1
|
Úbeda-Colomer J, Castan A. Physical Activity Measurement in People with Spinal Cord Injury: A Comparative Review of Different Questionnaires. J Clin Med 2024; 13:6997. [PMID: 39598140 PMCID: PMC11595018 DOI: 10.3390/jcm13226997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Physical activity (PA) provides great health benefits for people with spinal cord injury (SCI). Consequently, the design and implementation of PA interventions addressed to this population is needed. To rigorously evaluate these interventions, the use of valid and comprehensive PA measures is crucial. Since the suitability of PA assessment tools might differ among different populations, and considering that questionnaires are one of the most frequently used tools to quantify PA, the purpose of this comparative review was to examine nine questionnaires that have been used to assess PA in people with SCI. All the questionnaires were analyzed in depth in regard to three main dimensions: (1) SCI-specific development; (2) PA domains measured and PA intensity classification; and (3) reliability and validity. After careful consideration of the evidence available on all these aspects, it is suggested that the most suitable questionnaires to be used in PA research in the SCI population are the PARA-SCI and the LTPAQ-SCI[R]. To conclude, the strengths and limitations of these two questionnaires are discussed, and specific recommendations to SCI researchers and practitioners regarding the suitability, according to the context and characteristics, of the research/intervention are provided.
Collapse
Affiliation(s)
- Joan Úbeda-Colomer
- Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain;
| | - Alex Castan
- Institut Guttmann Neurorehabilitation Hospital, University Institute Attached to the Autonomous University of Barcelona, 08916 Badalona, Spain
- Institute for Health Science Research Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
- Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain
| |
Collapse
|
2
|
Kulich HR, Bass SR, Piva SR, Nindl B, Koontz AM. Preliminary feasibility and acute physiological effects of a single session of upper limb vibration training for persons with spinal cord injury. J Spinal Cord Med 2024; 47:511-521. [PMID: 36129331 PMCID: PMC11218582 DOI: 10.1080/10790268.2022.2122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
CONTEXT Strong upper limb musculature is essential for persons with spinal cord injury (SCI) to operate a manual wheelchair and live independently. Targeted upper limb vibration may be a viable exercise modality to build muscle efficiently while eliminating some of the barriers associated with exercise for persons with SCI. OBJECTIVE The purpose of this study was to assess preliminary feasibility of completing a single exercise session of upper limb vibration and compare the acute physiological effects to a single session of standard dumbbell resistance exercise. METHODS Individuals with SCI performed seven upper limb exercises (1) isometrically using a vibrating dumbbell at 30 Hz for 60 s (n = 22) and (2) using a standard isotonic resistance protocol (n = 15). RESULTS Nineteen (86.4%) of 22 participants were able to perform all vibration exercises at 30 Hz but hold time success rates varied from 33% (side flies and front raises) to 95% (internal rotation). No significant differences were found between vibration exercise and standard resistance protocol for blood lactate, power output, and heart rate (P > 0.05). Perceptions of the training were positive, with most participants (>70%) expressing interest to train with vibration in the future. CONCLUSIONS Vibration training was not feasible for all participants, suggesting an individualized approach to starting weight and progression may be necessary. Similar acute physiological changes were seen between vibration exercise and standard resistance protocol, suggesting they could have similar benefits. Additional research is needed to determine if vibration exercise is feasible and beneficial to incorporate into a long-term training program.
Collapse
Affiliation(s)
- Hailee R. Kulich
- Human Engineering Research Laboratories, Rehabilitation Research and Development Service, Department of Veterans Affairs, Pittsburgh, Pennsylvania, USA
- Department of Rehabilitation Science and Technology, School of Health and Rehabilitation Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah R. Bass
- Human Engineering Research Laboratories, Rehabilitation Research and Development Service, Department of Veterans Affairs, Pittsburgh, Pennsylvania, USA
- Department of Rehabilitation Science and Technology, School of Health and Rehabilitation Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sara R. Piva
- Department of Physical Therapy, School of Health and Rehabilitation Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bradley Nindl
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alicia M. Koontz
- Human Engineering Research Laboratories, Rehabilitation Research and Development Service, Department of Veterans Affairs, Pittsburgh, Pennsylvania, USA
- Department of Rehabilitation Science and Technology, School of Health and Rehabilitation Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Canori A, Coffman DL, Wright WG, Finley MA, Hiremath SV. Differential relationships between physical activity and pain phenotypes in individuals with spinal cord injury. J Spinal Cord Med 2024:1-10. [PMID: 38661677 DOI: 10.1080/10790268.2024.2344315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Chronic pain affects 70% of individuals with spinal cord injury (SCI) and leads to declines in health and quality of life. Neuropathic and nociceptive pain are phenotypes derived from different mechanisms that contribute to pain perception. The objective of this research was to investigate differential pain responses to moderate-to-vigorous physical activity (MVPA) in two chronic pain phenotypes: neuropathic and nociceptive pain. METHODS Community-based physical activity levels were collected for one week in 17 individuals with SCI using a wrist-worn accelerometer, and daily pain ratings were assessed and categorized by phenotype. Physical activity levels were summarized to calculate minutes of MVPA. Correlational analyses were conducted to compare relationships between pain intensity and MVPA across individual participants and between pain phenotype groups. RESULTS The neuropathic pain group revealed significant negative correlation between MVPA and pain intensity. In the nociceptive pain group, there was no significant correlation between MVPA and pain intensity. Further analysis revealed two subgroups of positive (N = 4) and negative (N = 3) correlations between MVPA and pain intensity. Pain location differed between the subgroups of nociceptive pain. Individuals with negative correlation experienced neck and upper back pain, whereas individuals with positive correlation experienced unilateral upper extremity pain. CONCLUSION Differential relationships exist between pain phenotypes and MVPA in individuals with SCI. Pain location differed between the subgroups of nociceptive pain, which we presume may indicate the presence of nociplastic pain in some individuals. These results may contribute to the advancement of personalized pain management by targeting non-pharmacological interventions for specific pain phenotypes.Trial registration: ClinicalTrials.gov identifier: NCT05236933..
