions positively in regulation of cold tolerance. CONCLUSION Sequence and protein properties of CiWRKYs were systematically analyzed. Among the 52 CiWRKY genes 14 members exhibited cold-responsive expression patterns, and CiWRKY31 was verified to be a positive regulator of cold tolerance. These findings pave way for future investigations to understand the molecular functions of CiWRKYs in cold tolerance and contribute to unravelling WRKYs that may be used for engineering cold tolerance in citrus.
Collapse
Affiliation(s)
- Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze-Qi Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Lei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Ke Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Shui D, Sun J, Xiong Z, Zhang S, Shi J. Comparative identification of WRKY transcription factors and transcriptional response to Ralstonia solanacearum in tomato. Gene 2024; 912:148384. [PMID: 38493971 DOI: 10.1016/j.gene.2024.148384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
In order to study the responses of tomato (Solanum lycopersicum) WRKY TFs to bacterial wilt caused by Ralstonia solanacearum, the most up-to-date genomes and transcriptional profiles were used to identify WRKY TFs in control and infected inbred lines. In total, 85 tomato WRKY TFs were identified and categorized into groups I, IIa + b, IIc, IId + e, and III. These WRKYs, especially those from group IIe, were mainly distributed at chromosome ends and in clusters. More than 45 % and 70 % of tomato WRKYs exhibited intraspecific and interspecific synteny, respectively. Nearly 60 % of tomato WRKYs (mainly in groups I and IIc) formed 73 pairs of orthologs with WRKYs in Arabidopsis and pepper, with Ka/Ks less than 1. Sixteen tomato WRKYs (mainly in groups IIa + b and IIc) responded strongly to biotic stress, and 12 differentially expressed WRKYs (mainly in groups III and IIb) were identified. RT-qPCR revealed that tomato WRKYs could respond to bacterial wilt through positive (predominant) or negative regulation. In particular, the interaction between Solyc03g095770.3 (group III) and Solyc09g014990.4 (group I) may play an important role. In brief, WRKY TFs were comprehensively identified in tomato and several bacterial wilt responsive genes were screened.
Collapse
Affiliation(s)
- Deju Shui
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Ji Sun
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Zili Xiong
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Shengmei Zhang
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Jianlei Shi
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China.
| |
Collapse
|
6
|
Vodiasova E, Sinchenko A, Khvatkov P, Dolgov S. Genome-Wide Identification, Characterisation, and Evolution of the Transcription Factor WRKY in Grapevine ( Vitis vinifera): New View and Update. Int J Mol Sci 2024; 25:6241. [PMID: 38892428 PMCID: PMC11172563 DOI: 10.3390/ijms25116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
WRKYs are a multigenic family of transcription factors that are plant-specific and involved in the regulation of plant development and various stress response processes. However, the evolution of WRKY genes is not fully understood. This family has also been incompletely studied in grapevine, and WRKY genes have been named with different numbers in different studies, leading to great confusion. In this work, 62 Vitis vinifera WRKY genes were identified based on six genomes of different cultivars. All WRKY genes were numbered according to their chromosomal location, and a complete revision of the numbering was performed. Amino acid variability between different cultivars was assessed for the first time and was greater than 5% for some WRKYs. According to the gene structure, all WRKYs could be divided into two groups: more exons/long length and fewer exons/short length. For the first time, some chimeric WRKY genes were found in grapevine, which may play a specific role in the regulation of different processes: VvWRKY17 (an N-terminal signal peptide region followed by a non-cytoplasmic domain) and VvWRKY61 (Frigida-like domain). Five phylogenetic clades A-E were revealed and correlated with the WRKY groups (I, II, III). The evolution of WRKY was studied, and we proposed a WRKY evolution model where there were two dynamic phases of complexity and simplification in the evolution of WRKY.
Collapse
Affiliation(s)
- Ekaterina Vodiasova
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 299011 Sevastopol, Russia
| | - Anastasiya Sinchenko
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
| | - Pavel Khvatkov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
| | - Sergey Dolgov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 142290 Puschino, Russia
| |
Collapse
|
7
|
Li X, Wang Z, Sun S, Dai Z, Zhang J, Wang W, Peng K, Geng W, Xia S, Liu Q, Zhai H, Gao S, Zhao N, Tian F, Zhang H, He S. IbNIEL-mediated degradation of IbNAC087 regulates jasmonic acid-dependent salt and drought tolerance in sweet potato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:176-195. [PMID: 38294064 DOI: 10.1111/jipb.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Sweet potato (Ipomoea batatas [L.] Lam.) is a crucial staple and bioenergy crop. Its abiotic stress tolerance holds significant importance in fully utilizing marginal lands. Transcriptional processes regulate abiotic stress responses, yet the molecular regulatory mechanisms in sweet potato remain unclear. In this study, a NAC (NAM, ATAF1/2, and CUC2) transcription factor, IbNAC087, was identified, which is commonly upregulated in salt- and drought-tolerant germplasms. Overexpression of IbNAC087 increased salt and drought tolerance by increasing jasmonic acid (JA) accumulation and activating reactive oxygen species (ROS) scavenging, whereas silencing this gene resulted in opposite phenotypes. JA-rich IbNAC087-OE (overexpression) plants exhibited more stomatal closure than wild-type (WT) and IbNAC087-Ri plants under NaCl, polyethylene glycol, and methyl jasmonate treatments. IbNAC087 functions as a nuclear transcriptional activator and directly activates the expression of the key JA biosynthesis-related genes lipoxygenase (IbLOX) and allene oxide synthase (IbAOS). Moreover, IbNAC087 physically interacted with a RING-type E3 ubiquitin ligase NAC087-INTERACTING E3 LIGASE (IbNIEL), negatively regulating salt and drought tolerance in sweet potato. IbNIEL ubiquitinated IbNAC087 to promote 26S proteasome degradation, which weakened its activation on IbLOX and IbAOS. The findings provide insights into the mechanism underlying the IbNIEL-IbNAC087 module regulation of JA-dependent salt and drought response in sweet potato and provide candidate genes for improving abiotic stress tolerance in crops.
Collapse
Affiliation(s)
- Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Sifan Sun
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhuoru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Wenbin Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Kui Peng
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wenhao Geng
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Shuanghong Xia
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
8
|
Kumar A, Sichov N, Bucki P, Miyara SB. SlWRKY16 and SlWRKY31 of tomato, negative regulators of plant defense, involved in susceptibility activation following root-knot nematode Meloidogyne javanica infection. Sci Rep 2023; 13:14592. [PMID: 37669955 PMCID: PMC10480479 DOI: 10.1038/s41598-023-40557-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/12/2023] [Indexed: 09/07/2023] Open
Abstract
The involvement of WRKY transcription factors in plant-nematode interactions, and in particular, how these WRKYs participate in regulating the complex morphological and physiological changes occurring after nematode infection, are the topic of active research. We characterized the functional role of the unstudied tomato WRKY genes SlWRKY16 and SlWRKY31 in regulating tomato roots' response to infection by the root-knot nematode Meloidogyne javanica. Using promoter-GUS reporter gene fusions and qRT-PCR, we show that both SlWRKYs are predominantly expressed during the first half of the parasitic life stages, when feeding-site induction and construction occur. Expression of SlWRKY16 increased sharply 15 days after inoculation, whereas SlWRKY31 was already induced earlier, but reached its maximum expression at this time. Both genes were downregulated at the mature female stage. To determine biological function, we produced transgenic lines overexpressing SlWRKY16 and SlWRKY31 in tomato hairy roots. Overexpression of both genes resulted in enhanced M. javanica infection, reflected by increased galling occurrence and reproduction. Expression profiling of marker genes responsive to defense-associated phytohormones indicated reductions in salicylic acid defense-related PR-1 and jasmonic acid defense-related PI in inoculated roots overexpressing SlWRK16 and SlWRKY31, respectively. Our results suggest that SlWRKY16 and SlWRKY31 function as negative regulators of plant immunity induced upon nematode infection.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), Volcani Center, 50250, Bet Dagan, Israel
| | - Natalia Sichov
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), Volcani Center, 50250, Bet Dagan, Israel
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), Volcani Center, 50250, Bet Dagan, Israel
| | - Sigal Brown Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), Volcani Center, 50250, Bet Dagan, Israel.
| |
Collapse
|
9
|
Horváth E, Kulman K, Tompa B, Hajnal ÁB, Pelsőczi A, Bela K, Gallé Á, Csiszár J. Glutathione Transferases Are Involved in the Genotype-Specific Salt-Stress Response of Tomato Plants. Antioxidants (Basel) 2023; 12:1682. [PMID: 37759985 PMCID: PMC10525892 DOI: 10.3390/antiox12091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Glutathione transferases (GSTs) are one of the most versatile multigenic enzyme superfamilies. In our experiments, the involvement of the genotype-specific induction of GST genes and glutathione- or redox-related genes in pathways regulating salt-stress tolerance was examined in tomato cultivars (Solanum lycopersicum Moneymaker, Mobil, and Elán F1). The growth of the Mobil plants was adversely affected during salt stress (100 mM of NaCl), which might be the result of lowered glutathione and ascorbate levels, a more positive glutathione redox potential (EGSH), and reduced glutathione reductase (GR) and GST activities. In contrast, the Moneymaker and Elán F1 cultivars were able to restore their growth and exhibited higher GR and inducible GST activities, as well as elevated, non-enzymatic antioxidant levels, indicating their enhanced salt tolerance. Furthermore, the expression patterns of GR, selected GST, and transcription factor genes differed significantly among the three cultivars, highlighting the distinct regulatory mechanisms of the tomato genotypes during salt stress. The correlations between EGSH and gene expression data revealed several robust, cultivar-specific associations, underscoring the complexity of the stress response mechanism in tomatoes. Our results support the cultivar-specific roles of distinct GST genes during the salt-stress response, which, along with WRKY3, WRKY72, DREB1, and DREB2, are important players in shaping the redox status and the development of a more efficient stress tolerance in tomatoes.
