1
|
Wang F, Cheung CW, Wong SSC. Regenerative medicine for the treatment of chronic low back pain: a narrative review. J Int Med Res 2023; 51:3000605231155777. [PMID: 36802994 PMCID: PMC9941606 DOI: 10.1177/03000605231155777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Low back pain (LBP) is a common and important clinical problem. In addition to pain, patients are also affected by personal, social, and economic burdens. Intervertebral disc (IVD) degeneration is a common cause of LBP, further increasing the patient's morbidity and medical costs. The limitations of current treatment strategies for long-term pain relief mean that increasing attention has been paid to regenerative medicine. We carried out a narrative review to explore the roles of four types of regenerative medicine for treating LBP: marrow-derived stem cells, growth factors, platelet-rich plasma, and prolotherapy. Marrow-derived stem cells are regarded as an ideal cell source for IVD regeneration. Growth factors may stimulate the synthesis of extracellular matrix and attenuate or reverse the degenerative process in IVD, while platelet-rich plasma, which contains multiple growth factors, is thought to be a promising alternative therapy for IVD degeneration. Prolotherapy can initiate the body's inflammatory healing response to repair injured joints and connective tissues. This review summarizes the mechanisms, in vitro and in vivo studies, and clinical applications of these four types of regenerative medicine in patients with LBP.
Collapse
Affiliation(s)
| | | | - Stanley Sau Ching Wong
- Stanley Sau Ching Wong, Room 424, Block K, Queen Mary Hospital, 102 Pok Fu Lam Road, Hong Kong 852, China.
| |
Collapse
|
2
|
Bowers K, Amelse L, Bow A, Newby S, MacDonald A, Sun X, Anderson D, Dhar M. Mesenchymal Stem Cell Use in Acute Tendon Injury: In Vitro Tenogenic Potential vs. In Vivo Dose Response. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9080407. [PMID: 36004932 PMCID: PMC9404841 DOI: 10.3390/bioengineering9080407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
Stem cell therapy for the treatment of tendon injury is an emerging clinical practice in the fields of human and veterinary sports medicine; however, the therapeutic benefit of intralesional transplantation of mesenchymal stem cells in tendonitis cases is not well designed. Questions persist regarding the overall tenogenic potential and efficacy of this treatment alone. In this study, we aimed to isolate a rat mesenchymal stem cell lineage for in vitro and in vivo use, to assess the effects of growth factor exposure in vitro on cell morphology, behavior, and tendon-associated glycoprotein production, and to assess the therapeutic potential of intralesional stem cells, as a function of dose, in vivo. First, rat adipose-derived (rAdMSC) and bone marrow-derived (rBMSC) stem cell lineages were isolated, characterized with flow cytometric analysis, and compared in terms of proliferation (MTS assay) and cellular viability (calcein AM staining). Rat AdMSCs displayed superior proliferation and more homogenous CD 73, CD 44H, and CD 90 expression as compared to rBMSC. Next, the tenogenic differentiation potential of the rAdMSC lineage was tested in vitro through isolated and combined stimulation with reported tenogenic growth factors, transforming growth factor (TGF)-β3 and connective tissue growth factor (CTGF). We found that the most effective tenogenic factor in terms of cellular morphologic change, cell alignment/orientation, sustained cellular viability, and tendon-associated glycoprotein upregulation was TGFβ3, and we confirmed that rAdMSC could be induced toward a tenogenic lineage in vitro. Finally, the therapeutic potential of rAdMSCs as a function of dose was assessed using a rat acute Achilles tendon injury model. Amounts of 5 × 105 (low dose) and 4 × 106 (high dose) were used. Subjectively, on the gross morphology, the rAdMSC-treated tendons exhibited fewer adhesions and less scar tissue than the control tendons; however, regardless of the rAdMSC dose, no significant differences in histological grade or tissue collagen I deposition were noted between the rAdMSC-treated and control tendons. Collectively, rAdMSCs exhibited appropriate stem cell markers and tenogenic potential in vitro, but the clinical efficacy of intralesional implantation of undifferentiated cells in acute tendonitis cases could not be proven. Further investigation into complementary therapeutics or specialized culture conditions prior to implantation are warranted.
