1
|
Dong M, Yang W, Hao J, Jia X, Yang O, Lo MKF, Cao B, Hu S, Lin Y. Cross-Scale Multimodal Imaging for Organic Matter in Extraterrestrial Samples. Anal Chem 2025; 97:8258-8267. [PMID: 40102193 PMCID: PMC12019776 DOI: 10.1021/acs.analchem.4c05804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/07/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
The analysis of extraterrestrial organic matter in samples returned by space missions provides a unique opportunity to study prebiotic chemistry. A comprehensive understanding of the occurrence and composition of organic matter is fundamental to unraveling its origin and evolutionary history. However, the scarcity and complexity of these materials pose considerable analytical challenges. Here, we developed a cross-scale multimodal imaging workflow that integrated mass spectrometry imaging (MSI) and vibrational spectroscopy imaging, including desorption electrospray ionization coupled quadrupole-time-of-flight mass spectrometry (DESI-Q-TOF/MS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), nanoscale secondary ion mass spectrometry (NanoSIMS), focal plane array-Fourier transform infrared spectroscopy (FPA-FTIR), and optical photothermal infrared spectroscopy (O-PTIR). This workflow was applied to the Murchison meteorite, with the objective of establishing spatial associations between mineral phases, molecular composition, functional groups, and isotopic composition on a scale from the millimeter to the submicron. The spatial resolution of DESI has been improved from 100 to 200 to 20 μm, enabling spatial correlation with other imaging techniques. For the first time, the enrichment of organic matter─including CHN, CHO, and CHNO compounds and polycyclic aromatic hydrocarbons (PAHs)─in fine-grained rims (FGRs) surrounding silicate chondrules has been observed. Furthermore, the cross-scale multimodal imaging also reveals differences in organic matter composition between Ca-carbonate and phyllosilicates, as well as spatial heterogeneity within the latter. This workflow provides a new paradigm for studying the complex occurrence and composition of organic matter in various research fields, enhancing our understanding of prebiotic materials in the solar system.
Collapse
Affiliation(s)
- Mingtan Dong
- Key
Laboratory of Earth and Planetary Physics, Institute of Geology and
Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yang
- Key
Laboratory of Earth and Planetary Physics, Institute of Geology and
Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jialong Hao
- Key
Laboratory of Earth and Planetary Physics, Institute of Geology and
Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | | | - Ou Yang
- ULVAC-PHI
Instrument Co. Ltd., Nanjing 211102, China
| | - Michael K. F. Lo
- Photothermal
Spectroscopy Corporation, 325 Chapala Street, Santa
Barbara, California 93101, United States
| | - Bobo Cao
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sen Hu
- Key
Laboratory of Earth and Planetary Physics, Institute of Geology and
Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yangting Lin
- Key
Laboratory of Earth and Planetary Physics, Institute of Geology and
Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
2
|
Mota A, Koch S, Matthiae D, Santos N, Cortesão M. How Habitable Are M Dwarf Exoplanets? Modeling Surface Conditions and Exploring the Role of Melanins in the Survival of Aspergillus niger Spores Under Exoplanet-Like Radiation. ASTROBIOLOGY 2025; 25:161-176. [PMID: 40042196 DOI: 10.1089/ast.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Exoplanet habitability remains a challenging field due to the large distances separating Earth from other stars. Using insights from biology and astrophysics, we studied the habitability of M dwarf exoplanets by modeling their surface temperature and flare ultraviolet (UV) and X-ray doses using the martian atmosphere as a shielding model. Analyzing the Proxima Centauri and TRAPPIST-1 systems, our models suggest that Proxima b and TRAPPIST-1 e are likeliest to have temperatures compatible with surface liquid water, as well as tolerable radiation environments. Results of the modeling were used as a basis for microbiology experiments to assess spore survival and germination of the melanin-rich fungus Aspergillus niger to exoplanet-like radiation (UV-C and X-rays). Results showed that A. niger spores can endure superflare events on M dwarf planets when shielded by a Mars-like atmosphere or by a thin layer of soil or water. Melanin-deficient spores suspended in a melanin-rich solution showed higher survival rates and germination efficiency when compared to melanin-free solutions. Overall, the models developed in this work establish a framework for microbiological research in habitability studies. Finally, we showed that A. niger spores can survive harsh radiation conditions of simulated exoplanets, which also emphasizes the importance of multifunctional molecules like melanins in radiation shielding beyond Earth.