Collapse
Affiliation(s)
- Edit Horváth
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
| | - Kitti Kulman
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Research Network, H-2462 Martonvásár, Hungary
| | - Bernát Tompa
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Ádám Barnabás Hajnal
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Alina Pelsőczi
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
| | - Ágnes Gallé
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
| |
Collapse
|
10
|
Roychowdhury R, Das SP, Gupta A, Parihar P, Chandrasekhar K, Sarker U, Kumar A, Ramrao DP, Sudhakar C. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant's Abiotic Stress Tolerance Responses. Genes (Basel) 2023; 14:1281. [PMID: 37372461 PMCID: PMC10298225 DOI: 10.3390/genes14061281] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The present day's ongoing global warming and climate change adversely affect plants through imposing environmental (abiotic) stresses and disease pressure. The major abiotic factors such as drought, heat, cold, salinity, etc., hamper a plant's innate growth and development, resulting in reduced yield and quality, with the possibility of undesired traits. In the 21st century, the advent of high-throughput sequencing tools, state-of-the-art biotechnological techniques and bioinformatic analyzing pipelines led to the easy characterization of plant traits for abiotic stress response and tolerance mechanisms by applying the 'omics' toolbox. Panomics pipeline including genomics, transcriptomics, proteomics, metabolomics, epigenomics, proteogenomics, interactomics, ionomics, phenomics, etc., have become very handy nowadays. This is important to produce climate-smart future crops with a proper understanding of the molecular mechanisms of abiotic stress responses by the plant's genes, transcripts, proteins, epigenome, cellular metabolic circuits and resultant phenotype. Instead of mono-omics, two or more (hence 'multi-omics') integrated-omics approaches can decipher the plant's abiotic stress tolerance response very well. Multi-omics-characterized plants can be used as potent genetic resources to incorporate into the future breeding program. For the practical utility of crop improvement, multi-omics approaches for particular abiotic stress tolerance can be combined with genome-assisted breeding (GAB) by being pyramided with improved crop yield, food quality and associated agronomic traits and can open a new era of omics-assisted breeding. Thus, multi-omics pipelines together are able to decipher molecular processes, biomarkers, targets for genetic engineering, regulatory networks and precision agriculture solutions for a crop's variable abiotic stress tolerance to ensure food security under changing environmental circumstances.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)—The Volcani Institute, Rishon Lezion 7505101, Israel
| | - Soumya Prakash Das
- School of Bioscience, Seacom Skills University, Bolpur 731236, West Bengal, India
| | - Amber Gupta
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Parul Parihar
- Department of Biotechnology and Bioscience, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Kottakota Chandrasekhar
- Department of Plant Biochemistry and Biotechnology, Sri Krishnadevaraya College of Agricultural Sciences (SKCAS), Affiliated to Acharya N.G. Ranga Agricultural University (ANGRAU), Guntur 522034, Andhra Pradesh, India
| | - Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Ajay Kumar
- Department of Botany, Maharshi Vishwamitra (M.V.) College, Buxar 802102, Bihar, India
| | - Devade Pandurang Ramrao
- Department of Biotechnology, Mizoram University, Pachhunga University College Campus, Aizawl 796001, Mizoram, India
| | - Chinta Sudhakar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
| |
Collapse
|
11
|
Pirona R, Frugis G, Locatelli F, Mattana M, Genga A, Baldoni E. Transcriptomic analysis reveals the gene regulatory networks involved in leaf and root response to osmotic stress in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1155797. [PMID: 37332696 PMCID: PMC10272567 DOI: 10.3389/fpls.2023.1155797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Tomato (Solanum lycopersicum L.) is a major horticultural crop that is cultivated worldwide and is characteristic of the Mediterranean agricultural system. It represents a key component of the diet of billion people and an important source of vitamins and carotenoids. Tomato cultivation in open field often experiences drought episodes, leading to severe yield losses, since most modern cultivars are sensitive to water deficit. Water stress leads to changes in the expression of stress-responsive genes in different plant tissues, and transcriptomics can support the identification of genes and pathways regulating this response. Methods Here, we performed a transcriptomic analysis of two tomato genotypes, M82 and Tondo, in response to a PEG-mediated osmotic treatment. The analysis was conducted separately on leaves and roots to characterize the specific response of these two organs. Results A total of 6,267 differentially expressed transcripts related to stress response was detected. The construction of gene co-expression networks defined the molecular pathways of the common and specific responses of leaf and root. The common response was characterized by ABA-dependent and ABA-independent signaling pathways, and by the interconnection between ABA and JA signaling. The root-specific response concerned genes involved in cell wall metabolism and remodeling, whereas the leaf-specific response was principally related to leaf senescence and ethylene signaling. The transcription factors representing the hubs of these regulatory networks were identified. Some of them have not yet been characterized and can represent novel candidates for tolerance. Discussion This work shed new light on the regulatory networks occurring in tomato leaf and root under osmotic stress and set the base for an in-depth characterization of novel stress-related genes that may represent potential candidates for improving tolerance to abiotic stress in tomato.
Collapse
Affiliation(s)
- Raul Pirona
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Giovanna Frugis
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Roma, Italy
| | - Franca Locatelli
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Monica Mattana
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Annamaria Genga
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Milano, Italy
| |
Collapse
|
12
|
Ramos RN, Zhang N, Lauff DB, Valenzuela-Riffo F, Figueroa CR, Martin GB, Pombo MA, Rosli HG. Loss-of-function mutations in WRKY22 and WRKY25 impair stomatal-mediated immunity and PTI and ETI responses against Pseudomonas syringae pv. tomato. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01358-0. [PMID: 37226022 DOI: 10.1007/s11103-023-01358-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/27/2023] [Indexed: 05/26/2023]
Abstract
Plants defend themselves against pathogens using a two-layered immune system. The first response, pattern-triggered immunity (PTI), is activated upon recognition of microbe-associated molecular patterns (MAMPs). Virulent bacteria such as Pseudomonas syringae pv. tomato (Pst), deliver effector proteins into the plant cell to promote susceptibility. However, some plants possess resistance (R) proteins that recognize specific effectors leading to the activation of the second response, effector-triggered immunity (ETI). Resistant tomatoes such as Río Grande-PtoR recognize two Pst effectors (AvrPto and AvrPtoB) through the host Pto/Prf complex and activate ETI. We previously showed that the transcription factors (TF) WRKY22 and WRKY25 are positive regulators of plant immunity against bacterial and potentially non-bacterial pathogens in Nicotiana benthamiana. Here, the CRISPR-Cas9 technique was used to develop three knockout tomato lines for either one or both TFs. The single and double mutants were all compromised in Pto/Prf-mediated ETI and had a weaker PTI response. The stomata apertures in all of the mutant lines did not respond to darkness or challenge with Pst DC3000. The WRKY22 and WRKY25 proteins both localize in the nucleus, but we found no evidence of a physical interaction between them. The WRKY22 TF was found to be involved in the transcriptional regulation of WRKY25, supporting the idea that they are not functionally redundant. Together, our results indicate that both WRKY TFs play a role in modulating stomata and are positive regulators of plant immunity in tomato.
Collapse
Affiliation(s)
- Romina N Ramos
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Diana B Lauff
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Felipe Valenzuela-Riffo
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Carlos R Figueroa
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca, Chile
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Marina A Pombo
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina.
| | - Hernan G Rosli
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
13
|
Viswanath KK, Kuo SY, Tu CW, Hsu YH, Huang YW, Hu CC. The Role of Plant Transcription Factors in the Fight against Plant Viruses. Int J Mol Sci 2023; 24:ijms24098433. [PMID: 37176135 PMCID: PMC10179606 DOI: 10.3390/ijms24098433] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Plants are vulnerable to the challenges of unstable environments and pathogen infections due to their immobility. Among various stress conditions, viral infection is a major threat that causes significant crop loss. In response to viral infection, plants undergo complex molecular and physiological changes, which trigger defense and morphogenic pathways. Transcription factors (TFs), and their interactions with cofactors and cis-regulatory genomic elements, are essential for plant defense mechanisms. The transcriptional regulation by TFs is crucial in establishing plant defense and associated activities during viral infections. Therefore, identifying and characterizing the critical genes involved in the responses of plants against virus stress is essential for the development of transgenic plants that exhibit enhanced tolerance or resistance. This article reviews the current understanding of the transcriptional control of plant defenses, with a special focus on NAC, MYB, WRKY, bZIP, and AP2/ERF TFs. The review provides an update on the latest advances in understanding how plant TFs regulate defense genes expression during viral infection.
Collapse
Affiliation(s)
- Kotapati Kasi Viswanath
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Song-Yi Kuo
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Tu
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
14
|
Ling J, Liu R, Hao Y, Li Y, Ping X, Yang Q, Yang Y, Lu X, Xie B, Zhao J, Mao Z. Comprehensive analysis of the WRKY gene family in Cucumis metuliferus and their expression profile in response to an early stage of root knot nematode infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1143171. [PMID: 37021316 PMCID: PMC10067755 DOI: 10.3389/fpls.2023.1143171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Root-knot nematode (RKN) is a major factor that limits the growth and productivity of important Cucumis crops, such as cucumber and melon, which lack RKN-resistance genes in their genome. Cucumis metuliferus is a wild Cucumis species that displays a high degree of RKN-resistance. WRKY transcription factors were involved in plant response to biotic stresses. However, little is known on the function of WRKY genes in response to RKN infection in Cucumis crops. In this study, Cucumis metuliferus 60 WRKY genes (CmWRKY) were identified in the C. metuliferus genome, and their conserved domains were classified into three main groups based on multiple sequence alignment and phylogenetic analysis. Synteny analysis indicated that the WRKY genes were highly conserved in Cucumis crops. Transcriptome data from of C. metuliferus roots inoculated with RKN revealed that 16 CmWRKY genes showed differential expression, of which 13 genes were upregulated and three genes were downregulated, indicating that these CmWRKY genes are important to C. metuliferus response to RKN infection. Two differentially expression CmWRKY genes (CmWRKY10 and CmWRKY28) were selected for further functional analysis. Both CmWRKY genes were localized in nucleus, indicating they may play roles in transcriptional regulation. This study provides a foundation for further research on the function of CmWRKY genes in RKN stress resistance and elucidation of the regulatory mechanism.