Collapse
Affiliation(s)
- Kristin Bowers
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
- Correspondence:
| | - Lisa Amelse
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Austin Bow
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Steven Newby
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Amber MacDonald
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Xiaocun Sun
- Office of Information and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - David Anderson
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Madhu Dhar
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| |
Collapse
|
3
|
Roles of Cartilage-Resident Stem/Progenitor Cells in Cartilage Physiology, Development, Repair and Osteoarthritis. Cells 2022; 11:cells11152305. [PMID: 35892602 PMCID: PMC9332847 DOI: 10.3390/cells11152305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that causes irreversible destruction of articular cartilage for which there is no effective treatment at present. Although articular cartilage lacks intrinsic reparative capacity, numerous studies have confirmed the existence of cartilage-resident stem/progenitor cells (CSPCs) in the superficial zone (SFZ) of articular cartilage. CSPCs are characterized by the expression of mesenchymal stromal cell (MSC)-related surface markers, multilineage differentiation ability, colony formation ability, and migration ability in response to injury. In contrast to MSCs and chondrocytes, CSPCs exhibit extensive proliferative and chondrogenic potential with no signs of hypertrophic differentiation, highlighting them as suitable cell sources for cartilage repair. In this review, we focus on the organizational distribution, markers, cytological features and roles of CSPCs in cartilage development, homeostasis and repair, and the application potential of CSPCs in cartilage repair and OA therapies.
Collapse
|
4
|
Gradišnik L, Bošnjak R, Bunc G, Ravnik J, Maver T, Velnar T. Neurosurgical Approaches to Brain Tissue Harvesting for the Establishment of Cell Cultures in Neural Experimental Cell Models. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6857. [PMID: 34832259 PMCID: PMC8624371 DOI: 10.3390/ma14226857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022]
Abstract
In recent decades, cell biology has made rapid progress. Cell isolation and cultivation techniques, supported by modern laboratory procedures and experimental capabilities, provide a wide range of opportunities for in vitro research to study physiological and pathophysiological processes in health and disease. They can also be used very efficiently for the analysis of biomaterials. Before a new biomaterial is ready for implantation into tissues and widespread use in clinical practice, it must be extensively tested. Experimental cell models, which are a suitable testing ground and the first line of empirical exploration of new biomaterials, must contain suitable cells that form the basis of biomaterial testing. To isolate a stable and suitable cell culture, many steps are required. The first and one of the most important steps is the collection of donor tissue, usually during a surgical procedure. Thus, the collection is the foundation for the success of cell isolation. This article explains the sources and neurosurgical procedures for obtaining brain tissue samples for cell isolation techniques, which are essential for biomaterial testing procedures.
Collapse
Affiliation(s)
- Lidija Gradišnik
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
- Alma Mater Europaea ECM, Slovenska 17, 2000 Maribor, Slovenia
| | - Roman Bošnjak
- Department of Neurosurgery, University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia;
| | - Gorazd Bunc
- Department of Neurosurgery, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (G.B.); (J.R.)
| | - Janez Ravnik
- Department of Neurosurgery, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (G.B.); (J.R.)
