1
|
Gentili PL, Stano P. Living cells and biological mechanisms as prototypes for developing chemical artificial intelligence. Biochem Biophys Res Commun 2024; 720:150060. [PMID: 38754164 DOI: 10.1016/j.bbrc.2024.150060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Artificial Intelligence (AI) is having a revolutionary impact on our societies. It is helping humans in facing the global challenges of this century. Traditionally, AI is developed in software or through neuromorphic engineering in hardware. More recently, a brand-new strategy has been proposed. It is the so-called Chemical AI (CAI), which exploits molecular, supramolecular, and systems chemistry in wetware to mimic human intelligence. In this work, two promising approaches for boosting CAI are described. One regards designing and implementing neural surrogates that can communicate through optical or chemical signals and give rise to networks for computational purposes and to develop micro/nanorobotics. The other approach concerns "bottom-up synthetic cells" that can be exploited for applications in various scenarios, including future nano-medicine. Both topics are presented at a basic level, mainly to inform the broader audience of non-specialists, and so favour the rise of interest in these frontier subjects.
Collapse
Affiliation(s)
- Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, Perugia, Italy.
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
2
|
Fielden SDP. Kinetically Controlled and Nonequilibrium Assembly of Block Copolymers in Solution. J Am Chem Soc 2024; 146:18781-18796. [PMID: 38967256 PMCID: PMC11258791 DOI: 10.1021/jacs.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Covalent polymers are versatile macromolecules that have found widespread use in society. Contemporary methods of polymerization have made it possible to construct sequence polymers, including block copolymers, with high precision. Such copolymers assemble in solution when the blocks have differing solubilities. This produces nano- and microparticles of various shapes and sizes. While it is straightforward to draw an analogy between such amphiphilic block copolymers and phospholipids, these two classes of molecules show quite different assembly characteristics. In particular, block copolymers often assemble under kinetic control, thus producing nonequilibrium structures. This leads to a rich variety of behaviors being observed in block copolymer assembly, such as pathway dependence (e.g., thermal history), nonergodicity and responsiveness. The dynamics of polymer assemblies can be readily controlled using changes in environmental conditions and/or integrating functional groups situated on polymers with external chemical reactions. This perspective highlights that kinetic control is both pervasive and a useful attribute in the mechanics of block copolymer assembly. Recent examples are highlighted in order to show that toggling between static and dynamic behavior can be used to generate, manipulate and dismantle nonequilibrium states. New methods to control the kinetics of block copolymer assembly will provide endless unanticipated applications in materials science, biomimicry and medicine.
Collapse
Affiliation(s)
- Stephen D. P. Fielden
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| |
Collapse
|
3
|
Witkowski O, Schwitzgebel E. The Ethics of Life as It Could Be: Do We Have Moral Obligations to Artificial Life? ARTIFICIAL LIFE 2024; 30:193-215. [PMID: 38656414 DOI: 10.1162/artl_a_00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The field of Artificial Life studies the nature of the living state by modeling and synthesizing living systems. Such systems, under certain conditions, may come to deserve moral consideration similar to that given to nonhuman vertebrates or even human beings. The fact that these systems are nonhuman and evolve in a potentially radically different substrate should not be seen as an insurmountable obstacle to their potentially having rights, if they are sufficiently sophisticated in other respects. Nor should the fact that they owe their existence to us be seen as reducing their status as targets of moral concern. On the contrary, creators of Artificial Life may have special obligations to their creations, resembling those of an owner to their pet or a parent to their child. For a field that aims to create artificial life-forms with increasing levels of sophistication, it is crucial to consider the possible ethical implications of our activities, with an eye toward assessing potential moral obligations for which we should be prepared. If Artificial Life is larger than life, then the ethics of artificial beings should be larger than human ethics.