Collapse
Affiliation(s)
- Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yali Hao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingxing Ping
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qihong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Tang Y, Wu W, Zheng X, Lu L, Chen X, Hao Z, Liu S, Chen Y. AT-Hook Transcription Factors Show Functions in Liriodendron chinense under Drought Stress and Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1353. [PMID: 36987041 PMCID: PMC10056439 DOI: 10.3390/plants12061353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
AT-hook motif nuclear localized (AHL) is a transcription factor that can directly induce plant somatic embryogenesis without adding exogenous hormones. One of its functional domains, the AT-hook motif, has a chromatin-modifying function and participates in various cellular processes, including DNA replication and repair and gene transcription leading to cell growth. Liriodendron chinense (Hemsl.) Sargent is an important ornamental and timber tree in China. However, its low drought-resistant ability further leads to a low natural growth rate of its population. Based on bioinformatics analysis, this study identified a total of 21 LcAHLs in L. chinense. To explore the expression pattern of the AHL gene family under drought and somatic embryogenesis, we performed a systematic analysis including basic characteristics, gene structure, chromosome localization, replication event, cis-acting elements and phylogenetic analyses. According to the phylogenetic tree, the 21 LcAHL genes are divided into three separate clades (Clade I, II, and III). Cis-acting element analysis indicated the involvement of the LcAHL genes in drought, cold, light, and auxin regulation. In the generated drought stress transcriptome, a total of eight LcAHL genes showed increased expression levels, with their expression peaking at 3 h and leveling off after 1 d. Nearly all LcAHL genes were highly expressed in the process of somatic embryogenesis. In this study, we performed a genome-wide analysis of the LcAHL gene family and found that LcAHLs take part in resistance to drought stress and the development of somatic embryos. These findings will provide an important theoretical basis for understanding of the LcAHL gene function.
Collapse
Affiliation(s)
- Yao Tang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Weihuang Wu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xueyan Zheng
- National Germplasm Bank of Chinese fir at Fujian Yangkou Forest Farm, Shunchang 353211, China
| | - Lu Lu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xinying Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Siqin Liu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
16
|
Goyal P, Devi R, Verma B, Hussain S, Arora P, Tabassum R, Gupta S. WRKY transcription factors: evolution, regulation, and functional diversity in plants. PROTOPLASMA 2023; 260:331-348. [PMID: 35829836 DOI: 10.1007/s00709-022-01794-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The recent advancements in sequencing technologies and informatic tools promoted a paradigm shift to decipher the hidden biological mysteries and transformed the biological issues into digital data to express both qualitative and quantitative forms. The transcriptomic approach, in particular, has added new dimensions to the versatile essence of plant genomics through the large and deep transcripts generated in the process. This has enabled the mining of super families from the sequenced plants, both model and non-model, understanding their ancestry, diversity, and evolution. The elucidation of the crystal structure of the WRKY proteins and recent advancement in computational prediction through homology modeling and molecular dynamic simulation has provided an insight into the DNA-protein complex formation, stability, and interaction, thereby giving a new dimension in understanding the WRKY regulation. The present review summarizes the functional aspects of the high volume of sequence data of WRKY transcription factors studied from different species, till date. The review focuses on the dynamics of structural classification and lineage in light of the recent information. Additionally, a comparative analysis approach was incorporated to understand the functions of the identified WRKY transcription factors subjected to abiotic (heat, cold, salinity, senescence, dark, wounding, UV, and carbon starvation) stresses as revealed through various sets of studies on different plant species. The review will be instrumental in understanding the events of evolution and the importance of WRKY TFs under the threat of climate change, considering the new scientific evidences to propose a fresh perspective.
Collapse
Affiliation(s)
- Pooja Goyal
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Ritu Devi
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawana Verma
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rubeena Tabassum
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suphla Gupta
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India.
- Faculty, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Zhou Z, Wang J, Yu Q, Lan H. Promoter activity and transcriptome analyses decipher functions of CgbHLH001 gene (Chenopodium glaucum L.) in response to abiotic stress. BMC PLANT BIOLOGY 2023; 23:116. [PMID: 36849913 PMCID: PMC9969703 DOI: 10.1186/s12870-023-04128-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Our previous studies revealed that CgbHLH001 transcription factor (TF) played an important role in abiotic stress tolerance, suggesting that its promoter was a potential target in response to stress signals. In addition, the regulatory mechanism of CgbHLH001 TF is still limited. RESULTS In the present study, a 1512 bp of 5'-flanking sequence of CgbHLH001 gene was identified, and the sequence carried quite a few of cis-acting elements. The gene promoter displayed strong activity and was induced by multiple abiotic stress. A series of 5'-deletions of the promoter sequence resulted in a gradual decrease in its activity, especially, the 5' untranslated region (UTR) was necessary to drive promoter activity. Further, CgbHLH001 promoter drove its own gene overexpression ectopically at the transcriptional and translational levels, which in turn conferred the stress tolerance to transgenic Arabidopsis. Transcriptome analysis showed that salt stress induced a large number of genes involved in multiple biological regulatory processes. Differentially expressed genes (DEGs) that mediate phytohormone signal transduction and mitogen-activated protein kinase (MAPK) signaling pathway were widely induced and mostly upregulated under salt stress, and the transcription levels in PbHLH::bHLH-overexpressing transgenic lines were higher than that of 35S::bHLH overexpression. CONCLUSIONS The CgbHLH001 promoter exhibited a positive response to abiotic stress and its 5' UTR sequence enhanced the regulation of gene expression to stress. A few important pathways and putative key genes involved in salt tolerance were identified, which can be used to elucidate the mechanism of salt tolerance and decipher the regulatory mechanism of promoters to develop an adaptation strategy for desert halophytes.
Collapse
Affiliation(s)
- Zixin Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
18
|
Contribution of a WRKY Transcription Factor, ShWRKY81, to Powdery Mildew Resistance in Wild Tomato. Int J Mol Sci 2023; 24:ijms24032583. [PMID: 36768909 PMCID: PMC9917159 DOI: 10.3390/ijms24032583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
Tomato powdery mildew, caused by Oidium neolycopersici, is a destructive fungal disease that damages almost all of the aerial parts of tomato, causing devastating losses in tomato production worldwide. WRKY transcription factors are key regulators of plant immunity, but the roles of ShWRKYs in wild tomato Solanum habrochaites LA1777 against O. neolycopersici still remain to be uncovered. Here, we show that ShWRKY81 is an important WRKY transcription factor from wild tomato Solanum habrochaites LA1777, contributing to plant resistance against O. neolycopersici. ShWRKY81 was isolated and identified to positively modulate tomato resistance against On-Lz. The transient overexpression of the ShWRKY81-GFP (green fluorescent protein) fusion protein in Nicotiana benthamiana cells revealed that ShWRKY81 was localized in the nucleus. ShWRKY81 responded differentially to abiotic and biotic stimuli, with ShWRKY81 mRNA accumulation in LA1777 seedlings upon On-Lz infection. The virus-induced gene silencing of ShWRKY81 led to host susceptibility to On-Lz in LA1777, and a loss of H2O2 formation and hypersensitive response (HR) induction. Furthermore, the transcripts of ShWRKY81 were induced by salicylic acid (SA), and ShWRKY81-silenced LA1777 seedlings displayed decreased levels of the defense hormone SA and SA-dependent PRs gene expression upon On-Lz infection. Together, these results demonstrate that ShWRKY81 acts as a positive player in tomato powdery mildew resistance.
Collapse
|
19
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. The LEA gene family in tomato and its wild relatives: genome-wide identification, structural characterization, expression profiling, and role of SlLEA6 in drought stress. BMC PLANT BIOLOGY 2022; 22:596. [PMID: 36536303 PMCID: PMC9762057 DOI: 10.1186/s12870-022-03953-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins are widely distributed in higher plants and play crucial roles in regulating plant growth and development processes and resisting abiotic stress. Cultivated tomato (Solanum lycopersicum) is an important vegetable crop worldwide; however, its growth, development, yield, and quality are currently severely constrained by abiotic stressors. In contrast, wild tomato species are more tolerant to abiotic stress and can grow normally in extreme environments. The main objective of this study was to identify, characterize, and perform gene expression analysis of LEA protein families from cultivated and wild tomato species to mine candidate genes and determine their potential role in abiotic stress tolerance in tomatoes. RESULTS Total 60, 69, 65, and 60 LEA genes were identified in S. lycopersicum, Solanum pimpinellifolium, Solanum pennellii, and Solanum lycopersicoides, respectively. Characterization results showed that these genes could be divided into eight clusters, with the LEA_2 cluster having the most members. Most LEA genes had few introns and were non-randomly distributed on chromosomes; the promoter regions contained numerous cis-acting regulatory elements related to abiotic stress tolerance and phytohormone responses. Evolutionary analysis showed that LEA genes were highly conserved and that the segmental duplication event played an important role in evolution of the LEA gene family. Transcription and expression pattern analyses revealed different regulatory patterns of LEA genes between cultivated and wild tomato species under normal conditions. Certain S. lycopersicum LEA (SlLEA) genes showed similar expression patterns and played specific roles under different abiotic stress and phytohormone treatments. Gene ontology and protein interaction analyses showed that most LEA genes acted in response to abiotic stimuli and water deficit. Five SlLEA proteins were found to interact with 11 S. lycopersicum WRKY proteins involved in development or resistance to stress. Virus-induced gene silencing of SlLEA6 affected the antioxidant and reactive oxygen species defense systems, increased the degree of cellular damage, and reduced drought resistance in S. lycopersicum. CONCLUSION These findings provide comprehensive information on LEA proteins in cultivated and wild tomato species and their possible functions under different abiotic and phytohormone stresses. The study systematically broadens our current understanding of LEA proteins and candidate genes and provides a theoretical basis for future functional studies aimed at improving stress resistance in tomato.