| | - Tina Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Velnar
- Alma Mater Europaea ECM, Slovenska 17, 2000 Maribor, Slovenia
- Department of Neurosurgery, University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
5
|
Fan Y, Cui C, Li P, Bi R, Lyu P, Li Y, Zhu S. Fibrocartilage Stem Cells in the Temporomandibular Joint: Insights From Animal and Human Studies. Front Cell Dev Biol 2021; 9:665995. [PMID: 33987185 PMCID: PMC8111285 DOI: 10.3389/fcell.2021.665995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Temporomandibular disorders (TMD) are diseases involving the temporomandibular joint (TMJ), masticatory muscles, and osseous components. TMD has a high prevalence, with an estimated 4.8% of the U.S. population experiencing signs and symptoms, and represents a financial burden to both individuals and society. During TMD progression, the most frequently affected site is the condylar cartilage. Comprising both fibrous and cartilaginous tissues, condylar cartilage has restricted cell numbers but lacks a vascular supply and has limited regenerative properties. In 2016, a novel stem cell niche containing a reservoir of fibrocartilage stem cells (FCSCs) was discovered in the condylar cartilage of rats. Subsequently, FCSCs were identified in mouse, rabbit, and human condylar cartilage. Unlike mesenchymal stem cells or other tissue-specific stem/progenitor cells, FCSCs play a unique role in the development and regeneration of fibrocartilage. More importantly, engraftment treatment of FCSCs has been successfully applied in animal models of TMD. In this context, FCSCs play a major role in the regeneration of newly formed cartilage. Furthermore, FCSCs participate in the regeneration of intramembranous bone by interacting with endothelial cells in bone defects. This evidence highlights the potential of FCSCs as an ideal stem cell source for the regeneration of oral maxillofacial tissue. This review is intended to detail the current knowledge of the characteristics and function of FCSCs in the TMJ, as well as the potential therapeutic applications of FCSCs. A deep understanding of the properties of FCSCs can thus inform the development of promising, biologically based strategies for TMD in the future.
Collapse
Affiliation(s)
- Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Expression and function of cartilage-derived pluripotent cells in joint development and repair. Stem Cell Res Ther 2020; 11:111. [PMID: 32160923 PMCID: PMC7066750 DOI: 10.1186/s13287-020-01604-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Cartilage-derived pluripotent cells reside in hyaline cartilage and fibrocartilage. These cells have the potential for multidirectional differentiation; can undergo adipogenesis, osteogenesis, and chondrogenesis; and have been classified as mesenchymal stem cells (MSCs) conforming to the minimal criteria of the International Society for Cellular Therapy. Cartilage tissue is prone to injury and is difficult to repair. As cartilage-derived pluripotent cells are the closest cell source to cartilage tissue, they are expected to have the strongest ability to differentiate into cartilage compared to other MSCs. This review focuses on the organizational distribution, expression, and function of cartilage-derived pluripotent cells in joint development and repair to help explore the therapeutic potential of in situ cartilage-derived pluripotent cells for joint cartilage repair.
Collapse
|
7
|
Dilogo IH, Canintika AF, Hanitya AL, Pawitan JA, Liem IK, Pandelaki J. Umbilical cord-derived mesenchymal stem cells for treating osteoarthritis of the knee: a single-arm, open-label study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2020; 30:799-807. [PMID: 31989258 DOI: 10.1007/s00590-020-02630-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Despite being a common cause of quality-of-life impairment, there are no efficacious therapies that could prevent the progression of knee osteoarthritis (KOA). We conducted an open-label trial of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and hyaluronic acid (HA) for treating KOA. METHODS This open-label study was conducted from July 2015 to December 2018 at Cipto Mangunkusumo Hospital, Jakarta, Indonesia. Patients diagnosed with KOA were injected three times, comprising of 10 × 106 units of hUC-MSCs in 2-ml secretome implantation and 2-ml hyaluronic acid (HA) injection in the first week, followed with 2-ml HA injection twice in the second and third week. RESULTS Twenty-nine subjects (57 knees) were recruited. Seventeen (58.6%) subjects were male, and the mean age was 58.3 ± 9.6 years. Thirty-three (57.9%) knees were classified into Kellgren-Lawrence grade I-II KOA (mild OA). hUC-MSCs significantly decreased pain measured by visual analogue scale in severe KOA from initial to 6th month follow-up [5 ± 2.97 to 3.38 ± 2.44 (p = 0.035)]. The International Knee Documentation Committee score significantly increased at 6th month follow-up (53.26 ± 16.66 to 65.49 ± 13.01, p < 0.001, in subjects with grade I-II and 48.84 ± 18.41 to 61.83 ± 18.83, p = 0.008, in subjects with severe KOA). The Western Ontario and McMaster Universities Osteoarthritis decreased significantly in both groups from initial to 6th month follow-up (from 22.55 ± 15.94 to 13.23 ± 10.29, p = 0.003, and from 27.57 ± 15.99 to 17.92 ± 19.1, p = 0.003, in those with mild and severe KOA, respectively). CONCLUSIONS hUC-MSCs could be a potentially new regenerative treatment for KOA. The maximum effect of hUC-MSCs was achieved after 6 months of injection. LEVEL OF EVIDENCE Therapeutic level II.
