1
|
Liu YQ, Yang Q, He GW. Post-translational acylation of proteins in cardiac hypertrophy. Nat Rev Cardiol 2025:10.1038/s41569-025-01150-1. [PMID: 40229510 DOI: 10.1038/s41569-025-01150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2025] [Indexed: 04/16/2025]
Abstract
Acylations are post-translational modifications in which functional groups are attached to amino acids on proteins. Most acylations (acetylation, butyrylation, crotonylation, lactylation, malonylation, propionylation and succinylation) involve lysine but cysteine (palmitoylation) and glycine (myristoylation) residues can also be altered. Acylations have important roles in physiological and pathophysiological processes, including cardiac hypertrophy and related cardiovascular diseases. These post-translational modifications influence chromatin architecture, transcriptional regulation and metabolic pathways, thereby affecting cardiomyocyte function and pathology. The dynamic interaction between these acylations and their regulatory enzymes, such as histone acetyltransferases, histone deacetylases and sirtuins, underscores the complexity of cellular homeostasis and pathological processes. Emerging evidence highlights the therapeutic potential of targeting acylations to modulate enzyme activity and metabolite levels, offering promising avenues for novel treatments. In this Review, we explore the diverse mechanisms through which acylations contribute to cardiac hypertrophy, highlighting the complexity and potential therapeutic targets in this regulatory network.
Collapse
Affiliation(s)
- Ying-Qi Liu
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Qin Yang
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China.
- Division of Cardiothoracic Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Øye H, Lundekvam M, Caiella A, Hellesvik M, Arnesen T. Protein N-terminal modifications: molecular machineries and biological implications. Trends Biochem Sci 2025; 50:290-310. [PMID: 39837675 DOI: 10.1016/j.tibs.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
The majority of eukaryotic proteins undergo N-terminal (Nt) modifications facilitated by various enzymes. These enzymes, which target the initial amino acid of a polypeptide in a sequence-dependent manner, encompass peptidases, transferases, cysteine oxygenases, and ligases. Nt modifications - such as acetylation, fatty acylations, methylation, arginylation, and oxidation - enhance proteome complexity and regulate protein targeting, stability, and complex formation. Modifications at protein N termini are thereby core components of a large number of biological processes, including cell signaling and motility, autophagy regulation, and plant and animal oxygen sensing. Dysregulation of Nt-modifying enzymes is implicated in several human diseases. In this feature review we provide an overview of the various protein Nt modifications occurring either co- or post-translationally, the enzymes involved, and the biological impact.
Collapse
Affiliation(s)
- Hanne Øye
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Malin Lundekvam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessia Caiella
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
3
|
Wyżewski Z, Gregorczyk-Zboroch KP, Mielcarska MB, Świtlik W, Niedzielska A. Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections. Int J Mol Sci 2025; 26:2385. [PMID: 40141030 PMCID: PMC11942203 DOI: 10.3390/ijms26062385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The BH3-interacting domain death agonist (Bid), a proapoptotic signaling molecule of the B-cell lymphoma 2 (Bcl-2) family, is a key regulator of mitochondrial outer membrane (MOM) permeability. Uniquely positioned at the intersection of extrinsic and intrinsic apoptosis pathways, Bid links death receptor signaling to the mitochondria-dependent cascade and can also be activated by endoplasmic reticulum (ER) stress. In its active forms, cleaved Bid (cBid) and truncated Bid (tBid), it disrupts MOM integrity via Bax/Bak-dependent and independent mechanisms. Apoptosis plays a dual role in viral infections, either promoting or counteracting viral propagation. Consequently, viruses modulate Bid signaling to favor their replication. The deregulation of Bid activity contributes to oncogenic transformation, inflammation, immunosuppression, neurotoxicity, and pathogen propagation during various viral infections. In this work, we explore Bid's structure, function, activation processes, and mitochondrial targeting. We describe its role in apoptosis induction and its involvement in infections with multiple viruses. Additionally, we discuss the therapeutic potential of Bid in antiviral strategies. Understanding Bid's signaling pathways offers valuable insights into host-virus interactions and the pathogenesis of infections. This knowledge may facilitate the development of novel therapeutic approaches to combat virus-associated diseases effectively.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Karolina Paulina Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Weronika Świtlik
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Adrianna Niedzielska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| |
Collapse
|
4
|
Feng R, Chen S, Duan S, Guo Z, Wu N, Hong H, Fang Z, Wang L, Du Y, Wu L, Zhong X, Hu Y, Zhang Z, Abdurahman M, Li P, Li H, Ge J. SIRT6 promotes angiogenesis by enhancing VEGFA secretion via demyristoylation in endothelial cell. J Mol Cell Cardiol 2025; 199:104-117. [PMID: 39753390 DOI: 10.1016/j.yjmcc.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 02/03/2025]
Abstract
Angiogenesis plays a pivotal role in ischemic cardiovascular disease, accompanied by epigenetic regulation during this process. Sirtuin 6 (SIRT6) has been implicated in the regulation of DNA repair, transcription and aging, with its deacetylase activity fully studied. However, the role of SIRT6 demyristoylase activity remains less clear, with even less attention given to its myristoylated substrates. In this study, we report that endothelial specific SIRT6 knockout attenuated angiogenesis in mice, while SIRT6 was observed to promote migration and tube formation in endothelial cell. Notably, we further determined that SIRT6 affects the intracellular VEGFA and global myristoylation level under hypoxia. Moreover, ALK14 (myristic acids analogue) treatment and SIRT6 knockdown results in a significant decrease in VEGFA secretion under hypoxia, implying the involvement of SIRT6 demyristoylase activity in angiogenesis. Mechanistically, CLICK IT assay verified that VEGFA is a myristoylated substrate of SIRT6. Further, overexpression of SIRT6 mutants (R65A, G60A and H133Y) results in profound differences in VEGFA secretion, indicating that SIRT6 promotes VEGFA secretion through demyristoylation but not deacetylation. Finally, overexpression of SIRT6 rescued the diminishment of endothelial migration, tube formation and sprouting caused by ALK14 treatment. Overall, our study demonstrates that SIRT6 regulates angiogenesis by demyristoylating VEGFA and increasing VEGFA secretion. Therefore, modulation of SIRT6 demyristoylase activity may represent a therapeutic strategy for ischemic cardiovascular disease.