Collapse
Affiliation(s)
- Afonso Mota
- Aerospace Microbiology Research Group, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Porto, Portugal
| | - Stella Koch
- Aerospace Microbiology Research Group, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Daniel Matthiae
- Biophysics Research Group, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Nuno Santos
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Porto, Portugal
- Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Marta Cortesão
- Aerospace Microbiology Research Group, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
3
|
Ball R, Brindley J. Reciprocating thermochemical mediator of pre-biotic polymer decomposition on mineral surfaces. J R Soc Interface 2025; 22:20240492. [PMID: 39907458 PMCID: PMC11796468 DOI: 10.1098/rsif.2024.0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/17/2024] [Accepted: 11/26/2024] [Indexed: 02/06/2025] Open
Abstract
A continuing frustration for origin of life scientists is that abiotic and, by extension, pre-biotic attempts to develop self-sustaining, evolving molecular systems tend to produce more dead-end substances than macromolecular products with the necessary potential for biostructure and function - the so-called 'tar problem'. Nevertheless primordial life somehow emerged despite that presumed handicap. A resolution of this problem is important in emergence-of-life science because it would provide valuable guidance in choosing subsequent paths of investigation, such as identifying pre-biotic patterns on Mars. To study the problem we set up a simple non-equilibrium flow dynamical model for the coupled temperature and mass dynamics of the decomposition of a polymeric carbohydrate adsorbed on a mineral surface, with incident stochastic thermal fluctuations. Results show that the model system behaves as a reciprocating thermochemical oscillator. The output fluctuation distribution is bimodal, with a right-weighted component that guarantees a bias towards detachment and desorption of monomeric species such as ribose, even while tar is formed concomitantly. This fluctuating thermochemical reciprocator may ensure that non-performing polymers can be fractionated into a refractory carbon reservoir and active monomers which may be reincorporated into better-performing polymers with less vulnerability towards adsorptive tarring.
Collapse
Affiliation(s)
- Rowena Ball
- Mathematical Sciences Institute, Australian National University, Canberra2602, Australia
| | - John Brindley
- School of Mathematics, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
4
|
Vitas M, Dobovišek A. A possible origin of life in nonpolar environments. Biosystems 2025; 247:105384. [PMID: 39725061 DOI: 10.1016/j.biosystems.2024.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Explaining the emergence of life is perhaps the central and most challenging question in modern science. We are proposing a new hypothesis concerning the origins of life. The new hypothesis is based on the assumption that during the emergence of life, evolution had to first involve autocatalytic systems which only subsequently acquired the capacity of genetic heredity. Additionally, the key abiotic and early biotic molecules required in the formation of early life, like cofactors, coenzymes, nucleic bases, prosthetic groups, polycyclic aromatic hydrocarbons (PAHs), some pigments, etc. are poorly soluble in aqueous media. To avoid the latter concentration problem, the new hypothesis assumes that life could have emerged in the nonpolar environments or low water systems, or at the interphase of the nonpolar and polar water phase, from where it was subsequently transferred to the aqueous environment. To support our hypothesis, we assume that hydrocarbons and oil on the Earth have abiotic origins.
Collapse
Affiliation(s)
- Marko Vitas
- Laze pri Borovnici 38, 1353, Borovnica, Slovenia.
| | - Andrej Dobovišek
- University of Maribor, Faculty of Natural Sciences and Mathematics, Koroška Cesta 160, 2000, Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000, Maribor, Slovenia.
| |
Collapse
|
5
|
Saladino R, Bizzarri BM, Mauro ED. Determinism of formamide-based biogenic prebiotic reactions. Phys Life Rev 2024; 51:243-251. [PMID: 39447275 DOI: 10.1016/j.plrev.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Formamide reacted in the presence of a catalyst and of a source of energy affords a rich and complex panel of compounds, including amino acids, amino sugars, nucleic bases, nucleosides, carboxylic acids, aliphatic chains, and more. Nor the source of energy nor the type of catalyst are fastidious. All the catalysts tested have activity; each catalyst affords its own specific set of products, although the panels of products of each catalyst largely overlap. Potentially biogenic compounds form in reasonable conditions and the chemistry that determines the initial syntheses is facile. Hence, Darwins warm little pond did not rely on exotic environments nor on magic tricks. The type of molecules resulting from a mixture of formamide and of two selected products of its initial reactions hint that the initial prebiotic soup was deterministic and oriented towards life-as-we-know-it.