Collapse
Affiliation(s)
- Ismail Hadisoebroto Dilogo
- Department of Orthopaedics and Traumatology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Stem Cell Medical Technology Integrated Medical Service Unit, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Stem Cell and Tissue Engineering Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Anissa Feby Canintika
- Department of Orthopaedics and Traumatology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Alberto Lastiko Hanitya
- Department of Orthopaedics and Traumatology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Jeanne Adiwinata Pawitan
- Stem Cell Medical Technology Integrated Medical Service Unit, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Stem Cell and Tissue Engineering Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Isabella Kurnia Liem
- Stem Cell Medical Technology Integrated Medical Service Unit, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Stem Cell and Tissue Engineering Research Center, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Jacub Pandelaki
- Department of Radiology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
8
|
Abstract
Glenohumeral osteoarthritis in the young patient (aged <60 years) is a difficult condition, given both age and functional demands. Primary osteoarthritis is the most common etiology in this patient demographic, but secondary causes include osteonecrosis, previous trauma (eg, fracture-dislocation), previous infection (eg, septic arthritis), previous capsulorrhaphy, previous arthroscopic surgery (eg, chondrolysis), and glenoid dysplasia. Nonsurgical modalities, including activity modification, pharmacotherapy, physical therapy, and intra-articular injections, are the mainstay of management; however, in young patients who have exhausted nonsurgical management, surgical options include arthroscopic débridement, humeral head replacement with or without glenoid treatment (ie, biologic glenoid resurfacing, glenoid reaming), and total or reverse total shoulder arthroplasty. Unfortunately, failure rates after surgical management are considerably higher in young patients compared with those observed in older, more sedentary patients. Here, we focus on the etiology, evaluation, and management of young patients with glenohumeral osteoarthritis, with a focus on clinical outcomes.
Collapse
|
9
|
Vilela CA, Correia C, da Silva Morais A, Santos TC, Gertrudes AC, Moreira ES, Frias AM, Learmonth DA, Oliveira P, Oliveira JM, Sousa RA, Espregueira-Mendes JD, Reis RL. In vitro
and in vivo
performance of methacrylated gellan gum hydrogel formulations for cartilage repair*. J Biomed Mater Res A 2018; 106:1987-1996. [DOI: 10.1002/jbm.a.36406] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Carlos A. Vilela
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho; Braga Portugal
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3Bs-PT Government Associate Laboratory; Braga/Guimarães Portugal
- Orthopaedic Department; Hospital da Senhora da Oliveira Guimarães EPE; Guimarães Portugal
| | - Cristina Correia
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimarães Portugal
| | - Alain da Silva Morais
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3Bs-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Tírcia C. Santos
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3Bs-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Ana C. Gertrudes
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimarães Portugal
| | - Elsa S. Moreira
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimarães Portugal
| | - Ana M. Frias
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimarães Portugal
| | - David A. Learmonth
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimarães Portugal
| | - Pedro Oliveira
- ISUP-EPI Unit, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto; Porto Portugal
| | - Joaquim M. Oliveira
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3Bs-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Rui A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA; Guimarães Portugal
| | - João D. Espregueira-Mendes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho; Braga Portugal
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3Bs-PT Government Associate Laboratory; Braga/Guimarães Portugal
- Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence and D. Henrique Research Centre; Porto Portugal
| | - Rui L. Reis