Collapse
Affiliation(s)
- Olaf Witkowski
- Cross Compass Ltd. Cross Labs University of Tokyo College of Arts and Sciences.
| | | |
Collapse
|
4
|
Gentili PL. The Conformational Contribution to Molecular Complexity and Its Implications for Information Processing in Living Beings and Chemical Artificial Intelligence. Biomimetics (Basel) 2024; 9:121. [PMID: 38392167 PMCID: PMC10886813 DOI: 10.3390/biomimetics9020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
This work highlights the relevant contribution of conformational stereoisomers to the complexity and functions of any molecular compound. Conformers have the same molecular and structural formulas but different orientations of the atoms in the three-dimensional space. Moving from one conformer to another is possible without breaking covalent bonds. The interconversion is usually feasible through the thermal energy available in ordinary conditions. The behavior of most biopolymers, such as enzymes, antibodies, RNA, and DNA, is understandable if we consider that each exists as an ensemble of conformers. Each conformational collection confers multi-functionality and adaptability to the single biopolymers. The conformational distribution of any biopolymer has the features of a fuzzy set. Hence, every compound that exists as an ensemble of conformers allows the molecular implementation of a fuzzy set. Since proteins, DNA, and RNA work as fuzzy sets, it is fair to say that life's logic is fuzzy. The power of processing fuzzy logic makes living beings capable of swift decisions in environments dominated by uncertainty and vagueness. These performances can be implemented in chemical robots, which are confined molecular assemblies mimicking unicellular organisms: they are supposed to help humans "colonise" the molecular world to defeat diseases in living beings and fight pollution in the environment.
Collapse
Affiliation(s)
- Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy
| |
Collapse
|
5
|
Nicolaou ZG. When patterns come to life: Comment on "Unified representation of Life's basic properties by a 3-species Stochastic Cubic Autocatalytic Reaction-Diffusion system of equations" by A.P. Muñuzuri and J. Pérez-Mercader. Phys Life Rev 2023; 47:108-109. [PMID: 37820416 DOI: 10.1016/j.plrev.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Affiliation(s)
- Zachary G Nicolaou
- Department of Applied Mathematics, University of Washington, Seattle, 98195, WA, USA.
| |
Collapse
|
6
|
Cuevas-Zuviría B, Fer E, Adam ZR, Kaçar B. The modular biochemical reaction network structure of cellular translation. NPJ Syst Biol Appl 2023; 9:52. [PMID: 37884541 PMCID: PMC10603163 DOI: 10.1038/s41540-023-00315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Translation is an essential attribute of all living cells. At the heart of cellular operation, it is a chemical information decoding process that begins with an input string of nucleotides and ends with the synthesis of a specific output string of peptides. The translation process is interconnected with gene expression, physiological regulation, transcription, and responses to signaling molecules, among other cellular functions. Foundational efforts have uncovered a wealth of knowledge about the mechanistic functions of the components of translation and their many interactions between them, but the broader biochemical connections between translation, metabolism and polymer biosynthesis that enable translation to occur have not been comprehensively mapped. Here we present a multilayer graph of biochemical reactions describing the translation, polymer biosynthesis and metabolism networks of an Escherichia coli cell. Intriguingly, the compounds that compose these three layers are distinctly aggregated into three modes regardless of their layer categorization. Multimodal mass distributions are well-known in ecosystems, but this is the first such distribution reported at the biochemical level. The degree distributions of the translation and metabolic networks are each likely to be heavy-tailed, but the polymer biosynthesis network is not. A multimodal mass-degree distribution indicates that the translation and metabolism networks are each distinct, adaptive biochemical modules, and that the gaps between the modes reflect evolved responses to the functional use of metabolite, polypeptide and polynucleotide compounds. The chemical reaction network of cellular translation opens new avenues for exploring complex adaptive phenomena such as percolation and phase changes in biochemical contexts.