Collapse
Affiliation(s)
- Chunping Jia
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
- College of Life Science and Technology, Xinjiang University, Urumqi, China.
| |
Collapse
|
20
|
Xue L, Wei Z, Zhai H, Xing S, Wang Y, He S, Gao S, Zhao N, Zhang H, Liu Q. The IbPYL8-IbbHLH66-IbbHLH118 complex mediates the abscisic acid-dependent drought response in sweet potato. THE NEW PHYTOLOGIST 2022; 236:2151-2171. [PMID: 36128653 DOI: 10.1111/nph.18502] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Drought limits crop development and yields. bHLH (basic helix-loop-helix) transcription factors play critical roles in regulating the drought response in many plants, but their roles in this process in sweet potato are unknown. Here, we report that two bHLH proteins, IbbHLH118 and IbbHLH66, play opposite roles in the ABA-mediated drought response in sweet potato. ABA treatment repressed IbbHLH118 expression but induced IbbHLH66 expression in the drought-tolerant sweet potato line Xushu55-2. Overexpressing IbbHLH118 reduced drought tolerance, whereas overexpressing IbbHLH66 enhanced drought tolerance, in sweet potato. IbbHLH118 directly binds to the E-boxes in the promoters of ABA-insensitive 5 (IbABI5), ABA-responsive element binding factor 2 (IbABF2) and tonoplast intrinsic protein 1 (IbTIP1) to suppress their transcription. IbbHLH118 forms homodimers with itself or heterodimers with IbbHLH66. Both of the IbbHLHs interact with the ABA receptor IbPYL8. ABA accumulates under drought stress, promoting the formation of the IbPYL8-IbbHLH66-IbbHLH118 complex. This complex interferes with IbbHLH118's repression of ABA-responsive genes, thereby activating ABA responses and enhancing drought tolerance. These findings shed light on the role of the IbPYL8-IbbHLH66-IbbHLH118 complex in the ABA-dependent drought response of sweet potato and identify candidate genes for developing elite crop varieties with enhanced drought tolerance.
Collapse
Affiliation(s)
- Luyao Xue
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zihao Wei
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shihan Xing
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuxin Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
21
|
Abd-Ellatif S, Ibrahim AA, Safhi FA, Abdel Razik ES, Kabeil SSA, Aloufi S, Alyamani AA, Basuoni MM, ALshamrani SM, Elshafie HS. Green Synthesized of Thymus vulgaris Chitosan Nanoparticles Induce Relative WRKY-Genes Expression in Solanum lycopersicum against Fusarium solani, the Causal Agent of Root Rot Disease. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223129. [PMID: 36432858 PMCID: PMC9695361 DOI: 10.3390/plants11223129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 05/30/2023]
Abstract
Fusarium solani is a plant pathogenic fungus that causes tomato root rot disease and yield losses in tomato production. The current study's main goal is testing the antibacterial efficacy of chitosan nanoparticles loaded with Thyme vulgaris essential oil (ThE-CsNPs) against F. solani in vitro and in vivo. GC-MS analysis was used to determine the chemical constituents of thyme EO. ThE-CsNPs were investigated using transmission electron microscopy before being physicochemically characterized using FT-IR. ThE-CsNPs were tested for antifungal activity against F. solani mycelial growth in vitro. A pot trial was conducted to determine the most effective dose of ThE-CsNPs on the morph/physiological characteristics of Solanum lycopersicum, as well as the severity of fusarium root rot. The relative gene expression of WRKY transcript factors and defense-associated genes were quantified in root tissues under all treatment conditions. In vitro results revealed that ThE-CsNPs (1%) had potent antifungal efficacy against F. solani radial mycelium growth. The expression of three WRKY transcription factors and three tomato defense-related genes was upregulated. Total phenolic, flavonoid content, and antioxidant enzyme activity were all increased. The outfindings of this study strongly suggested the use of ThE-CsNPs in controlling fusarium root rot on tomatoes; however, other experiments remain necessary before they are recommended.
Collapse
Affiliation(s)
- Sawsan Abd-Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, Alexandria 21934, Egypt
| | - Amira A. Ibrahim
- Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Elsayed S. Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technology Applications, Alexandria 21934, Egypt
| | - Sanaa S. A. Kabeil
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, Alexandria 21934, Egypt
| | - Salman Aloufi
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Amal A. Alyamani
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mostafa M. Basuoni
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | | | - Hazem S. Elshafie
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
22
|
Bioinformatics Analysis of WRKY Family Genes in Erianthus fulvus Ness. Genes (Basel) 2022; 13:genes13112102. [DOI: 10.3390/genes13112102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most prominent transcription factors in higher plants, the WRKY gene family, is crucial for secondary metabolism, phytohormone signaling, plant defense responses, and plant responses to abiotic stresses. It can control the expression of a wide range of target genes by coordinating with other DNA-binding or non-DNA-binding interacting proteins. In this study, we performed a genome-wide analysis of the EfWRKY genes and initially identified 89 members of the EfWRKY transcription factor family. Using some members of the OsWRKY transcription factor family, an evolutionary tree was built using the neighbor-joining (NJ) method to classify the 89 members of the EfWRKY transcription factor family into three major taxa and one unclassified group. Molecular weights ranged from 22,614.82 to 303,622.06 Da; hydrophilicity ranged from (−0.983)–(0.159); instability coefficients ranged from 40.97–81.30; lipid coefficients ranged from 38.54–91.89; amino acid numbers ranged from 213–2738 bp; isoelectric points ranged from 4.85–10.06. A signal peptide was present in EfWRKY41 but not in the other proteins, and EfWRK85 was subcellularly localized to the cell membrane. Chromosome localization revealed that the WRKY gene was present on each chromosome, proving that the conserved pattern WRKYGQK is the family’s central conserved motif. Conserved motif analysis showed that practically all members have this motif. Analysis of the cis-acting elements indicated that, in addition to the fundamental TATA-box, CAAT-box, and light-responsive features (GT1-box), there are response elements implicated in numerous hormones, growth regulation, secondary metabolism, and abiotic stressors. These results inform further studies on the function of EfWRKY genes and will lead to the improvement of sugarcane.
Collapse
|
23
|
Khoso MA, Hussain A, Ritonga FN, Ali Q, Channa MM, Alshegaihi RM, Meng Q, Ali M, Zaman W, Brohi RD, Liu F, Manghwar H. WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1039329. [PMID: 36426143 PMCID: PMC9679293 DOI: 10.3389/fpls.2022.1039329] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 06/01/2023]
Abstract
The WRKY transcription factor (TF) belongs to one of the major plant protein superfamilies. The WRKY TF gene family plays an important role in the regulation of transcriptional reprogramming associated with plant stress responses. Change in the expression patterns of WRKY genes or the modifications in their action; participate in the elaboration of numerous signaling pathways and regulatory networks. WRKY proteins contribute to plant growth, for example, gamete formation, seed germination, post-germination growth, stem elongation, root hair growth, leaf senescence, flowering time, and plant height. Moreover, they play a key role in many types of environmental signals, including drought, temperature, salinity, cold, and biotic stresses. This review summarizes the current progress made in unraveling the functions of numerous WRKY TFs under drought, salinity, temperature, and cold stresses as well as their role in plant growth and development.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- Department of Life Science, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Amjad Hussain
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | | | - Rana M. Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Qinglin Meng
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Musrat Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan, Islamabad, Pakistan
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Rahim Dad Brohi
- Department of Animal Reproduction/Theriogenology, Faculty of Veterinary Science, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| |
Collapse
|
24
|
Huang H, Zhao W, Qiao H, Li C, Sun L, Yang R, Ma X, Ma J, Song S, Wang S. SlWRKY45 interacts with jasmonate-ZIM domain proteins to negatively regulate defense against the root-knot nematode Meloidogyne incognita in tomato. HORTICULTURE RESEARCH 2022; 9:uhac197. [PMID: 36338841 PMCID: PMC9630973 DOI: 10.1093/hr/uhac197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Parasitic root-knot nematodes (RKNs) cause a severe reduction in crop yield and seriously threaten agricultural production. The phytohormones jasmonates (JAs) are important signals regulating resistance to multiple biotic and abiotic stresses. However, the molecular mechanism for JAs-regulated defense against RKNs in tomato remains largely unclear. In this study, we found that the transcription factor SlWRKY45 interacted with most JA-ZIM domain family proteins (JAZs), key repressors of the JA signaling. After infection by the RKN Meloidogyne incognita, the slwrky45 mutants exhibited lower gall numbers and egg numbers per gram of roots than wild type, whereas overexpression of SlWRKY45 attenuated resistance to Meloidogyne incognita. Under M. incognita infection, the contents of jasmonic acid (JA) and JA-isoleucine (JA-Ile) in roots were repressed by SlWRKY45-overexpression. Furthermore, SlWRKY45 bound to and inhibited the promoter of the JA biosynthesis gene ALLENE OXIDE CYCLASE (AOC), and repressed its expression. Overall, our findings revealed that the SlJAZ-interaction protein SlWRKY45 attenuated RKN-regulated JA biosynthesis and repressed defense against the RKN M. incognita in tomato.
Collapse
Affiliation(s)
| | | | - Hui Qiao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Chonghua Li
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Lulu Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuechun Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Jilin Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | | | | |
Collapse
|
25
|
Tomato Response to Fusarium spp. Infection under Field Conditions: Study of Potential Genes Involved. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tomato is one of the most important horticultural crops in the world and is severely affected by Fusarium diseases. To successfully manage these diseases, new insights on the expression of plant–pathogen interaction genes involved in immunity responses to Fusarium spp. infection are required. The aim of this study was to assess the level of infection of Fusarium spp. in field tomato samples and to evaluate the differential expression of target genes involved in plant–pathogen interactions in groups presenting different infection levels. Our study was able to detect Fusarium spp. in 16 from a total of 20 samples, proving the effectiveness of the primer set designed in the ITS region for its detection, and allowed the identification of two main different species complexes: Fusarium oxysporum and Fusarium incarnatum-equiseti. Results demonstrated that the level of infection positively influenced the expression of the transcription factor WRKY41 and the CBEF (calcium-binding EF hand family protein) genes, involved in plant innate resistance to pathogens. To the best of our knowledge, this is the first time that the expression of tomato defense-related gene expression is studied in response to Fusarium infection under natural field conditions. We highlight the importance of these studies for the identification of candidate genes to incorporate new sources of resistance in tomato and achieve sustainable plant disease management.