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3Bs-PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
10
|
Veron AD, Bienboire-Frosini C, Feron F, Codecasa E, Deveze A, Royer D, Watelet P, Asproni P, Sadelli K, Chabaud C, Stamegna JC, Fagot J, Khrestchatisky M, Cozzi A, Roman FS, Pageat P, Mengoli M, Girard SD. Isolation and characterization of olfactory ecto-mesenchymal stem cells from eight mammalian genera. BMC Vet Res 2018; 14:17. [PMID: 29343270 PMCID: PMC5772688 DOI: 10.1186/s12917-018-1342-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 01/11/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Stem cell-based therapies are an attractive option to promote regeneration and repair defective tissues and organs. Thanks to their multipotency, high proliferation rate and the lack of major ethical limitations, "olfactory ecto-mesenchymal stem cells" (OE-MSCs) have been described as a promising candidate to treat a variety of damaged tissues. Easily accessible in the nasal cavity of most mammals, these cells are highly suitable for autologous cell-based therapies and do not face issues associated with other stem cells. However, their clinical use in humans and animals is limited due to a lack of preclinical studies on autologous transplantation and because no well-established methods currently exist to cultivate these cells. Here we evaluated the feasibility of collecting, purifying and amplifying OE-MSCs from different mammalian genera with the goal of promoting their interest in veterinary regenerative medicine. Biopsies of olfactory mucosa from eight mammalian genera (mouse, rat, rabbit, sheep, dog, horse, gray mouse lemur and macaque) were collected, using techniques derived from those previously used in humans and rats. The possibility of amplifying these cells and their stemness features and differentiation capability were then evaluated. RESULTS Biopsies were successfully performed on olfactory mucosa without requiring the sacrifice of the donor animal, except mice. Cell populations were rapidly generated from olfactory mucosa explants. These cells displayed similar key features of their human counterparts: a fibroblastic morphology, a robust expression of nestin, an ability to form spheres and similar expression of surface markers (CD44, CD73). Moreover, most of them also exhibited high proliferation rates and clonogenicity with genus-specific properties. Finally, OE-MSCs also showed the ability to differentiate into mesodermal lineages. CONCLUSIONS This article describes for the first time how millions of OE-MSCs can be quickly and easily obtained from different mammalian genera through protocols that are well-suited for autologous transplantations. Moreover, their multipotency makes them relevant to evaluate therapeutic application in a wide variety of tissue injury models. This study paves the way for the development of new fundamental and clinical studies based on OE-MSCs transplantation and suggests their interest in veterinary medicine.
Collapse
Affiliation(s)
- Antoine D Veron
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France. .,Aix Marseille Univ, CNRS, NICN, Marseille, France.
| | - Cécile Bienboire-Frosini
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - François Feron
- Aix Marseille Univ, CNRS, NICN, Marseille, France.,Inserm CBT 1409, Centre d'Investigations Cliniques en Biothérapie, Marseille, France
| | - Elisa Codecasa
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - Arnaud Deveze
- Département ORL, Hôpital Universitaire Nord, AP-HM, Marseille, France.,Aix-Marseille Univ, IFSTTAR, LBA, Marseille, France
| | - Dany Royer
- Centre Hospitalier Vétérinaire Pommery, 51100, Reims, France
| | - Paul Watelet
- Société Hippique Le frigouyé, 30650, Saze, France
| | - Pietro Asproni
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | | | - Camille Chabaud
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | | | - Joël Fagot
- Aix-Marseille Univ, CNRS, LPC, Marseille, France
| | | | - Alessandro Cozzi
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | | | - Patrick Pageat
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - Manuel Mengoli
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - Stéphane D Girard
- Aix Marseille Univ, CNRS, NICN, Marseille, France.,Present address: Vect-Horus S.A.S., Faculté de Médecine Secteur Nord, CS80011, Boulevard Pierre Dramard, 13344, Marseille, Cedex 15, France
| |
Collapse
|
11
|