Collapse
Affiliation(s)
- Runyang Feng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Shuangshuang Chen
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shichao Duan
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Zhenyang Guo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Na Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Hangnan Hong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Zheyan Fang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Litao Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Yuxin Du
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Lin Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Xin Zhong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Zhentao Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Mukaddas Abdurahman
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China.
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Ruan L, Huang L, Wu L, Gu J, Liang Y, Liang X, Shang C. Identification and characterization of interacting proteins of transcription factor DpWRI1-like related to lipid biosynthesis from microalga Dunaliella parva. Heliyon 2025; 11:e41165. [PMID: 39758396 PMCID: PMC11699323 DOI: 10.1016/j.heliyon.2024.e41165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Our previous study found that Dunaliella parva WRINKLED1-like (DpWRI1-like) was a key regulatory factor of lipid biosynthesis in D. parva. DpWRI1-like gene and target genes of DpWRI1-like have been obtained in our previous study, but the interacting proteins of DpWRI1-like are unclear now, which has limited a deep understanding of the function of DpWRI1-like. Yeast two-hybrid was widely used to identify protein-protein interaction. In this study, the interacting proteins of DpWRI1-like were obtained using yeast two-hybrid technique to further realize the role of DpWRI1-like. Three important interacting proteins have the following predicted activities: acyl-CoA-binding domain-containing protein 6 (interacting protein 1, ACBD6), duplicated carbonic anhydrase (interacting protein 2, DCA) and DNA-binding transcription factor (interacting protein 3, TF). Bimolecular fluorescence complementation assay further validated the interaction between DpWRI1-like and interacting proteins ACBD6 and DCA. The further bioinformatics analyses of interacting proteins were conducted. Protein-protein docking indicated the strong affinity between DpWRI1-like and three interacting proteins. Since interacting proteins have been found to be related to lipid biosynthesis in other organisms, this study contributes to a deeper understanding of the role of DpWRI1-like in lipid synthesis. In conclusion, this study firstly reported three interacting proteins (ACBD6, DCA and TF) of DpWRI1-like related to lipid biosynthesis, and conducted their bioinformatics analyses, which would be conducive to a deep understanding of the function of DpWRI1-like in lipid biosynthesis.