Collapse
|
26
|
Faqir Napar WP, Kaleri AR, Ahmed A, Nabi F, Sajid S, Ćosić T, Yao Y, Liu J, Raspor M, Gao Y. The anthocyanin-rich tomato genotype LA-1996 displays superior efficiency of mechanisms of tolerance to salinity and drought. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153662. [PMID: 35259587 DOI: 10.1016/j.jplph.2022.153662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Tomato cultivation is affected by high soil salinity and drought stress, which cause major yield losses worldwide. In this work, we compare the efficiency of mechanisms of tolerance to salinity, and osmotic stress applied as mannitol or drought, in three tomato genotypes: LA-2838 (Ailsa Craig), LA-2662 (Saladette), and LA-1996 (Anthocyanin fruit - Aft), a genotype known for high anthocyanin content. Exposure to salinity or drought induced stress in all three genotypes, but the LA-1996 plants displayed superior tolerance to stress compared with the other two genotypes. They were more efficient in anthocyanin and proline accumulation, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity, and leaf Na+, K+, and Ca2+ homeostasis. In addition, they suffered lesser oxidative damage as measured by chlorophyll (Chl) loss and malondialdehyde (MDA) accumulation, and bioassays showed that they were less affected in terms of seed germination and root elongation. Exposure to stress induced the upregulation of stress-related genes SlNCED1, SlAREB1, SlABF4, SlWRKY8, and SlDREB2A more efficiently in LA-1996 than in the two susceptible genotypes. Conversely, the upregulation of the NADPH oxidase gene SlRBOH1 was more pronounced in LA-2838 and LA-2662. Principal component analysis showed obvious distinction between the tolerant genotype LA-1996 and the susceptible LA-2838 and LA-2662 in response to stress, and association of leaf and stem anthocyanin content with major stress tolerance traits. We suggest that anthocyanin accumulation can be considered as a marker of stress tolerance in tomato, and that LA-1996 can be considered for cultivation in salinity- or drought-affected areas.
Collapse
Affiliation(s)
- Wado Photo Faqir Napar
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Abdul Rasheed Kaleri
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Awais Ahmed
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Farhan Nabi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Sumbal Sajid
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Tatjana Ćosić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jikai Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| | - Martin Raspor
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| |
Collapse
|
27
|
Drought tolerance improvement in Solanum lycopersicum: an insight into "OMICS" approaches and genome editing. 3 Biotech 2022; 12:63. [PMID: 35186660 PMCID: PMC8825918 DOI: 10.1007/s13205-022-03132-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Solanum lycopersicum (tomato) is an internationally acclaimed vegetable crop that is grown worldwide. However, drought stress is one of the most critical challenges for tomato production, and it is a crucial task for agricultural biotechnology to produce drought-resistant cultivars. Although breeders have done a lot of work on the tomato to boost quality and quantity of production and enhance resistance to biotic and abiotic stresses, conventional tomato breeding approaches have been limited to improving drought tolerance because of the intricacy of drought traits. Many efforts have been made to better understand the mechanisms involved in adaptation and tolerance to drought stress in tomatoes throughout the years. "Omics" techniques, such as genomics, transcriptomics, proteomics, and metabolomics in combination with modern sequencing technologies, have tremendously aided the discovery of drought-responsive genes. In addition, the availability of biotechnological tools, such as plant transformation and the recently developed genome editing system for tomatoes, has opened up wider opportunities for validating the function of drought-responsive genes and the generation of drought-tolerant varieties. This review highlighted the recent progresses for tomatoes improvement against drought stress through "omics" and "multi-omics" technologies including genetic engineering. We have also discussed the roles of non-coding RNAs and genome editing techniques for drought stress tolerance improvement in tomatoes.
Collapse
|
28
|
Rosado D, Ackermann A, Spassibojko O, Rossi M, Pedmale UV. WRKY transcription factors and ethylene signaling modify root growth during the shade-avoidance response. PLANT PHYSIOLOGY 2022; 188:1294-1311. [PMID: 34718759 PMCID: PMC8825332 DOI: 10.1093/plphys/kiab493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 05/27/2023]
Abstract
Shade-intolerant plants rapidly elongate their stems, branches, and leaf stalks to compete with neighboring vegetation, maximizing sunlight capture for photosynthesis. This rapid growth adaptation, known as the shade-avoidance response (SAR), comes at a cost: reduced biomass, crop yield, and root growth. Significant progress has been made on the mechanistic understanding of hypocotyl elongation during SAR; however, the molecular interpretation of root growth repression is not well understood. Here, we explore the mechanisms by which SAR induced by low red:far-red light restricts primary and lateral root (LR) growth. By analyzing the whole-genome transcriptome, we identified a core set of shade-induced genes in roots of Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) seedlings grown in the shade. Abiotic and biotic stressors also induce many of these shade-induced genes and are predominantly regulated by WRKY transcription factors. Correspondingly, a majority of WRKY genes were among the shade-induced genes. Functional analysis using transgenics of these shade-induced WRKYs revealed that their role is essentially to restrict primary root and LR growth in the shade; captivatingly, they did not affect hypocotyl elongation. Similarly, we also found that ethylene hormone signaling is necessary for limiting root growth in the shade. We propose that during SAR, shade-induced WRKY26, 45, and 75, and ethylene reprogram gene expression in the root to restrict its growth and development.
Collapse
Affiliation(s)
- Daniele Rosado
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Amanda Ackermann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Olya Spassibojko
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Ullas V Pedmale
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
29
|
Defense Strategies: The Role of Transcription Factors in Tomato-Pathogen Interaction. BIOLOGY 2022; 11:biology11020235. [PMID: 35205101 PMCID: PMC8869667 DOI: 10.3390/biology11020235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/21/2023]
Abstract
Simple Summary Tomato is one of the most cultivated and economically important vegetable crops throughout the world. It is affected by a panoply of different pathogens that cause infectious diseases that reduce tomato yield and affect product quality, with the most common symptoms being wilts, leaf spots/blights, fruit spots, and rots. To survive, tomato, as other plants, have developed elaborate defense mechanisms against plant pathogens. Among several genes already identified in tomato response to pathogens, we highlight those encoding the transcription factors (TFs). TFs are regulators of gene expression and are involved in large-scale biological phenomena. Here, we present an overview of recent studies of tomato TFs regarding defense responses to pathogen attack, selected for their abundance, importance, and availability of functionally well-characterized members. Tomato TFs’ roles and the possibilities related to their use for genetic engineering in view of crop breeding are presented. Abstract Tomato, one of the most cultivated and economically important vegetable crops throughout the world, is affected by a panoply of different pathogens that reduce yield and affect product quality. The study of tomato–pathogen system arises as an ideal system for better understanding the molecular mechanisms underlying disease resistance, offering an opportunity of improving yield and quality of the products. Among several genes already identified in tomato response to pathogens, we highlight those encoding the transcription factors (TFs). TFs act as transcriptional activators or repressors of gene expression and are involved in large-scale biological phenomena. They are key regulators of central components of plant innate immune system and basal defense in diverse biological processes, including defense responses to pathogens. Here, we present an overview of recent studies of tomato TFs regarding defense responses to biotic stresses. Hence, we focus on different families of TFs, selected for their abundance, importance, and availability of functionally well-characterized members in response to pathogen attack. Tomato TFs’ roles and possibilities related to their use for engineering pathogen resistance in tomato are presented. With this review, we intend to provide new insights into the regulation of tomato defense mechanisms against invading pathogens in view of plant breeding.
Collapse
|
30
|
Zi X, Zhou S, Wu B. Alpha-Linolenic Acid Mediates Diverse Drought Responses in Maize ( Zea mays L.) at Seedling and Flowering Stages. Molecules 2022; 27:molecules27030771. [PMID: 35164035 PMCID: PMC8839722 DOI: 10.3390/molecules27030771] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Water shortage caused by long-term drought is one of the most serious abiotic stress factors in maize. Different drought conditions lead to differences in growth, development, and metabolism of maize. In previous studies, proteomics and genomics methods have been widely used to explain the response mechanism of maize to long-term drought, but there are only a few articles related to metabolomics. In this study, we used transcriptome and metabolomics analysis to characterize the differential effects of drought stress imposed at seedling or flowering stages on maize. Through the association analysis of genes and metabolites, we found that maize leaves had 61 and 54 enriched pathways under seedling drought and flowering drought, respectively, of which 13 and 11 were significant key pathways, mostly related to the biosynthesis of flavonoids and phenylpropanes, glutathione metabolism and purine metabolism. Interestingly, we found that the α-linolenic acid metabolic pathway differed significantly between the two treatments, and a total of 10 differentially expressed genes and five differentially abundant metabolites have been identified in this pathway. Some differential accumulation of metabolites (DAMs) was related to synthesis of jasmonic acid, which may be one of the key pathways underpinning maize response to different types of long-term drought. In general, metabolomics provides a new method for the study of water stress in maize and lays a theoretical foundation for drought-resistant cultivation of silage maize.