Centeno C, Markle J, Dodson E, Stemper I, Hyzy M, Williams C, Freeman M. The use of lumbar epidural injection of platelet lysate for treatment of radicular pain. J Exp Orthop 2017; 4:38. [PMID: 29177632 PMCID: PMC5701904 DOI: 10.1186/s40634-017-0113-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
Background Epidural steroid injections (ESI) are the most common pain management procedure performed in the US, however evidence of efficacy is limited. In addition, there is early evidence that the high dose of corticosteroids used can have systemic side effects. We describe the results of a case series evaluating the use of platelet lysate (PL) epidural injections for the treatment of lumbar radicular pain as an alternative to corticosteroids. Methods Registry data was obtained for patients (N = 470) treated with PL epidural injections presenting with symptoms of lumbar radicular pain and MRI findings that were consistent with symptoms. Collected outcomes included numeric pain score (NPS), functional rating index (FRI), and a modified single assessment numeric evaluation (SANE) rating. Results Patients treated with PL epidurals reported significantly lower (p < .0001) NPS and FRI change scores at all time points compared to baseline. Post-treatment FRI change score means exceeded the minimal clinically important difference beyond 1 month. Average modified SANE ratings showed 49.7% improvement at 24 months post-treatment. Twenty-nine (6.3%) patients reported mild adverse events related to treatment. Conclusion Patients treated with PL epidurals reported significant improvements in pain, exceeded the minimal clinically important difference (MCID) for FRI, and reported subjective improvement through 2-year follow-up. PL may be a promising substitute for corticosteroid.
Collapse
Affiliation(s)
- Christopher Centeno
- Centeno-Schultz Clinic, Broomfield, CO, 80021, USA.,Regenexx, LLC, Des Moines, IA, 50321, USA
| | - Jason Markle
- Centeno-Schultz Clinic, Broomfield, CO, 80021, USA
| | - Ehren Dodson
- Centeno-Schultz Clinic, Broomfield, CO, 80021, USA. .,Regenexx, LLC, Des Moines, IA, 50321, USA.
| | | | - Matthew Hyzy
- Centeno-Schultz Clinic, Broomfield, CO, 80021, USA
| | | | - Michael Freeman
- CAPHRI School of Public Health and Primary Care, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
12
|
von Tigerstrom B. New Regulatory Pathways for Stem Cell-Based Therapies: Comparison and Critique of Potential Models. STEM CELLS IN CLINICAL APPLICATIONS 2017. [DOI: 10.1007/978-3-319-59165-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Australasian College of Sports Physicians-Position Statement: The Place of Mesenchymal Stem/Stromal Cell Therapies in Sport and Exercise Medicine. Clin J Sport Med 2016; 26:87-95. [PMID: 26784119 DOI: 10.1097/jsm.0000000000000298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
State of Regenerative Medicine in Musculoskeletal Rehabilitation Practice. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2016. [DOI: 10.1007/s40141-016-0105-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Multipotent Mesenchymal Stem Cell Treatment for Discogenic Low Back Pain and Disc Degeneration. Stem Cells Int 2016; 2016:3908389. [PMID: 26880958 PMCID: PMC4737050 DOI: 10.1155/2016/3908389] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/18/2015] [Indexed: 01/07/2023] Open
Abstract
Low back pain with resultant loss of function, decreased productivity, and high economic costs is burdensome for both the individual and the society. Evidence suggests that intervertebral disc pathology is a major contributor to spine-related pain and degeneration. When commonly used conservative therapies fail, traditional percutaneous or surgical options may be beneficial for pain relief but are suboptimal because of their inability to alter disc microenvironment catabolism, restore disc tissue, and/or preserve native spine biomechanics. Percutaneously injected Multipotent Mesenchymal Stem Cell (MSC) therapy has recently gained clinical interest for its potential to revolutionarily treat disc-generated (discogenic) pain and associated disc degeneration. Unlike previous therapies to date, MSCs may uniquely offer the ability to improve discogenic pain and provide more sustained improvement by reducing disc microenvironment catabolism and regenerating disc tissue. Consistent treatment success has the potential to create a paradigm shift with regards to the treatment of discogenic pain and disc degeneration.