Collapse
Affiliation(s)
- Lingru Ruan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China
| | - Limei Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China
| | - Lina Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China
| | - Jinghui Gu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China
| | - Yanyan Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China
| | - Xiuli Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China
| | - Changhua Shang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi, Guilin, Guangxi, 541006, China
| |
Collapse
|
6
|
Fesquet D, Rabeharivelo G, van Dijk J, Prigent C, Morin N, Rouquier S. CCDC69 maintains genome integrity by regulating KIF2C/MCAK depolymerase activity and the stability of the chromosomal passenger complex. Sci Rep 2024; 14:30401. [PMID: 39638803 PMCID: PMC11621681 DOI: 10.1038/s41598-024-81022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
Accurate genome inheritance during cell division relies on a complex chromosome segregation mechanism. This process occurs once all the kinetochores of sister chromatids are attached to microtubules emanating from the opposite poles of the mitotic spindle. To control the precision of this mechanism, the Chromosome Passenger Complex (CPC) actively identifies and corrects improper microtubule attachments. The depolymerase activity of the kinesin KIF2C/MCAK at the kinetochores is involved in this process. CCDC69 is a poorly characterized protein, primarily identified as a regulator of central spindle assembly, whose overexpression prompts rapid microtubule depolymerization. Here, we show that CCDC69 is a cell-cycle regulated protein belonging to the Microtubule-associated Tumor Suppressor (MTUS) superfamily, and even slight deregulation of its expression induces severe early mitotic phenotypes. Myristoylation anchors CCDC69 at the plasma membrane, thus protecting microtubule network integrity. We found that CCDC69 microtubule depolymerization activity relies on KIF2C, with a fraction of CCDC69 localizing to the centromere. Importantly, we demonstrated that CCDC69 regulates the stability of the CPC by safeguarding its members from degradation during mitosis. In summary, our findings underscore CCDC69's essential role as a mitotic regulator, which is crucial for maintaining the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Didier Fesquet
- CRBM CNRS UMR 5237, Equipe Cycle Cellulaire, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Gabriel Rabeharivelo
- CRBM CNRS UMR 5237, Equipe Cycle Cellulaire, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Juliette van Dijk
- CRBM CNRS UMR 5237, Equipe Centrosome Cil Et Pathologies, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Claude Prigent
- CRBM CNRS UMR 5237, Equipe Cycle Cellulaire, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Nathalie Morin
- CRBM CNRS UMR 5237, Equipe Cycle Cellulaire, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Sylvie Rouquier
- CRBM CNRS UMR 5237, Equipe Cycle Cellulaire, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
7
|
Rivière F, Dian C, Dutheil RF, Monassa P, Giglione C, Meinnel T. Novel, tightly structurally related N-myristoyltransferase inhibitors display equally potent yet distinct inhibitory mechanisms. Structure 2024; 32:1737-1750.e3. [PMID: 39208793 DOI: 10.1016/j.str.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
N-myristoyltransferases (NMTs) catalyze essential acylations of N-terminal alpha or epsilon amino groups of glycines or lysines. Here, we reveal that peptides tightly fitting the optimal glycine recognition pattern of human NMTs are potent prodrugs relying on a single-turnover mechanism. Sequence scanning of the inhibitory potency of the series closely reflects NMT glycine substrate specificity rules, with the lead inhibitor blocking myristoylation by NMTs of various species. We further redesigned the series based on the recently recognized lysine-myristoylation mechanism by taking advantage of (1) the optimal peptide chassis and (2) lysine side chain mimicry with unnatural enantiomers. Unlike the lead series, the inhibitory properties of the new compounds rely on the protonated state of the side chain amine, which stabilizes a salt bridge with the catalytic base at the active site. Our study provides the basis for designing first-in-class NMT inhibitors tailored for infectious diseases and alternative active site targeting.
Collapse
Affiliation(s)
- Frédéric Rivière
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Cyril Dian
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Rémi F Dutheil
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Paul Monassa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Xiao P, Meng L, Cui X, Liu X, Qin L, Meng F, Cai X, Kong D, An T, Wang H. VP0 Myristoylation Is Essential for Senecavirus A Replication. Pathogens 2024; 13:601. [PMID: 39057827 PMCID: PMC11280471 DOI: 10.3390/pathogens13070601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Many picornaviruses require the myristoylation of capsid proteins for viral replication. Myristoylation is a site-specific lipidation to the N-terminal G residue of viral proteins, which is catalyzed by the ubiquitous eukaryotic enzyme N-myristoyltransferase (NMT) by allocating the myristoyl group to the N-terminal G residue. IMP-1088 and DDD85646 are two inhibitors that can deprive NMT biological functions. Whether Senecavirus A (SVA) uses NMT to modify VP0 and regulate viral replication remains unclear. Here, we found that NMT inhibitors could inhibit SVA replication. NMT1 knock-out in BHK-21 cells significantly suppressed viral replication. In contrast, the overexpression of NMT1 in BHK-21 cells benefited viral replication. These results indicated that VP0 is a potential NMT1 substrate. Moreover, we found that the myristoylation of SVA VP0 was correlated to the subcellular distribution of this protein in the cytoplasm. Further, we evaluated which residues at the N-terminus of VP0 are essential for viral replication. The substitution of N-terminal G residue, the myristoylation site of VP0, produced a nonviable virus. The T residue at the fifth position of the substrates facilitates the binding of the substrates to NMT. And our results showed that the T residue at the fifth position of VP0 played a positive role in SVA replication. Taken together, we demonstrated that SVA VP0 myristoylation plays an essential role in SVA replication.