Collapse
|
31
|
Identification and Characterization of WRKY41, a Gene Conferring Resistance to Powdery Mildew in Wild Tomato ( Solanum habrochaites) LA1777. Int J Mol Sci 2022; 23:ijms23031267. [PMID: 35163190 PMCID: PMC8836203 DOI: 10.3390/ijms23031267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
WRKYs, a large family of transcription factors, are involved in plant response to biotic and abiotic stresses, but the role of them in tomato resistance to Oidium neolycopersici is still unclear. In this study, we evaluate the role of WRKYs in powdery mildew-resistant wild tomato (Solanum habrochaites) LA1777 defense against O. neolycopersici strain lz (On-lz) using a combination of omics, classical plant pathology- and cell biology-based approaches. A total of 27 WRKYs, belonging to group I, II, and III, were identified as differentially expressed genes in LA1777 against On-lz. It was found that expression of ShWRKY41 was increased after Pseudomonas syringae pv. tomato (Pst) DC3000, On-lz and Botrytiscinerea B05 inoculation or ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) treatment. GUS staining of ShWRKY41 promoter indicated that the expression of ShWRKY41 could be induced by SA and ethylene. Furthermore, ShWRKY41 gene silencing reduced the resistance to On-lz infection by decreasing the generation of H2O2 and HR in LA1777 seedlings. Overall, our research suggests that ShWRKY41 plays a positive role in defense activation and host resistance to O. neolycopersici in wild tomato (S. habrochaites) LA1777.
Collapse
|
32
|
Insight into gene regulatory networks involved in sesame (Sesamum indicum L.) drought response. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
33
|
Kumar S, Yadav A, Bano N, Dubey AK, Verma R, Pandey A, Kumar A, Bag S, Srivastava S, Sanyal I. Genome-wide profiling of drought-tolerant Arabidopsis plants over-expressing chickpea MT1 gene reveals transcription factors implicated in stress modulation. Funct Integr Genomics 2022; 22:153-170. [PMID: 34988675 DOI: 10.1007/s10142-021-00823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Drought, a major abiotic limiting factor, could be modulated with in-built reprogramming of plants at molecular level by regulating the activity of plant developmental processes, stress endurance and adaptation. The transgenic Arabidopsis thaliana over-expressing metallothionein 1 (MT1) gene of desi chickpea (Cicer arietinum L.) was subjected to transcriptome analysis. We evaluated drought tolerance of 7 days old plants of Arabidopsis thaliana in both wild-type (WT) as well as transgenic plants and performed transcriptome analysis. Our analysis revealed 24,737 transcripts representing 24,594 genes out of which 5,816 were differentially expressed genes (DEGs) under drought conditions and 841 genes were common in both genotypes. A total of 1251 DEGs in WT and 2099 in MT1 were identified in comparison with control. Out of the significant DEGs, 432 and 944 were upregulated, whereas 819 and 1155 were downregulated in WT and MT1 plants, respectively. The physiological and molecular parameters involving germination assay, root length measurements under different stress treatments and quantitative expression analysis of transgenic plants in comparison to wild-type were found to be enhanced. CarMT1 plants also demonstrated modulation of various other stress-responsive genes that reprogrammed themselves for stress adaptation. Amongst various drought-responsive genes, 24 DEGs showed similar quantitative expression as obtained through RNA sequencing data. Hence, these modulatory genes could be used as a genetic tool for understanding and delineating the mechanisms for fine-tuning of stress responses in crop plants.
Collapse
Affiliation(s)
- Sanoj Kumar
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.,Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Ankita Yadav
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.,Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nasreen Bano
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arvind Kumar Dubey
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Be'er Sheva, Israel
| | - Rita Verma
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.,Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ankesh Pandey
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil Kumar
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.,Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, 263136, India
| | - Sumit Bag
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
34
|
Plant Transcriptome Reprograming and Bacterial Extracellular Metabolites Underlying Tomato Drought Resistance Triggered by a Beneficial Soil Bacteria. Metabolites 2021; 11:metabo11060369. [PMID: 34207663 PMCID: PMC8230097 DOI: 10.3390/metabo11060369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Water deficit is one of the major constraints to crop production and food security worldwide. Some plant growth-promoting rhizobacteria (PGPR) strains are capable of increasing plant drought resistance. Knowledge about the mechanisms underlying bacteria-induced plant drought resistance is important for PGPR applications in agriculture. In this study, we show the drought stress-mitigating effects on tomato plants by the Bacillus megaterium strain TG1-E1, followed by the profiling of plant transcriptomic responses to TG1-E1 and the profiling of bacterial extracellular metabolites. Comparison between the transcriptomes of drought-stressed plants with and without TG1-E1 inoculation revealed bacteria-induced transcriptome reprograming, with highlights on differentially expressed genes belonging to the functional categories including transcription factors, signal transduction, and cell wall biogenesis and organization. Mass spectrometry-based analysis identified over 40 bacterial extracellular metabolites, including several important regulators or osmoprotectant precursors for increasing plant drought resistance. These results demonstrate the importance of plant transcriptional regulation and bacterial metabolites in PGPR-induced plant drought resistance.
Collapse
|
35
|
Ahammed GJ, Li X, Mao Q, Wan H, Zhou G, Cheng Y. The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought. PHYSIOLOGIA PLANTARUM 2021; 172:885-895. [PMID: 33063343 DOI: 10.1111/ppl.13243] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 05/07/2023]
Abstract
The WRKY transcription factors (TFs) play multifaceted roles in plant growth, development, and stress response. Previously, we found that SlWRKY81 negatively regulates tomato tolerance to drought; however, the mechanisms of stomatal regulation in response to drought remain largely unclear. Here, we showed that drought-induced upregulation in the SlWRKY81 transcripts induced photoinhibition and reduced the net photosynthetic rate in tomato leaves. However, silencing SlWRKY81 alleviated those inhibitions and minimized the drought-induced damage. A time-course of water loss showed that SlWRKY81 silencing significantly and consistently reduced leaf water loss, suggesting a role for SlWRKY81 in stomatal movement. Further analysis using light microscopy revealed that SlWRKY81 silencing significantly decreased stomatal aperture and increased the ratio of length to width of stomata under drought. Both biochemical assay and confocal laser scanning microscopy demonstrated that drought-induced upregulation in SlWRKY81 expression inhibited the nitric oxide (NO) accumulation in the guard cells, which was attributed to the simultaneous declines in the activity of nitrate reductase (NR) and NR expression in tomato leaves. The inspection of 3-kb sequences upstream of the predicted transcriptional start site of the NR identified three copies of the core W-box (TTGACC/T) sequence in the promoter region, indicating possible targets of SlWRKY81. Taken together, these data suggest that SlWRKY81 potentially represses NR transcription and thus reduces NO accumulation to attenuate stomatal closure and subsequent drought tolerance. These findings provide an improved understanding of the mechanism of WRKY-induced regulation of stomatal closure, which can be exploited in the future to enhance drought tolerance in crops.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qi Mao
- College of Forestry, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongjian Wan
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guozhi Zhou
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuan Cheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
36
|
A WRKY Transcription Factor, EjWRKY17, from Eriobotrya japonica Enhances Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2021; 22:ijms22115593. [PMID: 34070474 PMCID: PMC8197471 DOI: 10.3390/ijms22115593] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
The WRKY gene family, which is one of the largest transcription factor (TF) families, plays an important role in numerous aspects of plant growth and development, especially in various stress responses. However, the functional roles of the WRKY gene family in loquat are relatively unknown. In this study, a novel WRKY gene, EjWRKY17, was characterized from Eriobotrya japonica, which was significantly upregulated in leaves by melatonin treatment during drought stress. The EjWRKY17 protein, belonging to group II of the WRKY family, was localized in the nucleus. The results indicated that overexpression of EjWRKY17 increased cotyledon greening and root elongation in transgenic Arabidopsis lines under abscisic acid (ABA) treatment. Meanwhile, overexpression of EjWRKY17 led to enhanced drought tolerance in transgenic lines, which was supported by the lower water loss, limited electrolyte leakage, and lower levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Further investigations showed that overexpression of EjWRKY17 promoted ABA-mediated stomatal closure and remarkably up-regulated ABA biosynthesis and stress-related gene expression in transgenic lines under drought stress. Overall, our findings reveal that EjWRKY17 possibly acts as a positive regulator in ABA-regulated drought tolerance.
Collapse
|
37
|
Ramos RN, Martin GB, Pombo MA, Rosli HG. WRKY22 and WRKY25 transcription factors are positive regulators of defense responses in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2021; 105:65-82. [PMID: 32909182 DOI: 10.1007/s11103-020-01069-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE NbWRKY22 and NbWRKY25 are required for full activation of bacteria-associated pattern- and effector-triggered immunity as well as for the response to other non-bacterial defense elicitors. Plants defend themselves against pathogens using a two-layered immune system. Pattern-triggered immunity (PTI) can be activated upon recognition of epitopes from flagellin including flg22. Pseudomonas syringae pv. tomato (Pst) delivers effector proteins into the plant cell to promote host susceptibility. However, some plants express resistance (R) proteins that recognize specific effectors leading to the activation of effector-triggered immunity (ETI). Resistant tomato lines such as Rio Grande-PtoR (RG-PtoR) recognize two Pst effectors, AvrPto and AvrPtoB, and activate ETI through the Pto/Prf protein complex. Using RNA-seq, we identified two tomato WRKY transcription factor genes, SlWRKY22 and SlWRKY25, whose expression is increased during Pst-induced ETI. Silencing of the WRKY25/22 orthologous genes in Nicotiana benthamiana led to a delay in programmed cell death normally associated with AvrPto recognition or several non-bacterial effector/R protein pairs. An increase in disease symptoms was observed in silenced plants infiltrated with Pseudomonas syringae pv. tabaci expressing AvrPto or HopQ1-1. Expression of both tomato WRKY genes is also induced upon treatment with flg22 and callose deposition and cell death suppression assays in WRKY25/22-silenced N. benthamiana plants supported their involvement in PTI. Our results reveal an important role for two WRKYs as positive regulators of plant immunity against bacterial and potentially non-bacterial pathogens.