Collapse
|
16
|
Osborne H, Anderson L, Burt P, Young M, Gerrard D. Australasian College of Sports Physicians—position statement: the place of mesenchymal stem/stromal cell therapies in sport and exercise medicine. Br J Sports Med 2015; 50:1237-1244. [DOI: 10.1136/bjsports-2015-095711] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 12/18/2022]
|
17
|
Centeno CJ, Al-Sayegh H, Bashir J, Goodyear S, Freeman MD. A prospective multi-site registry study of a specific protocol of autologous bone marrow concentrate for the treatment of shoulder rotator cuff tears and osteoarthritis. J Pain Res 2015; 8:269-76. [PMID: 26089699 PMCID: PMC4463777 DOI: 10.2147/jpr.s80872] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Shoulder pain is a common musculoskeletal complaint in the general population. Bone marrow concentrate (BMC) injections offer promising potential as a minimally invasive approach for treatment of shoulder pain in degenerative disease. In this study, we investigated the clinical outcomes of the BMC injections for treatment of shoulder pain and disability due to osteoarthritis (OA) and rotator cuff tears in a treatment registry population. METHODS A total of 115 shoulders in 102 patients were treated with autologous BMC injections for symptomatic OA at the glenohumeral joint and/or rotator cuff tears. Data were collected for factors potentially influencing outcome, including age, sex, body mass index, and the type of condition treated (ie, OA or rotator cuff tear). Clinical outcomes were assessed serially over time using the disabilities of the arm, shoulder and hand score (DASH), the numeric pain scale (NPS), and a subjective improvement rating scale. Baseline scores were compared to the most recent outcome scores at the time of the analysis and adjusted for demographic differences. We reported comparisons of pre- and post-treatment scores, the differences between osteoarthritis and rotator cuff groups, and the predictive effects on the clinical outcomes. RESULTS At the most current follow-up assessment after treatment, the average DASH score decreased (improved) from 36.1 to 17.1 (P<0.001) and the average numeric pain scale value decreased (improved) from 4.3 to 2.4 (P<0.001). These changes were associated with an average subjective improvement of 48.8%. No differences were observed between outcomes among the shoulders treated for OA versus rotator cuff tears, nor did age, sex, or body mass index influence pain or functional outcomes. There were no significant treatment-related adverse events reported. DISCUSSION We observed preliminarily encouraging results following BMC injections for shoulder OA and rotator cuff tears. These results serve as basis for the design of an adequately powered randomized controlled trial.
Collapse
Affiliation(s)
| | | | | | | | - Michael D Freeman
- Department of Public Health and Preventive Medicine and Psychiatry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
18
|
Sepúlveda F, Baerga L, Micheo W. The role of physiatry in regenerative medicine: the past, the present, and future challenges. PM R 2015; 7:S76-S80. [PMID: 25864663 DOI: 10.1016/j.pmrj.2015.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/30/2014] [Accepted: 01/09/2015] [Indexed: 01/13/2023]
Abstract
Historically, the foundation of physical medicine and rehabilitation training has provided the capabilities to optimize nonoperative treatments of a variety of musculoskeletal conditions, including acute and chronic muscle, tendon, ligament, and cartilage disorders. Such treatments include the use of nonsteroidal anti-inflammatory drugs (NSAIDs), therapeutic modalities (eg, thermal and manual therapies), and corticosteroid injections in conjunction with specific rehabilitation exercises. Although NSAIDs, modalities, and corticosteroids may be helpful for short-term pain reduction and early recovery of function, they do not typically reverse the structural changes associated with degenerative conditions and may contribute to worse long-term outcomes by potentially interfering with tissue healing. Regenerative interventions, including platelet-rich plasma and mesenchymal stem cells, recently have been used to treat refractory painful conditions such as chronic tendinopathies because of the potential of these interventions to facilitate tissue healing. The future development of these regenerative techniques will require a variety of conditions to be met, including determining the most appropriate procedures based on the disease being treated; establishing the optimal preparations of these regenerative techniques; and providing clinicians, patients, and regulatory agencies with high-quality evidence demonstrating the safety, effectiveness, and long-term results of these treatments. Clarification of current regulatory uncertainty, improved access for all patients, proper training for clinicians who incorporate these techniques into their practice, and determination of the most appropriate postinjection protocols will allow physical medicine and rehabilitation specialists to play a unique role in the long-term management of patients with musculoskeletal and sports injuries. This article will also address the role physiatrists should have in the inevitable growth of regenerative medicine applications.