Collapse
Affiliation(s)
- Bruno Cuevas-Zuviría
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Evrim Fer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary R Adam
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Geosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Peng Z, Adam ZR, Fahrenbach AC, Kaçar B. Assessment of Stoichiometric Autocatalysis across Element Groups. J Am Chem Soc 2023; 145:22483-22493. [PMID: 37722081 PMCID: PMC10591316 DOI: 10.1021/jacs.3c07041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 09/20/2023]
Abstract
Autocatalysis has been proposed to play critical roles during abiogenesis. These proposals are at odds with a limited number of known examples of abiotic (and, in particular, inorganic) autocatalytic systems that might reasonably function in a prebiotic environment. In this study, we broadly assess the occurrence of stoichiometries that can support autocatalytic chemical systems through comproportionation. If the product of a comproportionation reaction can be coupled with an auxiliary oxidation or reduction pathway that furnishes a reactant, then a Comproportionation-based Autocatalytic Cycle (CompAC) can exist. Using this strategy, we surveyed the literature published in the past two centuries for reactions that can be organized into CompACs that consume some chemical species as food to synthesize more autocatalysts. 226 CompACs and 44 Broad-sense CompACs were documented, and we found that each of the 18 groups, lanthanoid series, and actinoid series in the periodic table has at least two CompACs. Our findings demonstrate that stoichiometric relationships underpinning abiotic autocatalysis could broadly exist across a range of geochemical and cosmochemical conditions, some of which are substantially different from the modern Earth. Meanwhile, the observation of some autocatalytic systems requires effective spatial or temporal separation between the food chemicals while allowing comproportionation and auxiliary reactions to proceed, which may explain why naturally occurring autocatalytic systems are not frequently observed. The collated CompACs and the conditions in which they might plausibly support complex, "life-like" chemical dynamics can directly aid an expansive assessment of life's origins and provide a compendium of alternative hypotheses concerning false-positive biosignatures.
Collapse
Affiliation(s)
- Zhen Peng
- Department
of Bacteriology, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Zachary R. Adam
- Department
of Bacteriology, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Geoscience, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Albert C. Fahrenbach
- School
of Chemistry, Australian Centre for Astrobiology and the UNSW RNA
Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Betül Kaçar
- Department
of Bacteriology, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Gershenson C. Information, computation, and causality in living systems: Comment on "Unified representation of life's basic properties by a 3-species stochastic cubic autocatalytic reaction-diffusion system of equations", by A.P. Muñuzuri and J. Pérez-Mercader. Phys Life Rev 2023; 46:248-249. [PMID: 37506592 DOI: 10.1016/j.plrev.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Carlos Gershenson
- Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Mexico, 04510, CDMX, Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Circuito Maestro Mario de la Cueva s/n, Mexico, 04510, CDMX, Mexico; Santa Fe Institute, 399 Hyde Park Rd., Santa Fe, 87501, NM, USA.
| |
Collapse
|
9
|
Stano P, Gentili PL, Damiano L, Magarini M. A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things? Molecules 2023; 28:5564. [PMID: 37513436 PMCID: PMC10385758 DOI: 10.3390/molecules28145564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The potential role of bottom-up Synthetic Cells (SCs) in the Internet of Bio-Nano Things (IoBNT) is discussed. In particular, this perspective paper focuses on the growing interest in networks of biological and/or artificial objects at the micro- and nanoscale (cells and subcellular parts, microelectrodes, microvessels, etc.), whereby communication takes place in an unconventional manner, i.e., via chemical signaling. The resulting "molecular communication" (MC) scenario paves the way to the development of innovative technologies that have the potential to impact biotechnology, nanomedicine, and related fields. The scenario that relies on the interconnection of natural and artificial entities is briefly introduced, highlighting how Synthetic Biology (SB) plays a central role. SB allows the construction of various types of SCs that can be designed, tailored, and programmed according to specific predefined requirements. In particular, "bottom-up" SCs are briefly described by commenting on the principles of their design and fabrication and their features (in particular, the capacity to exchange chemicals with other SCs or with natural biological cells). Although bottom-up SCs still have low complexity and thus basic functionalities, here, we introduce their potential role in the IoBNT. This perspective paper aims to stimulate interest in and discussion on the presented topics. The article also includes commentaries on MC, semantic information, minimal cognition, wetware neuromorphic engineering, and chemical social robotics, with the specific potential they can bring to the IoBNT.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Pier Luigi Gentili