Collapse
Affiliation(s)
- Peiyu Xiao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Liang Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Xingyang Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Xinran Liu
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York, NY 10591, USA;
| | - Lei Qin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Fandan Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin 150069, China
| | - Dongni Kong
- Institute of Veterinary Drug Control, No. 8 Nandajie, Zhongguancun, Haidian, Beijing 100081, China;
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| |
Collapse
|
9
|
Rosenberg EM, Jian X, Soubias O, Jackson RA, Gladu E, Andersen E, Esser L, Sodt AJ, Xia D, Byrd RA, Randazzo PA. Point mutations in Arf1 reveal cooperative effects of the N-terminal extension and myristate for GTPase-activating protein catalytic activity. PLoS One 2024; 19:e0295103. [PMID: 38574162 PMCID: PMC10994351 DOI: 10.1371/journal.pone.0295103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
The ADP-ribosylation factors (Arfs) constitute a family of small GTPases within the Ras superfamily, with a distinguishing structural feature of a hypervariable N-terminal extension of the G domain modified with myristate. Arf proteins, including Arf1, have roles in membrane trafficking and cytoskeletal dynamics. While screening for Arf1:small molecule co-crystals, we serendipitously solved the crystal structure of the non-myristoylated engineered mutation [L8K]Arf1 in complex with a GDP analogue. Like wild-type (WT) non-myristoylated Arf1•GDP, we observed that [L8K]Arf1 exhibited an N-terminal helix that occludes the hydrophobic cavity that is occupied by the myristoyl group in the GDP-bound state of the native protein. However, the helices were offset from one another due to the L8K mutation, with a significant change in position of the hinge region connecting the N-terminus to the G domain. Hypothesizing that the observed effects on behavior of the N-terminus affects interaction with regulatory proteins, we mutated two hydrophobic residues to examine the role of the N-terminal extension for interaction with guanine nucleotide exchange factors (GEFs) and GTPase Activating Proteins (GAPs. Different than previous studies, all mutations were examined in the context of myristoylated Arf. Mutations had little or no effect on spontaneous or GEF-catalyzed guanine nucleotide exchange but did affect interaction with GAPs. [F13A]myrArf1 was less than 1/2500, 1/1500, and 1/200 efficient as substrate for the GAPs ASAP1, ARAP1 and AGAP1; however, [L8A/F13A]myrArf1 was similar to WT myrArf1. Using molecular dynamics simulations, the effect of the mutations on forming alpha helices adjacent to a membrane surface was examined, yet no differences were detected. The results indicate that lipid modifications of GTPases and consequent anchoring to a membrane influences protein function beyond simple membrane localization. Hypothetical mechanisms are discussed.
Collapse
Affiliation(s)
- Eric M. Rosenberg
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Olivier Soubias
- Section of Macromolecular NMR, Center for Structural Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Rebekah A. Jackson
- Section of Macromolecular NMR, Center for Structural Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Erin Gladu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Emily Andersen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Lothar Esser
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Alexander J. Sodt
- Unit of Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States of America
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - R. Andrew Byrd
- Section of Macromolecular NMR, Center for Structural Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Paul A. Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| |
Collapse
|
10
|
Tsumagari K, Isobe Y, Imami K, Arita M. Exploring protein lipidation by mass spectrometry-based proteomics. J Biochem 2024; 175:225-233. [PMID: 38102731 PMCID: PMC10908362 DOI: 10.1093/jb/mvad109] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Protein lipidation is a common co- or post-translational modification that plays a crucial role in regulating the localization, interaction and function of cellular proteins. Dysregulation of lipid modifications can lead to various diseases, including cancer, neurodegenerative diseases and infectious diseases. Therefore, the identification of proteins undergoing lipidation and their lipidation sites should provide insights into many aspects of lipid biology, as well as providing potential targets for therapeutic strategies. Bottom-up proteomics using liquid chromatography/tandem mass spectrometry is a powerful technique for the global analysis of protein lipidation. Here, we review proteomic methods for profiling protein lipidation, focusing on the two major approaches: the use of chemical probes, such as lipid alkyne probes, and the use of enrichment techniques for endogenous lipid-modified peptides. The challenges facing these methods and the prospects for developing them further to achieve a comprehensive analysis of lipid modifications are discussed.
Collapse
Affiliation(s)
- Kazuya Tsumagari
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yosuke Isobe
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Koshi Imami
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
11
|
Gamerdinger M, Deuerling E. Cotranslational sorting and processing of newly synthesized proteins in eukaryotes. Trends Biochem Sci 2024; 49:105-118. [PMID: 37919225 DOI: 10.1016/j.tibs.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Ribosomes interact with a variety of different protein biogenesis factors that guide newly synthesized proteins to their native 3D shapes and cellular localization. Depending on the type of translated substrate, a distinct set of cotranslational factors must interact with the ribosome in a timely and coordinated manner to ensure proper protein biogenesis. While cytonuclear proteins require cotranslational maturation and folding factors, secretory proteins must be maintained in an unfolded state and processed cotranslationally by transport and membrane translocation factors. Here we explore the specific cotranslational processing steps for cytonuclear, secretory, and membrane proteins in eukaryotes and then discuss how the nascent polypeptide-associated complex (NAC) cotranslationally sorts these proteins into the correct protein biogenesis pathway.