Collapse
Affiliation(s)
- Raffaele Saladino
- Department of Ecological and Biological Sciences, Via San Camillo De Lellis, Università della Tuscia, Viterbo 01100, Italy
| | - Bruno Mattia Bizzarri
- Department of Ecological and Biological Sciences, Via San Camillo De Lellis, Università della Tuscia, Viterbo 01100, Italy
| | - Ernesto Di Mauro
- Department of Ecological and Biological Sciences, Via San Camillo De Lellis, Università della Tuscia, Viterbo 01100, Italy.
| |
Collapse
|
6
|
Mavridi-Printezi A, Mollica F, Lucernati R, Montalti M, Amorati R. Insight into the Antioxidant Activity of 1,8-Dihydroxynaphthalene Allomelanin Nanoparticles. Antioxidants (Basel) 2023; 12:1511. [PMID: 37627506 PMCID: PMC10451768 DOI: 10.3390/antiox12081511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Melanins are stable and non-toxic pigments with great potential as chemopreventive agents against oxidative stress for medical and cosmetic applications. Allomelanin is a class of nitrogen-free melanin often found in fungi. The artificial allomelanin obtained by the polymerization of 1,8-dihydroxynaphthalene (DHN), poly-DHN (PDHN), has been recently indicated as a better radical quencher than polydopamine (PDA), a melanin model obtained by the polymerization of dopamine (DA); however, the chemical mechanisms underlying this difference are unclear. Here we investigate, by experimental and theoretical methods, the ability of PDHN nanoparticles (PDHN-NP), in comparison to PDA-NP, to trap alkylperoxyl (ROO•) and hydroperoxyl (HOO•) radicals that are involved in the propagation of peroxidation in real conditions. Our results demonstrate that PDHN-NP present a higher antioxidant efficiency with respect to PDA-NP against ROO• in water at pH 7.4 and against mixed ROO• and HOO• in acetonitrile, showing catalytic cross-termination activity. The antioxidant capacity of PDHN-NP in water is 0.8 mmol/g (ROO• radicals quenched by 1 g of PDHN-NP), with a rate constant of 3 × 105 M-1 s-1 for each reactive moiety. Quantum-mechanical calculations revealed that, thanks to the formation of a H-bond network, the quinones in PDHN-NP have a high affinity for H-atoms, thus justifying the high reactivity of PDHN-NP with HOO• observed experimentally.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (F.M.)
| | - Riccardo Amorati
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (F.M.)
| |
Collapse
|
7
|
Terranova ML. Prominent Roles and Conflicted Attitudes of Eumelanin in the Living World. Int J Mol Sci 2023; 24:ijms24097783. [PMID: 37175490 PMCID: PMC10178024 DOI: 10.3390/ijms24097783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Eumelanin, a macromolecule widespread in all the living world and long appreciated for its protective action against harmful UV radiation, is considered the beneficial component of the melanin family (ευ means good in ancient Greek). This initially limited picture has been rather recently extended and now includes a variety of key functions performed by eumelanin in order to support life also under extreme conditions. A lot of still unexplained aspects characterize this molecule that, in an evolutionary context, survived natural selection. This paper aims to emphasize the unique characteristics and the consequent unusual behaviors of a molecule that still holds the main chemical/physical features detected in fossils dating to the late Carboniferous. In this context, attention is drawn to the duality of roles played by eumelanin, which occasionally reverses its functional processes, switching from an anti-oxidant to a pro-oxidant behavior and implementing therefore harmful effects.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dipartimento Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy
| |
Collapse
|
8
|
Calapez F, Dias R, Cesário R, Gonçalves D, Pedras B, Canário J, Martins Z. Spectroscopic Detection of Biosignatures in Natural Ice Samples as a Proxy for Icy Moons. Life (Basel) 2023; 13:478. [PMID: 36836835 PMCID: PMC9960113 DOI: 10.3390/life13020478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Some of the icy moons of the solar system with a subsurface ocean, such as Europa and Enceladus, are the targets of future space missions that search for potential extraterrestrial life forms. While the ice shells that envelop these moons have been studied by several spacecrafts, the oceans beneath them remain unreachable. To better constrain the habitability conditions of these moons, we must understand the interactions between their frozen crusts, liquid layers, and silicate mantles. To that end, astrobiologists rely on planetary field analogues, for which the polar regions of Earth have proven to be great candidates. This review shows how spectroscopy is a powerful tool in space missions to detect potential biosignatures, in particular on the aforementioned moons, and how the polar regions of the Earth are being used as planetary field analogues for these extra-terrestrial environments.