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Luisa Damiano
- Department of Communication, Arts and Media, IULM University, 20143 Milan, Italy
| | - Maurizio Magarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
10
|
Levine H. Conceptualizing life via non-equilibrium physics; is it enough?: Comment on "Unified representation of life's basic properties by a 3-species stochastic cubic autocatalytic reaction-diffusion system of equations" by A.P. Muñuzuri and J. Pérez-Mercader. Phys Life Rev 2023; 45:71-73. [PMID: 37167926 DOI: 10.1016/j.plrev.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
|
11
|
Adam ZR. A novel recipe for prebiotic systems chemistry arising from autocatalytic relationships: Comment on "Unified representation of life's basic properties by a 3-species stochastic cubic autocatalytic reaction-diffusion system of equations", by A.P. Muñuzuri and J. Pérez-Mercader. Phys Life Rev 2023; 44:194-196. [PMID: 36773392 DOI: 10.1016/j.plrev.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Zachary R Adam
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
12
|
Muñuzuri AP, Gagnon JS, Pérez-Mercader J. Numerical and renormalization group analysis of the phase diagram of a stochastic cubic autocatalytic reaction-diffusion system. Phys Rev E 2023; 107:034213. [PMID: 37073065 DOI: 10.1103/physreve.107.034213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/14/2023] [Indexed: 04/20/2023]
Abstract
The renormalization group is a set of tools that can be used to incorporate the effect of fluctuations in a dynamical system as a rescaling of the system's parameters. Here, we apply the renormalization group to a pattern-forming stochastic cubic autocatalytic reaction-diffusion model and compare its predictions with numerical simulations. Our results demonstrate a good agreement within the range of validity of the theory and show that external noise can be used as a control parameter in such systems.
Collapse
Affiliation(s)
- Alberto P Muñuzuri
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138-1204, USA
- Group of Nonlinear Physics, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Galician Center for Mathematical Research and Technology (CITMAga), 15782 Santiago de Compostela, Spain
| | - Jean-Sébastien Gagnon
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138-1204, USA
- Department of Physics, Norwich University, Northfield, Vermont 05663, USA
| | - Juan Pérez-Mercader
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138-1204, USA
- Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| |
Collapse
|
13
|
Emergence of Life-like properties from nonlinear spatial kinetics: Comment on "Unified representation of Life's basic properties by a 3-species Stochastic Cubic Autocatalytic Reaction-Diffusion system of equations" by A.P. Muñuzuri and J. Pérez-Mercader. Phys Life Rev 2023; 44:190-193. [PMID: 36773391 DOI: 10.1016/j.plrev.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
|
14
|
Takeuchi N. On the robustness of the Grey-Scott system as a minimal model of life: Comments on "Unified representation of Life's basic properties by a 3-species Stochastic Cubic Autocatalytic Reaction-Diffusion system of equations" by A. P. Muñuzuri and J. Pérez-Mercader. Phys Life Rev 2023; 44:170-172. [PMID: 36753908 DOI: 10.1016/j.plrev.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Affiliation(s)
- Nobuto Takeuchi
- School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand; Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
15
|
Hochberg D. Theoretical physics unified model building meets biology: Comment on "Unified representation of life's basic properties by a 3-species stochastic cubic autocatalytic reaction-diffusion system of equations", by A.P. Muñuzuri and J. Pérez-Mercader. Phys Life Rev 2022; 43:308-310. [PMID: 36403387 DOI: 10.1016/j.plrev.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Affiliation(s)
- David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir Kilómetro 4, 28850 Torrejón de Ardoz, Madrid, Spain.
| |
Collapse
|
16
|
The calculus of Life: Contingency vs. necessity. Phys Life Rev 2022; 43:271-272. [PMID: 36343570 DOI: 10.1016/j.plrev.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|