Collapse
Affiliation(s)
- Martin Gamerdinger
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
12
|
Zhang B, Yu Y, Fox BW, Liu Y, Thirumalaikumar VP, Skirycz A, Lin H, Schroeder FC. Amino acid and protein specificity of protein fatty acylation in C. elegans. Proc Natl Acad Sci U S A 2024; 121:e2307515121. [PMID: 38252833 PMCID: PMC10835129 DOI: 10.1073/pnas.2307515121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Protein lipidation plays critical roles in regulating protein function and localization. However, the chemical diversity and specificity of fatty acyl group utilization have not been investigated using untargeted approaches, and it is unclear to what extent structures and biosynthetic origins of S-acyl moieties differ from N- and O-fatty acylation. Here, we show that fatty acylation patterns in Caenorhabditis elegans differ markedly between different amino acid residues. Hydroxylamine capture revealed predominant cysteine S-acylation with 15-methylhexadecanoic acid (isoC17:0), a monomethyl branched-chain fatty acid (mmBCFA) derived from endogenous leucine catabolism. In contrast, enzymatic protein hydrolysis showed that N-terminal glycine was acylated almost exclusively with straight-chain myristic acid, whereas lysine was acylated preferentially with two different mmBCFAs and serine was acylated promiscuously with a broad range of fatty acids, including eicosapentaenoic acid. Global profiling of fatty acylated proteins using a set of click chemistry-capable alkyne probes for branched- and straight-chain fatty acids uncovered 1,013 S-acylated proteins and 510 hydroxylamine-resistant N- or O-acylated proteins. Subsets of S-acylated proteins were labeled almost exclusively by either a branched-chain or a straight-chain probe, demonstrating acylation specificity at the protein level. Acylation specificity was confirmed for selected examples, including the S-acyltransferase DHHC-10. Last, homology searches for the identified acylated proteins revealed a high degree of conservation of acylation site patterns across metazoa. Our results show that protein fatty acylation patterns integrate distinct branches of lipid metabolism in a residue- and protein-specific manner, providing a basis for mechanistic studies at both the amino acid and protein levels.
Collapse
Affiliation(s)
- Bingsen Zhang
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Yan Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Bennett W. Fox
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Yinong Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | | | | | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
- HHMI, Cornell University, Ithaca, NY14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| |
Collapse
|
13
|
Quinn O, Kumar M, Turner S. The role of lipid-modified proteins in cell wall synthesis and signaling. PLANT PHYSIOLOGY 2023; 194:51-66. [PMID: 37682865 PMCID: PMC10756762 DOI: 10.1093/plphys/kiad491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
The plant cell wall is a complex and dynamic extracellular matrix. Plant primary cell walls are the first line of defense against pathogens and regulate cell expansion. Specialized cells deposit a secondary cell wall that provides support and permits water transport. The composition and organization of the cell wall varies between cell types and species, contributing to the extensibility, stiffness, and hydrophobicity required for its proper function. Recently, many of the proteins involved in the biosynthesis, maintenance, and remodeling of the cell wall have been identified as being post-translationally modified with lipids. These modifications exhibit diverse structures and attach to proteins at different sites, which defines the specific role played by each lipid modification. The introduction of relatively hydrophobic lipid moieties promotes the interaction of proteins with membranes and can act as sorting signals, allowing targeted delivery to the plasma membrane regions and secretion into the apoplast. Disruption of lipid modification results in aberrant deposition of cell wall components and defective cell wall remodeling in response to stresses, demonstrating the essential nature of these modifications. Although much is known about which proteins bear lipid modifications, many questions remain regarding the contribution of lipid-driven membrane domain localization and lipid heterogeneity to protein function in cell wall metabolism. In this update, we highlight the contribution of lipid modifications to proteins involved in the formation and maintenance of plant cell walls, with a focus on the addition of glycosylphosphatidylinositol anchors, N-myristoylation, prenylation, and S-acylation.
Collapse
Affiliation(s)
- Oliver Quinn
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Simon Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
14
|
Clarke RJ. Electrostatic switch mechanisms of membrane protein trafficking and regulation. Biophys Rev 2023; 15:1967-1985. [PMID: 38192346 PMCID: PMC10771482 DOI: 10.1007/s12551-023-01166-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024] Open
Abstract
Lipid-protein interactions are normally classified as either specific or general. Specific interactions refer to lipid binding to specific binding sites within a membrane protein, thereby modulating the protein's thermal stability or kinetics. General interactions refer to indirect effects whereby lipids affect membrane proteins by modulating the membrane's physical properties, e.g., its fluidity, thickness, or dipole potential. It is not widely recognized that there is a third distinct type of lipid-protein interaction. Intrinsically disordered N- or C-termini of membrane proteins can interact directly but nonspecifically with the surrounding membrane. Many peripheral membrane proteins are held to the cytoplasmic surface of the plasma membrane via a cooperative combination of two forces: hydrophobic anchoring and electrostatic attraction. An acyl chain, e.g., myristoyl, added post-translationally to one of the protein's termini inserts itself into the lipid matrix and helps hold peripheral membrane proteins onto the membrane. Electrostatic attraction occurs between positively charged basic amino acid residues (lysine and arginine) on one of the protein's terminal tails and negatively charged phospholipid head groups, such as phosphatidylserine. Phosphorylation of either serine or tyrosine residues on the terminal tails via regulatory protein kinases allows for an electrostatic switch mechanism to control trafficking of the protein. Kinase action reduces the positive charge on the protein's tail, weakening the electrostatic attraction and releasing the protein from the membrane. A similar mechanism regulates many integral membrane proteins, but here only electrostatic interactions are involved, and the electrostatic switch modulates protein activity by altering the stabilities of different protein conformational states.