Collapse
Affiliation(s)
- Francisco Calapez
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Rodrigo Dias
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Rute Cesário
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Diogo Gonçalves
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Bruno Pedras
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - João Canário
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Zita Martins
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
9
|
Baqué M, Backhaus T, Meeßen J, Hanke F, Böttger U, Ramkissoon N, Olsson-Francis K, Baumgärtner M, Billi D, Cassaro A, de la Torre Noetzel R, Demets R, Edwards H, Ehrenfreund P, Elsaesser A, Foing B, Foucher F, Huwe B, Joshi J, Kozyrovska N, Lasch P, Lee N, Leuko S, Onofri S, Ott S, Pacelli C, Rabbow E, Rothschild L, Schulze-Makuch D, Selbmann L, Serrano P, Szewzyk U, Verseux C, Wagner D, Westall F, Zucconi L, de Vera JPP. Biosignature stability in space enables their use for life detection on Mars. SCIENCE ADVANCES 2022; 8:eabn7412. [PMID: 36070383 PMCID: PMC9451166 DOI: 10.1126/sciadv.abn7412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/20/2022] [Indexed: 06/14/2023]
Abstract
Two rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the martian environment, clouding the interpretation of the results. To quantify Raman-detectable biomolecule stability, we exposed seven biomolecules for 469 days to a simulated martian environment outside the International Space Station. Ultraviolet radiation (UVR) strongly changed the Raman spectra signals, but only minor change was observed when samples were shielded from UVR. These findings provide support for Mars mission operations searching for biosignatures in the subsurface. This experiment demonstrates the detectability of biomolecules by Raman spectroscopy in Mars regolith analogs after space exposure and lays the groundwork for a consolidated space-proven database of spectroscopy biosignatures in targeted environments.
Collapse
Affiliation(s)
- Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Theresa Backhaus
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Joachim Meeßen
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Franziska Hanke
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Nisha Ramkissoon
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Karen Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Michael Baumgärtner
- Microbial Geoecology and Astrobiology, Department of Ecology and Environmental Sciences, Umeå university, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Rosa de la Torre Noetzel
- Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA), Torrejón de Ardoz-28850, Madrid, Spain
| | - René Demets
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC),, Noordwijk, Netherlands
| | - Howell Edwards
- University of Bradford, University Analytical Centre, Division of Chemical and Forensic Sciences, Raman Spectroscopy Group, West Yorkshire, UK
| | - Pascale Ehrenfreund
- Leiden Observatory, Laboratory Astrophysics, Leiden University, Leiden, Netherlands
- George Washington University, Space Policy Institute, Washington, DC 20052, USA
| | - Andreas Elsaesser
- Freie Universitaet Berlin, Experimental Biophysics and Space Sciences, Institute of Experimental Physics; Arnimallee 14, 14195 Berlin, Germany
| | - Bernard Foing
- Leiden Observatory, Laboratory Astrophysics, Leiden University, Leiden, Netherlands
- Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081-1087, 1081 HV, Amsterdam, Netherlands
| | - Frédéric Foucher
- CNRS Centre de Biophysique Moléculaire, UPR-4301, Rue Charles Sadron, CS80054, 45071 Orléans Cedex 2, France
| | - Björn Huwe
- Biodiversity Research/Systematic Botany, University of Potsdam, Maulbeerallee 1, D-14469 Potsdam, Germany
- Department Technology Assessment and Substance Cycles, Leibniz- Institute for Agriculture Engineering and Bioeconomy, Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Jasmin Joshi
- Institute for Landscape and Open Space, Eastern Switzerland University of Applied Sciences, Seestrasse 10, 8640 Rapperswil, Switzerland
| | - Natalia Kozyrovska
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str.150, 03680, Kyiv Ukraine
| | - Peter Lasch
- Centre for Biological Threats and Special Pathogens (ZBS 6), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Natuschka Lee