Collapse
Affiliation(s)
- Fernando Sepúlveda
- Department of Physical Medicine, Rehabilitation & Sports Medicine, Sports Medicine Fellowship Program, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Luis Baerga
- Department of Physical Medicine, Rehabilitation & Sports Medicine, Sports Medicine Fellowship Program, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - William Micheo
- Department of Physical Medicine, Rehabilitation & Sports Medicine, Sports Medicine Fellowship Program, University of Puerto Rico School of Medicine, San Juan, Puerto Rico; Department of Physical Medicine, Rehabilitation & Sports Medicine, Sports Medicine Fellowship Program, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
19
|
Labusca L, Zugun-Eloae F, Mashayekhi K. Stem cells for the treatment of musculoskeletal pain. World J Stem Cells 2015; 7:96-105. [PMID: 25621109 PMCID: PMC4300940 DOI: 10.4252/wjsc.v7.i1.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal-related pain is one of the most disabling health conditions affecting more than one third of the adult population worldwide. Pain from various mechanisms and origins is currently underdiagnosed and undertreated. The complexity of molecular mechanisms correlating pain and the progression of musculoskeletal diseases is not yet fully understood. Molecular biomarkers for objective evaluation and treatment follow-up are needed as a step towards targeted treatment of pain as a symptom or as a disease. Stem cell therapy is already under investigation for the treatment of different types of musculoskeletal-related pain. Mesenchymal stem cell-based therapies are already being tested in various clinical trials that use musculoskeletal system-related pain as the primary or secondary endpoint. Genetically engineered stem cells, as well as induced pluripotent stem cells, offer promising novel perspectives for pain treatment. It is possible that a more focused approach and reassessment of therapeutic goals will contribute to the overall efficacy, as well as to the clinical acceptance of regenerative medicine therapies. This article briefly describes the principal types of musculoskeletal-related pain and reviews the stem cell-based therapies that have been specifically designed for its treatment.
Collapse
|
20
|
Efficacy of autologous bone marrow concentrate for knee osteoarthritis with and without adipose graft. BIOMED RESEARCH INTERNATIONAL 2014; 2014:370621. [PMID: 25276781 PMCID: PMC4170694 DOI: 10.1155/2014/370621] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/14/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022]
Abstract
Introduction. We investigated the use of autologous bone marrow concentrate (BMC) with and without an adipose graft, for treatment of knee osteoarthritis (OA). Methods. Treatment registry data for patients who underwent BMC procedures with and without an adipose graft were analyzed. Pre- and posttreatment outcomes of interest included the lower extremity functional scale (LEFS), the numerical pain scale (NPS), and a subjective percentage improvement rating. Multivariate analyses were performed to examine the effects of treatment type adjusting for potential confounding factors. The frequency and type of adverse events (AE) were also examined. Results. 840 procedures were performed, 616 without and 224 with adipose graft. The mean LEFS score increased by 7.9 and 9.8 in the two groups (out of 80), respectively, and the mean NPS score decreased from 4 to 2.6 and from 4.3 to 3 in the two groups, respectively. AE rates were 6% and 8.9% in the two groups, respectively. Although pre- and posttreatment improvements were statistically significant, the differences between the groups were not. Conclusion. BMC injections for knee OA showed encouraging outcomes and a low rate of AEs. Addition of an adipose graft to the BMC did not provide a detectible benefit over BMC alone.
Collapse
|