Collapse
Affiliation(s)
- Ronald J. Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006 Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006 Australia
| |
Collapse
|
15
|
Tsumagari K, Isobe Y, Ishihama Y, Seita J, Arita M, Imami K. Application of Liquid-Liquid Extraction for N-terminal Myristoylation Proteomics. Mol Cell Proteomics 2023; 22:100677. [PMID: 37949301 PMCID: PMC10696250 DOI: 10.1016/j.mcpro.2023.100677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Proteins can be modified by lipids in various ways, for example, by myristoylation, palmitoylation, farnesylation, and geranylgeranylation-these processes are collectively referred to as lipidation. Current chemical proteomics using alkyne lipids has enabled the identification of lipidated protein candidates but does not identify endogenous lipidation sites and is not readily applicable to in vivo systems. Here, we introduce a proteomic methodology for global analysis of endogenous protein N-terminal myristoylation sites that combines liquid-liquid extraction of hydrophobic lipidated peptides with liquid chromatography-tandem mass spectrometry using a gradient program of acetonitrile in the high concentration range. We applied this method to explore myristoylation sites in HeLa cells and identified a total of 75 protein N-terminal myristoylation sites, which is more than the number of high-confidence myristoylated proteins identified by myristic acid analog-based chemical proteomics. Isolation of myristoylated peptides from HeLa digests prepared with different proteases enabled the identification of different myristoylated sites, extending the coverage of N-myristoylome. Finally, we analyzed in vivo myristoylation sites in mouse tissues and found that the lipidation profile is tissue-specific. This simple method (not requiring chemical labeling or affinity purification) should be a promising tool for global profiling of protein N-terminal myristoylation.
Collapse
Affiliation(s)
- Kazuya Tsumagari
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yosuke Isobe
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Ibaraki, Japan
| | - Jun Seita
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan.
| | - Koshi Imami
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
| |
Collapse
|
16
|
Jarrin M, Kalligeraki AA, Uwineza A, Cawood CS, Brown AP, Ward EN, Le K, Freitag-Pohl S, Pohl E, Kiss B, Tapodi A, Quinlan RA. Independent Membrane Binding Properties of the Caspase Generated Fragments of the Beaded Filament Structural Protein 1 (BFSP1) Involves an Amphipathic Helix. Cells 2023; 12:1580. [PMID: 37371051 PMCID: PMC10297038 DOI: 10.3390/cells12121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND BFSP1 (beaded filament structural protein 1) is a plasma membrane, Aquaporin 0 (AQP0/MIP)-associated intermediate filament protein expressed in the eye lens. BFSP1 is myristoylated, a post-translation modification that requires caspase cleavage at D433. Bioinformatic analyses suggested that the sequences 434-452 were α-helical and amphipathic. METHODS AND RESULTS By CD spectroscopy, we show that the addition of trifluoroethanol induced a switch from an intrinsically disordered to a more α-helical conformation for the residues 434-467. Recombinantly produced BFSP1 fragments containing this amphipathic helix bind to lens lipid bilayers as determined by surface plasmon resonance (SPR). Lastly, we demonstrate by transient transfection of non-lens MCF7 cells that these same BFSP1 C-terminal sequences localise to plasma membranes and to cytoplasmic vesicles. These can be co-labelled with the vital dye, lysotracker, but other cell compartments, such as the nuclear and mitochondrial membranes, were negative. The N-terminal myristoylation of the amphipathic helix appeared not to change either the lipid affinity or membrane localisation of the BFSP1 polypeptides or fragments we assessed by SPR and transient transfection, but it did appear to enhance its helical content. CONCLUSIONS These data support the conclusion that C-terminal sequences of human BFSP1 distal to the caspase site at G433 have independent membrane binding properties via an adjacent amphipathic helix.
Collapse
Affiliation(s)
- Miguel Jarrin
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
| | - Alexia A. Kalligeraki
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
| | - Alice Uwineza
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
| | - Chris S. Cawood
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
| | - Adrian P. Brown
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
| | - Edward N. Ward
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
| | - Khoa Le
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Stefanie Freitag-Pohl
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Ehmke Pohl
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Bence Kiss
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Antal Tapodi
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Roy A. Quinlan
- Department of Biosciences, Upper Mountjoy Science Site, The University of Durham, South Road, Durham DH1 3LE, UK (R.A.Q.)