- Microbial Geoecology and Astrobiology, Department of Ecology and Environmental Sciences, Umeå university, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Stefan Leuko
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147 Köln, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Sieglinde Ott
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Research and Science Department, Italian Space Agency (ASI), Via del Politecnico snc, 00133, Rome, Italy
| | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147 Köln, Germany
| | - Lynn Rothschild
- NASA Ames Research Center, Mail Stop 239-20, P.O. Box 1, Moffett Field, CA 94035-0001, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Dirk Schulze-Makuch
- Technical University Berlin, ZAA, Hardenbergstr. 36, D-10623 Berlin, Germany
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Stechlin, Germany
| | - Laura Selbmann
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), 16121 Genoa, Italy
| | - Paloma Serrano
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), Telegrafenberg, 14473 Potsdam, Germany
| | - Ulrich Szewzyk
- Institute of Environmental Technology, Environmental Microbiology, Technical University Berlin, Ernst-Reuter-Platz 1, Berlin, 10587 Berlin, Germany
| | - Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2, 28359, Bremen, Germany
| | - Dirk Wagner
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24, 14476, Potsdam, Germany
| | - Frances Westall
- CNRS Centre de Biophysique Moléculaire, UPR-4301, Rue Charles Sadron, CS80054, 45071 Orléans Cedex 2, France
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Jean-Pierre P. de Vera
- German Aerospace Center (DLR), Microgravity User Support Center (MUSC), Linder Höhe, 51147 Köln, Germany
| |
Collapse
|
10
|
Manini P, d'Ischia M. The new frontier of an IOM-based panspermia hypothesis: Perspectives and feasibility: Response to commentary on "Insoluble organic matter in chondrites: Archetypal melaninlike PAH-based multifunctionality at the origin of life?". Phys Life Rev 2022; 42:49-51. [PMID: 35772247 DOI: 10.1016/j.plrev.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy.
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy
| |
Collapse
|
11
|
Lara YJ, McCann A, Malherbe C, François C, Demoulin CF, Sforna MC, Eppe G, De Pauw E, Wilmotte A, Jacques P, Javaux EJ. Characterization of the Halochromic Gloeocapsin Pigment, a Cyanobacterial Biosignature for Paleobiology and Astrobiology. ASTROBIOLOGY 2022; 22:735-754. [PMID: 35333546 DOI: 10.1089/ast.2021.0061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV)-screening compounds represent a substantial asset for the survival of cyanobacteria in extreme environments exposed to high doses of UV radiations on modern and early Earth. Among these molecules, the halochromic pigment gloeocapsin remains poorly characterized and studied. In this study, we identified a gloeocapsin-producing cultivable cyanobacteria: the strain Phormidesmis nigrescens ULC007. We succeeded to extract, to partially purify, and to compare the dark blue pigment from both the ULC007 culture and an environmental Gloeocapsa alpina dominated sample. FT-IR and Raman spectra of G. alpina and P. nigrescens ULC007 pigment extracts strongly suggested a common backbone structure. The high-pressure liquid chromatography-UV-MS/MS analysis of the ULC007 pigment extract allowed to narrow down the molecular formula of gloeocapsin to potentially five candidates within three classes of halochromic molecules: anthraquinone derivatives, coumarin derivatives, and flavonoids. With the discovery of gloeocapsin in P. nigrescens, the production of this pigment is now established for three lineages of cyanobacteria (including G. alpina, P. nigrescens, and Solentia paulocellulare) that belong to three distinct orders (Chroococcales, Pleurocapsales, Synechoccocales), inhabiting very diverse environments. This suggests that gloeocapsin production was a trait of their common ancestor or was acquired by lateral gene transfer. This work represents an important step toward the elucidation of the structure of this enigmatic pigment and its biosynthesis, and it potentially provides a new biosignature for ancient cyanobacteria. It also gives a glimpse on the evolution of UV protection strategies, which are relevant for early phototrophic life on Earth and possibly beyond.