Collapse
Affiliation(s)
- Romina N Ramos
- INFIVE, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Marina A Pombo
- INFIVE, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina.
| | - Hernan G Rosli
- INFIVE, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
38
|
Song Y, Cui H, Shi Y, Xue J, Ji C, Zhang C, Yuan L, Li R. Genome-wide identification and functional characterization of the Camelina sativa WRKY gene family in response to abiotic stress. BMC Genomics 2020; 21:786. [PMID: 33176698 PMCID: PMC7659147 DOI: 10.1186/s12864-020-07189-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Background WRKY transcription factors are a superfamily of regulators involved in diverse biological processes and stress responses in plants. However, there is limited knowledge about the WRKY family in camelina (Camelina sativa), an important Brassicaceae oil crop with strong tolerance for various stresses. Here, a genome-wide characterization of WRKY proteins is performed to examine their gene structures, phylogenetics, expression, conserved motif organizations, and functional annotation to identify candidate WRKYs that mediate stress resistance regulation in camelinas. Results A total of 242 CsWRKY proteins encoded by 224 gene loci distributed unevenly over the chromosomes were identified, and they were classified into three groups by phylogenetic analysis according to their WRKY domains and zinc finger motifs. The 15 CsWRKY gene loci generated 33 spliced variants. Orthologous WRKY gene pairs were identified, with 173 pairs in the C. sativa and Arabidopsis genomes as well as 282 pairs in the C. sativa and B. napus genomes, respectively. A total of 137 segmental duplication events were observed, but there was no tandem duplication in the camelina genome. Ten major conserved motifs were examined, with WRKYGQK being the most conserved, and several variants were present in many CsWRKYs. Expression analysis revealed that 50% more CsWRKY genes were expressed constitutively, and a set of them displayed tissue-specific expression. Notably, 11 CsWRKY genes exhibited significant expression changes in seedlings under cold, salt, and drought stresses, showing a preferentially inducible expression pattern in response to the stress. Conclusions The present article describes a detailed analysis of the CsWRKY gene family and its expression profiles in 12 tissues and under several stress conditions. Segmental duplication is the major force underlying the broad expansion of this gene family, and a strong purifying pressure occurred for CsWRKY proteins during their evolution. CsWRKY proteins play important roles in plant development, with differential functions in different tissues. Exceptionally, eleven CsWRKYs, particularly five alternative spliced isoforms, were found to be the possible key players in mediating plant responses to various stresses. Overall, our results provide a foundation for understanding the roles of CsWRKYs and the precise mechanism through which CsWRKYs regulate high stress resistance as well as the development of stress tolerance cultivars among Cruciferae crops. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07189-3.
Collapse
Affiliation(s)
- Yanan Song
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongli Cui
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Ying Shi
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jinai Xue
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunli Ji
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunhui Zhang
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Lixia Yuan
- College of Biological Science and Technology, Jinzhong University, Jinzhong, Shanxi, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China.
| |
Collapse
|
39
|
Tolosa LN, Zhang Z. The Role of Major Transcription Factors in Solanaceous Food Crops under Different Stress Conditions: Current and Future Perspectives. PLANTS 2020; 9:plants9010056. [PMID: 31906447 PMCID: PMC7020414 DOI: 10.3390/plants9010056] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 01/08/2023]
Abstract
Plant growth, development, and productivity are adversely affected by environmental stresses such as drought (osmotic stress), soil salinity, cold, oxidative stress, irradiation, and diverse diseases. These impacts are of increasing concern in light of climate change. Noticeably, plants have developed their adaptive mechanism to respond to environmental stresses by transcriptional activation of stress-responsive genes. Among the known transcription factors, DoF, WRKY, MYB, NAC, bZIP, ERF, ARF and HSF are those widely associated with abiotic and biotic stress response in plants. Genome-wide identification and characterization analyses of these transcription factors have been almost completed in major solanaceous food crops, emphasizing these transcription factor families which have much potential for the improvement of yield, stress tolerance, reducing marginal land and increase the water use efficiency of solanaceous crops in arid and semi-arid areas where plant demand more water. Most importantly, transcription factors are proteins that play a key role in improving crop yield under water-deficient areas and a place where the severity of pathogen is very high to withstand the ongoing climate change. Therefore, this review highlights the role of major transcription factors in solanaceous crops, current and future perspectives in improving the crop traits towards abiotic and biotic stress tolerance and beyond. We have tried to accentuate the importance of using genome editing molecular technologies like CRISPR/Cas9, Virus-induced gene silencing and some other methods to improve the plant potential in giving yield under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Lemessa Negasa Tolosa
- Key Laboratory of Agricultural Water Resources, Hebie Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Shijiazhuang 050021, China;
- University of Chinese Academy Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences CAS, Beijing 100101, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebie Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Shijiazhuang 050021, China;
- University of Chinese Academy Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences CAS, Beijing 100101, China
- Correspondence:
| |
Collapse
|
40
|
Gao YF, Liu JK, Yang FM, Zhang GY, Wang D, Zhang L, Ou YB, Yao YA. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. PHYSIOLOGIA PLANTARUM 2020; 168:98-117. [PMID: 31017672 DOI: 10.1111/ppl.12978] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/06/2019] [Accepted: 04/23/2019] [Indexed: 05/05/2023]
Abstract
WRKY transcription factors play a key role in the tolerance of biotic and abiotic stresses across various crop species, but the function of some WRKY genes, particularly in tomato, remains unexplored. Here, we characterize the roles of a previously unstudied WRKY gene, SlWRKY8, in the resistance to pathogen infection and the tolerance to drought and salt stresses. Expression of SlWRKY8 was up-regulated upon Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000), abiotic stresses such as drought, salt and cold, as well as ABA and SA treatments. The SlWRKY8 protein was localized to the nucleus with no transcription activation in yeast, but it could activate W-box-dependent transcription in plants. The overexpression of SlWRKY8 in tomato conferred a greater resistance to the pathogen Pst. DC3000 and resulted in the increased transcription levels of two pathogen-related genes SlPR1a1 and SlPR7. Moreover, transgenic plants displayed the alleviated wilting or chlorosis phenotype under drought and salt stresses, with higher levels of stress-induced osmotic substances like proline and higher transcript levels of the stress-responsive genes SlAREB, SlDREB2A and SlRD29. Stomatal aperature was smaller under drought stress in transgenic plants, maintaining higher water content in leaves compared with wild-type plants. The oxidative pressure, indicated by the concentration of hydrogen peroxide (H2 O2 ) and malondialdehyde (MDA), was also reduced in transgenic plants, where we also observed higher levels of antioxidant enzyme activities under stress. Overall, our results suggest that SlWRKY8 functions as a positive regulator in plant immunity against pathogen infection as well as in plant responses to drought and salt stresses.
Collapse
Affiliation(s)
- Yong-Feng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Ji-Kai Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Feng-Ming Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Guo-Yan Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Dan Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Lin Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yong-Bin Ou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yin-An Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| |
Collapse
|
41
|
Parish F, Williams WP, Windham GL, Shan X. Differential Expression of Signaling Pathway Genes Associated With Aflatoxin Reduction Quantitative Trait Loci in Maize ( Zea mays L.). Front Microbiol 2019; 10:2683. [PMID: 31849861 PMCID: PMC6901933 DOI: 10.3389/fmicb.2019.02683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023] Open
Abstract
The roles of signaling pathway genes related to the aflatoxin reduction trait in maize were studied for the improvement of maize resistance to the fungal pathogen Aspergillus flavus (A. flavus). In this study, 55 maize genes in plant-pathogen interaction signaling pathways were investigated among 12 maize near-isogenic lines (NILs) that carry maize quantitative trait loci (QTL) associated with aflatoxin reduction. These maize NILs were developed from maize inbred lines Mp313E (resistant donor parent) and Va35 (susceptible recurrent parent). The quantitative RT-PCR (qRT-PCR) technique was used to study the gene expression patterns. Seven calcium-dependent protein kinases and one respiratory burst oxidase displayed significant differential expression levels among the maize QTL-NILs. In addition, the gene expression profiles of WRKY transcription factors were also examined. Maize WRKY 52, WRKY 71, and WRKY83 genes displayed significantly differential expression levels among the QTL-NILs. The elucidation of differentially expressed signaling pathway genes involving maize resistance to A. flavus can provide insights into maize disease resistance and enhance maize molecular breeding.
Collapse
Affiliation(s)
- Felicia Parish
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - W. Paul Williams
- United States Department of Agriculture, Agricultural Research Service, Maize Host Plant Resistance Research Unit, Starkville, MS, United States
| | - Gary L. Windham
- United States Department of Agriculture, Agricultural Research Service, Maize Host Plant Resistance Research Unit, Starkville, MS, United States
| | - Xueyan Shan
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
42
|
Ding H, Yuan G, Mo S, Qian Y, Wu Y, Chen Q, Xu X, Wu X, Ge C. Genome-wide analysis of the plant-specific VQ motif-containing proteins in tomato (Solanum lycopersicum) and characterization of SlVQ6 in thermotolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:29-39. [PMID: 31479880 DOI: 10.1016/j.plaphy.2019.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/16/2019] [Accepted: 08/25/2019] [Indexed: 05/12/2023]
Abstract
The VQ motif-containing (VQ) proteins are plant-specific proteins with a conserved "FxxhVQxhTG" amino acid sequence, which regulate plant growth and development. Little is known, however, about the function of VQ proteins in tomato (Solanum lycopersicum). Here, a total of 26 SlVQ proteins were confirmed and characterized using a comprehensive genome-wide analysis. The SlVQ proteins all contain the conserved motif with seven variations, which are classified into eight groups (I, II, IV-VI, VIII-X). Most of them were predicted to be localized in the nucleus. Besides, a network including SlVQ proteins interaction with WRKY transcription factors (SlWRKYs) and mitogen-activated protein kinases (SlMPKs) is proposed. In addition, among the SlVQ genes, SlVQ6 was expressed in the range of organs and tissues with the highest levels and could response to different stresses. Ectopically overexpression of SlVQ6 in Arabidopsis plants decreased high temperature tolerance. RNA sequencing analysis revealed that several stress-related genes, such as HSP70-4, RD20, GolS1 and AT4g36010 were down-regulated in SlVQ6 overexpressing plants compared to these in wild-type under normal growth conditions. This study provides critical information about SlVQ genes and their encoded proteins, as well as further research on SlVQ functions in tomato growth and development.