- Biophysical Sciences Institute, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Lai L, Ruan J, Xiao C, Yi P. The putative myristoylome of Physcomitrium patens reveals conserved features of myristoylation in basal land plants. PLANT CELL REPORTS 2023; 42:1107-1124. [PMID: 37052714 DOI: 10.1007/s00299-023-03016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/12/2023]
Abstract
KEYMESSAGE The putative myristoylome of moss P. patens opens an avenue for studying myristoylation substrates in non-canonical model plants. A myristoylation signal was shown sufficient for membrane targeting and useful for membrane dynamics visualization during cell growth. N-myristoylation (MYR) is one form of lipid modification catalyzed by N-myristoyltransferase that enables protein-membrane association. MYR is highly conserved in all eukaryotes. However, the study of MYR is limited to a few models such as yeasts, humans, and Arabidopsis. Here, using prediction tools, we report the characterization of the putative myristoylome of the moss Physcomitrium patens. We show that basal land plants display a similar signature of MYR to Arabidopsis and may have organism-specific substrates. Phylogenetically, MYR signals have mostly co-evolved with protein function but also exhibit variability in an organism-specific manner. We also demonstrate that the MYR motif of a moss brassinosteroid-signaling kinase is an efficient plasma membrane targeting signal and labels lipid-rich domains in tip-growing cells. Our results provide insights into the myristoylome in a basal land plant and lay the foundation for future studies on MYR and its roles in plant evolution.
Collapse
Affiliation(s)
- Linyu Lai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, People's Republic of China
| | - Jingtong Ruan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, People's Republic of China
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, People's Republic of China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, People's Republic of China.
| |
Collapse
|
18
|
Lemarié FL, Sanders SS, Nguyen Y, Martin DDO, Hayden MR. Full-length huntingtin is palmitoylated at multiple sites and post-translationally myristoylated following caspase-cleavage. Front Physiol 2023; 14:1086112. [PMID: 36711022 PMCID: PMC9880554 DOI: 10.3389/fphys.2023.1086112] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction: Huntington disease is an autosomal dominant neurodegenerative disorder which is caused by a CAG repeat expansion in the HTT gene that codes for an elongated polyglutamine tract in the huntingtin (HTT) protein. Huntingtin is subjected to multiple post-translational modifications which regulate its cellular functions and degradation. We have previously identified a palmitoylation site at cysteine 214 (C214), catalyzed by the enzymes ZDHHC17 and ZDHHC13. Reduced palmitoylation level of mutant huntingtin is linked to toxicity and loss of function. Moreover, we have described N-terminal myristoylation by the N-myristoyltransferases of a short fragment of huntingtin (HTT553-586) at glycine 553 (G553) following proteolysis at aspartate 552 (D552). Results: Here, we show that huntingtin is palmitoylated at numerous cysteines: C105, C433, C3134 and C3144. In addition, we confirm that full-length huntingtin is cleaved at D552 and post-translationally myristoylated at G553. Importantly, blocking caspase cleavage at the critical and pathogenic aspartate 586 (D586) significantly increases posttranslational myristoylation of huntingtin. In turn, myristoylation of huntingtin promotes the co-interaction between C-terminal and N-terminal huntingtin fragments, which is also protective. Discussion: This suggests that the protective effect of inhibiting caspase-cleavage at D586 may be mediated through post-translational myristoylation of huntingtin at G553.
Collapse
|
19
|
Rivière F, Monassa P, Giglione C, Meinnel T. Kinetic and catalytic features of N-myristoyltransferases. Methods Enzymol 2023; 684:167-190. [DOI: 10.1016/bs.mie.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
20
|
Monassa P, Rivière F, Dian C, Frottin F, Giglione C, Meinnel T. Biochemical and structural analysis of N-myristoyltransferase mediated protein tagging. Methods Enzymol 2023; 684:135-166. [DOI: 10.1016/bs.mie.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
21
|
Blocking AMPK β1 myristoylation enhances AMPK activity and protects mice from high-fat diet-induced obesity and hepatic steatosis. Cell Rep 2022; 41:111862. [PMID: 36543129 DOI: 10.1016/j.celrep.2022.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/07/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of cellular energy homeostasis and a therapeutic target for metabolic diseases. Co/post-translational N-myristoylation of glycine-2 (Gly2) of the AMPK β subunit has been suggested to regulate the distribution of the kinase between the cytosol and membranes through a "myristoyl switch" mechanism. However, the relevance of AMPK myristoylation for metabolic signaling in cells and in vivo is unclear. Here, we generated knockin mice with a Gly2-to-alanine point mutation of AMPKβ1 (β1-G2A). We demonstrate that non-myristoylated AMPKβ1 has reduced stability but is associated with increased kinase activity and phosphorylation of the Thr172 activation site in the AMPK α subunit. Using proximity ligation assays, we show that loss of β1 myristoylation impedes colocalization of the phosphatase PPM1A/B with AMPK in cells. Mice carrying the β1-G2A mutation have improved metabolic health with reduced adiposity, hepatic lipid accumulation, and insulin resistance under conditions of high-fat diet-induced obesity.