Collapse
Affiliation(s)
- Yannick J Lara
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Andréa McCann
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Cédric Malherbe
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Camille François
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Catherine F Demoulin
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Marie Catherine Sforna
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Gauthier Eppe
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-CIP, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Philippe Jacques
- Microbial Processes and Interactions, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro UMRt 1158, University of Liège, Gembloux, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Coelho LF, Madden J, Kaltenegger L, Zinder S, Philpot W, Esquível MG, Canário J, Costa R, Vincent WF, Martins Z. Color Catalogue of Life in Ice: Surface Biosignatures on Icy Worlds. ASTROBIOLOGY 2022; 22:313-321. [PMID: 34964651 DOI: 10.1089/ast.2021.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With thousands of discovered planets orbiting other stars and new missions that will explore our solar system, the search for life in the universe has entered a new era. However, a reference database to enable our search for life on the surface of icy exoplanets and exomoons by using records from Earth's icy biota is missing. Therefore, we developed a spectra catalogue of life in ice to facilitate the search for extraterrestrial signs of life. We measured the reflection spectra of 80 microorganisms-with a wide range of pigments-isolated from ice and water. We show that carotenoid signatures are wide-ranged and intriguing signs of life. Our measurements allow for the identification of such surface life on icy extraterrestrial environments in preparation for observations with the upcoming ground- and space-based telescopes. Dried samples reveal even higher reflectance, which suggests that signatures of surface biota could be more intense on exoplanets and moons that are drier than Earth or on environments like Titan where potential life-forms may use a different solvent. Our spectra library covers the visible to near-infrared and is available online. It provides a guide for the search for surface life on icy worlds based on biota from Earth's icy environments.
Collapse
Affiliation(s)
- Lígia F Coelho
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Jack Madden
- Department of Astronomy, Cornell University, Ithaca, New York, USA
- Carl Sagan Institute, Ithaca, New York, USA
| | - Lisa Kaltenegger
- Department of Astronomy, Cornell University, Ithaca, New York, USA
- Carl Sagan Institute, Ithaca, New York, USA
| | - Stephen Zinder
- Carl Sagan Institute, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - William Philpot
- Carl Sagan Institute, Ithaca, New York, USA
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - M Glória Esquível
- Landscape, Environment, Agriculture and Food-LEAF Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - João Canário
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Warwick F Vincent
- Centre for Northern Studies (CEN), Takuvik & Biology Department, Université Laval, Québec, Canada
| | - Zita Martins
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Dadachova E. Melanin - protecting and enhancing the earliest life on Earth: Comment on "Insoluble organic matter in chondrites: Archetypal melanin-like PAH-based multifunctionality at the origin of life?" by Marco d'Ischia et al. Phys Life Rev 2021; 38:127-128. [PMID: 34088610 DOI: 10.1016/j.plrev.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
14
|
Šponer JE, Šponer J. Insoluble organic matter - an "organic" cradle of life: Comment on the paper "Insoluble organic matter in chondrites: Archetypal melanin-like PAH-based multifunctionality at the origin of life?" by Marco d'Ischia et al. Phys Life Rev 2021; 38:135-136. [PMID: 34049815 DOI: 10.1016/j.plrev.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic.
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
15
|
Cassone G, Saija F. Interstellar chemical reactions toward the synthesis of the life's building blocks: Comment on "Insoluble organic matter in chondrites: Archetypal melanin-like PAH-based multifunctionality at the origin of life?" by M. d'Ischia et al. Phys Life Rev 2021; 38:140-142. [PMID: 34049816 DOI: 10.1016/j.plrev.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Giuseppe Cassone
- CNR - Institute for Chemical-Physical Processes (IPCF), Viale Ferdinando Stagno d'Alcontres 37, I-98158 Messina, Italy
| | - Franz Saija
- CNR - Institute for Chemical-Physical Processes (IPCF), Viale Ferdinando Stagno d'Alcontres 37, I-98158 Messina, Italy.
| |
Collapse
|
16
|
Mamajanov I. Single-molecule origin of life scenario: Necessity and feasibility: Comment on "Insoluble organic matter in chondrites: Archetypal melanin-like PAH-based multifunctionality at the origin of life?" by Marco d'Ischia et al. Phys Life Rev 2021; 38:143-144. [PMID: 34274248 DOI: 10.1016/j.plrev.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Irena Mamajanov
- Earth Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan.
| |
Collapse
|