Collapse
Affiliation(s)
- Haidong Ding
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Guibo Yuan
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Shuangrong Mo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yin Qian
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuan Wu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qi Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoying Xu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoxia Wu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Cailin Ge
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
43
|
Singh A, Singh PK, Sharma AK, Singh NK, Sonah H, Deshmukh R, Sharma TR. Understanding the Role of the WRKY Gene Family under Stress Conditions in Pigeonpea ( Cajanus Cajan L.). PLANTS 2019; 8:plants8070214. [PMID: 31295921 PMCID: PMC6681228 DOI: 10.3390/plants8070214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/26/2022]
Abstract
Pigeonpea (Cajanus cajan L.), a protein-rich legume, is a major food component of the daily diet for residents in semi-arid tropical regions of the word. Pigeonpea is also known for its high level of tolerance against biotic and abiotic stresses. In this regard, understanding the genes involved in stress tolerance has great importance. In the present study, identification, and characterization of WRKY, a large transcription factor gene family involved in numerous biological processes like seed germination, metabolism, plant growth, biotic and abiotic stress responses was performed in pigeonpea. A total of 94 WRKY genes identified in the pigeonpea genome were extensively characterized for gene-structures, localizations, phylogenetic distribution, conserved motif organizations, and functional annotation. Phylogenetic analysis revealed three major groups (I, II, and III) of pigeonpea WRKY genes. Subsequently, expression profiling of 94 CcWRKY genes across different tissues like root, nodule, stem, petiole, petal, sepal, shoot apical meristem (SAM), mature pod, and mature seed retrieved from the available RNAseq data identified tissue-specific WRKY genes with preferential expression in the vegetative and reproductive stages. Gene co-expression networks identified four WRKY genes at the center of maximum interaction which may play a key role in the entire WRKY regulations. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) expression analysis of WRKY genes in root and leaf tissue samples from plants under drought and salinity stress identified differentially expressed WRKY genes. The study will be helpful to understand the evolution, regulation, and distribution of the WRKY gene family, and additional exploration for the development of stress tolerance cultivars in pigeonpea and other legumes crops.
Collapse
Affiliation(s)
- Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 226031, India
| | | | - Ajay Kumar Sharma
- Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh 250005, India
| | | | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India.
| |
Collapse
|
44
|
Aamir M, Kashyap SP, Zehra A, Dubey MK, Singh VK, Ansari WA, Upadhyay RS, Singh S. Trichoderma erinaceum Bio-Priming Modulates the WRKYs Defense Programming in Tomato Against the Fusarium oxysporum f. sp. lycopersici ( Fol) Challenged Condition. FRONTIERS IN PLANT SCIENCE 2019; 10:911. [PMID: 31428107 PMCID: PMC6689972 DOI: 10.3389/fpls.2019.00911] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 06/27/2019] [Indexed: 05/03/2023]
Abstract
The beneficial association and interaction of rhizocompetent microorganisms are widely used for plant biofertilization and amelioration of stress-induced damage in plants. To explore the regulatory mechanism involved in plant defense while associating with beneficial microbial species, and their interplay when co-inoculated with pathogens, we evaluated the response of tomato defense-related WRKY gene transcripts. The present study was carried out to examine the qRT-PCR-based relative quantification of differentially expressed defense-related genes in tomato (Solanum lycopersicum L.; variety S-22) primed with Trichoderma erinaceum against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici). The tissue-specific and time-bound expression profile changes under the four different treatments "(unprimed, Fol challenged, T. erinaceum primed and Fol+ T. erinaceum)" revealed that the highest upregulation was observed in the transcript profile of SlWRKY31 (root) and SlWRKY37 (leaf) in T. erinaceum bioprimed treated plants at 24 h with 16.51- and 14.07-fold increase, respectively. In contrast, SlWRKY4 showed downregulation with the highest repression in T. erinaceum bioprimed root (24 h) and leaf (48 h) tissue samples with 0.03 and 0.08 fold decrease, respectively. Qualitative expression of PR proteins (chitinases and glucanases) was found elicited in T. erinaceum primed plants. However, the antioxidative activity of tomato superoxide dismutase and catalase increased with the highest upregulation of SOD and SlGPX1 in Fol + T. erinaceum treatments. We observed that these expression changes were accompanied by 32.06% lesser H2O2 production in T. erinaceum bioprimed samples. The aggravated defense response in all the treated conditions was also reflected by an increased lignified stem tissues. Overall, we conclude that T. erinaceum bio-priming modulated the defense transcriptome of tomato after the Fol challenged conditions, and were accompanied by enhanced accumulation of defense-related WRKY transcripts, increased antioxidative enzyme activities, and the reinforcements through a higher number of lignified cell layers.
Collapse
Affiliation(s)
- Mohd Aamir
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- *Correspondence: Mohd Aamir,
| | - Sarvesh Pratap Kashyap
- Division of Crop Improvement and Biotechnology, Indian Institute of Vegetable Research, Indian Council of Agricultural Research, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Andleeb Zehra
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Manish Kumar Dubey
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Waquar Akhtar Ansari
- Division of Crop Improvement and Biotechnology, Indian Institute of Vegetable Research, Indian Council of Agricultural Research, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ram S. Upadhyay
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra Singh
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
45
|
Pathak RK, Baunthiyal M, Pandey D, Kumar A. Augmentation of crop productivity through interventions of omics technologies in India: challenges and opportunities. 3 Biotech 2018; 8:454. [PMID: 30370195 PMCID: PMC6195494 DOI: 10.1007/s13205-018-1473-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023] Open
Abstract
With the continuous increase in the population of developing countries and decline of natural resources, there is an urgent need to qualitatively and quantitatively augment crop productivity by using new tools and technologies for improvement of agriculturally important traits. The new scientific and technological omics-based approaches have enabled us to deal with several issues and challenges faced by modern agricultural system and provided us novel opportunities for ensuring food and nutritional security. Recent developments in sequencing techniques have made available huge amount of genomic and transcriptomic data on model and cultivated crop plants including Arabidopsis thaliana, Oryza sativa, Triticum aestivum etc. The sequencing data along with other data generated through several omics platforms have significantly influenced the disciplines of crop sciences. Gene discovery and expression profiling-based technologies are offering enormous opportunities to the scientific community which can now apply marker-assisted selection technology to assess and enhance diversity in their collected germplasm, introgress essential traits from new sources and investigate genes that control key traits of crop plants. Utilization of omics science and technologies for crop productivity, protection and management has recently been receiving a lot of attention; the majority of the efforts have been put into signifying the possible applications of various omics technologies in crop plant sciences. This article highlights the background of challenges and opportunities for augmentation of crop productivity through interventions of omics technologies in India.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
- Department of Biotechnology, G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Mamta Baunthiyal
- Department of Biotechnology, G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Dinesh Pandey
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
- Present Address: Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh 284003 India
| |
Collapse
|
46
|
Wang Y, Jiang L, Chen J, Tao L, An Y, Cai H, Guo C. Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean. PLoS One 2018; 13:e0192382. [PMID: 29466387 PMCID: PMC5821330 DOI: 10.1371/journal.pone.0192382] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 01/20/2018] [Indexed: 02/06/2023] Open
Abstract
The WRKY transcription factors play an important role in the regulation of transcriptional reprogramming associated with plant abiotic stress responses. In this study, the WRKY transcription factor MsWRKY11, containing the plant-specific WRKY zinc finger DNA-binding motif, was isolated from alfalfa. The MsWRKY11 gene was detected in all plant tissues (root, stem, leaf, flower, and fruit), with high expression in root and leaf tissues. MsWRKY11 was upregulated in response to a variety of abiotic stresses, including salinity, alkalinity, cold, abscisic acid, and drought. Overexpression of MsWRKY11 in soybean enhanced the salt tolerance at the seedling stage. Transgenic soybean had a better salt-tolerant phenotype, and the hypocotyls were significantly longer than those of wild-type seeds after salt treatment. Furthermore, MsWRKY11 overexpression increased the contents of chlorophyll, proline, soluble sugar, superoxide dismutase, and catalase, but reduced the relative electrical conductivity and the contents of malonaldehyde, H2O2, and O2-. Plant height, pods per plant, seeds per plant, and 100-seed weight of transgenic MsWRKY11 soybean were higher than those of wild-type soybean, especially OX2. Results of the salt experiment showed that MsWRKY11 is involved in salt stress responses, and its overexpression improves salt tolerance in soybean.
Collapse
Affiliation(s)
- Youjing Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin City, Heilongjiang Province, People’s Republic of China
| | - Lin Jiang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin City, Heilongjiang Province, People’s Republic of China
| | - Jiaqi Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin City, Heilongjiang Province, People’s Republic of China
| | - Lei Tao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin City, Heilongjiang Province, People’s Republic of China
| | - Yimin An
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin City, Heilongjiang Province, People’s Republic of China
| | - Hongsheng Cai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin City, Heilongjiang Province, People’s Republic of China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin City, Heilongjiang Province, People’s Republic of China
| |
Collapse
|
47
|
Bai Y, Sunarti S, Kissoudis C, Visser RGF, van der Linden CG. The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses. FRONTIERS IN PLANT SCIENCE 2018; 9:801. [PMID: 29951078 PMCID: PMC6008426 DOI: 10.3389/fpls.2018.00801] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/24/2018] [Indexed: 05/20/2023]
Abstract
In the field, plants constantly face a plethora of abiotic and biotic stresses that can impart detrimental effects on plants. In response to multiple stresses, plants can rapidly reprogram their transcriptome through a tightly regulated and highly dynamic regulatory network where WRKY transcription factors can act as activators or repressors. WRKY transcription factors have diverse biological functions in plants, but most notably are key players in plant responses to biotic and abiotic stresses. In tomato there are 83 WRKY genes identified. Here we review recent progress on functions of these tomato WRKY genes and their homologs in other plant species, such as Arabidopsis and rice, with a special focus on their involvement in responses to abiotic and biotic stresses. In particular, we highlight WRKY genes that play a role in plant responses to a combination of abiotic and biotic stresses.
Collapse
|