Collapse
|
22
|
Soupene E, Kuypers FA. Dual Role of ACBD6 in the Acylation Remodeling of Lipids and Proteins. Biomolecules 2022; 12:biom12121726. [PMID: 36551154 PMCID: PMC9775454 DOI: 10.3390/biom12121726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The transfer of acyl chains to proteins and lipids from acyl-CoA donor molecules is achieved by the actions of diverse enzymes and proteins, including the acyl-CoA binding domain-containing protein ACBD6. N-myristoyl-transferase (NMT) enzymes catalyze the covalent attachment of a 14-carbon acyl chain from the relatively rare myristoyl-CoA to the N-terminal glycine residue of myr-proteins. The interaction of the ankyrin-repeat domain of ACBD6 with NMT produces an active enzymatic complex for the use of myristoyl-CoA protected from competitive inhibition by acyl donor competitors. The absence of the ACBD6/NMT complex in ACBD6.KO cells increased the sensitivity of the cells to competitors and significantly reduced myristoylation of proteins. Protein palmitoylation was not altered in those cells. The specific defect in myristoyl-transferase activity of the ACBD6.KO cells provided further evidence of the essential functional role of the interaction of ACBD6 with the NMT enzymes. Acyl-CoAs bound to the acyl-CoA binding domain of ACBD6 are acyl donors for the lysophospholipid acyl-transferase enzymes (LPLAT), which acylate single acyl-chain lipids, such as the bioactive molecules LPA and LPC. Whereas the formation of acyl-CoAs was not altered in ACBD6.KO cells, lipid acylation processes were significantly reduced. The defect in PC formation from LPC by the LPCAT enzymes resulted in reduced lipid droplets content. The diversity of the processes affected by ACBD6 highlight its dual function as a carrier and a regulator of acyl-CoA dependent reactions. The unique role of ACBD6 represents an essential common feature of (acyl-CoA)-dependent modification pathways controlling the lipid and protein composition of human cell membranes.
Collapse
|
23
|
Meinnel T, Giglione C. N-terminal modifications, the associated processing machinery, and their evolution in plastid-containing organisms. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6013-6033. [PMID: 35768189 DOI: 10.1093/jxb/erac290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The N-terminus is a frequent site of protein modifications. Referring primarily to knowledge gained from land plants, here we review the modifications that change protein N-terminal residues and provide updated information about the associated machinery, including that in Archaeplastida. These N-terminal modifications include many proteolytic events as well as small group additions such as acylation or arginylation and oxidation. Compared with that of the mitochondrion, the plastid-dedicated N-terminal modification landscape is far more complex. In parallel, we extend this review to plastid-containing Chromalveolata including Stramenopiles, Apicomplexa, and Rhizaria. We report a well-conserved machinery, especially in the plastid. Consideration of the two most abundant proteins on Earth-Rubisco and actin-reveals the complexity of N-terminal modification processes. The progressive gene transfer from the plastid to the nuclear genome during evolution is exemplified by the N-terminus modification machinery, which appears to be one of the latest to have been transferred to the nuclear genome together with crucial major photosynthetic landmarks. This is evidenced by the greater number of plastid genes in Paulinellidae and red algae, the most recent and fossil recipients of primary endosymbiosis.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
24
|
Structural and large-scale analysis unveil the intertwined paths promoting NMT-catalyzed lysine and glycine myristoylation. J Mol Biol 2022; 434:167843. [PMID: 36181773 DOI: 10.1016/j.jmb.2022.167843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/20/2022]
Abstract
N-myristoyltransferases (NMTs) catalyze protein myristoylation, a lipid modification crucial for cell survival and a range of pathophysiological processes. Originally thought to modify only N-terminal glycine α-amino groups (G-myristoylation), NMTs were recently shown to also modify lysine ε-amino groups (K-myristoylation). However, the clues ruling NMT-dependent K-myristoylation and the full range of targets are currently unknown. Here we combine mass spectrometry, kinetic studies, in silico analysis, and crystallography to identify the specific features driving each modification. We show that direct interactions between the substrate's reactive amino group and the NMT catalytic base promote K-myristoylation but with poor efficiency compared to G-myristoylation, which instead uses a water-mediated interaction. We provide evidence of depletion of proteins with NMT-dependent K-myristoylation motifs in humans, suggesting evolutionary pressure to prevent this modification in favor of G-myristoylation. In turn, we reveal that K-myristoylation may only result from post-translational events. Our studies finally unravel the respective paths towards K-myristoylation or G-myristoylation, which rely on a very subtle tradeoff embracing the chemical landscape around the reactive group.
Collapse
|
25
|
Meinnel T. Comment on “Binding Affinity Determines Substrate Specificity and Enables Discovery of Substrates for N-Myristoyltransferases”. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Thierry Meinnel
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
26
|
Madeo G, Savojardo C, Luigi Martelli P, Casadio R. SVMyr: a web server detecting co- and post-translational myristoylation in proteins. J Mol Biol 2022; 434:167605. [DOI: 10.1016/j.jmb.2022.167605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/31/2022]
|