Collapse
Affiliation(s)
- Alexandra Canori
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Donna L Coffman
- Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | - W Geoffrey Wright
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Margaret A Finley
- Department of Physical Therapy and Rehabilitation Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Shivayogi V Hiremath
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Wei L, Huang Y, Chen Y, Wu J, Chen K, Zheng Z, Wang S, Xue L. Biomarkers for predicting the severity of spinal cord injury by proteomic analysis. Front Mol Neurosci 2023; 16:1153230. [PMID: 38155913 PMCID: PMC10753799 DOI: 10.3389/fnmol.2023.1153230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
Purpose Currently, there is a shortage of the protein biomarkers for classifying spinal cord injury (SCI) severity. We attempted to explore the candidate biomarkers for predicting SCI severity. Methods SCI rat models with mild, moderate, and severe injury were constructed with an electro-mechanic impactor. The behavior assessment and pathological examinations were conducted before and after SCI. Then, quantitative liquid chromatography-mass spectrometry (LC-MS/MS) was performed in spinal cord tissues with different extents of injury. The differentially expressed proteins (DEPs) in SCI relative to controls were identified, followed by Mfuzz clustering, function enrichment analysis, and protein-protein interaction (PPI) network construction. The differential changes of candidate proteins were validated by using a parallel reaction monitoring (PRM) assay. Results After SCI modeling, the motor function and mechanical pain sensitivity of SCI rats were impaired, dependent on the severity of the injury. A total of 154 DEPs overlapped in the mild, moderate, and severe SCI groups, among which 82 proteins were classified in clusters 1, 2, 3, 5, and 6 with similar expression patterns at different extents of injury. DEPs were closely related to inflammatory response and significantly enriched in the IL-17 signaling pathway. PPI network showed that Fgg (Fibrinogen gamma chain), Fga (Fibrinogen alpha chain), Serpinc1 (Antithrombin-III), and Fgb (Fibrinogen beta chain) in cluster 1 were significant nodes with the largest degrees. The upregulation of the significant nodes in SCI samples was validated by PRM. Conclusion Fgg, Fga, and Fgb may be the putative biomarkers for assessing the extent of SCI.
Collapse
Affiliation(s)
- Liangfeng Wei
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Yubei Huang
- Department of Neurosurgery, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding, China
| | - Yehuang Chen
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Jianwu Wu
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Kaiqin Chen
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Zhaocong Zheng
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Shousen Wang
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Liang Xue
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| |
Collapse
|
5
|
Choi HH, Ahn H, Jung WS. Estimation of peak oxygen consumption in individuals with spinal cord injury patients using multiple linear regression analysis: a preliminary study. Phys Act Nutr 2023; 27:26-33. [PMID: 38297473 PMCID: PMC10844726 DOI: 10.20463/pan.2023.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024] Open
Abstract
PURPOSE This study aims to develop a regression model to estimate peak oxygen consumption (VO2peak) in individuals with spinal cord injury (SCI) by employing different variables. METHODS In this study, 34 participants were divided into two groups: 19 with cervical injury (CI) and 15 with thoracic injury (TI). Key measurements included VO2peak and related factors such as age, height, weight, body mass index (BMI), fat-free mass, body fat percentage, limb and trunk circumferences, spinal cord independence (SCIM III), Korean activities of daily living (K-ADL), and respiratory functions (forced vital capacity (FVC), peak expiratory flow (PEF), and maximum voluntary ventilation (MVV)). Statistical analyses were conducted using forward selection regression to examine the relationships between these variables. RESULTS Height, calf circumference, SCIM III score, and PEF were key variables in all patients with SCI (TSCI). For patients with CI, the key variables were height, calf circumference, and MVV, whereas for patients with TI, the key variable was calf circumference. The average explanatory powers of the VO2peak regression model for TSCI were 70.3% (R2) and 66.2% (adjusted R2), with an average standard error of estimate (SEE) of 2.94 ml/kg/min. The average explanatory power for patients with CI was 71.7% (R2) and 66.1% (adjusted R2), with an average SEE of 1.88 ml/kg/min. The average explanatory power for patients with TI was 55.9% (R2) and 52.5% (adjusted R2), with an average SEE of 3.41 ml/kg/min. There was no significant difference between the VO2peak measured and predicted VO2peak for each type of injury. CONCLUSION The regression model for estimating VO2peak in SCI patients in this preliminary study is as follows: TSCI=39.684-0.144×(Height)-0.513×(Calf)+0.136×(SCIM III)+1.187×(PEF), CI=38.842-0 .158×(Height) - 0.371×(Calf)+0.093×(MVV), TI=42.325-0.813×(Calf).
Collapse
Affiliation(s)
- Hyun-Hee Choi
- Department of Exercise Prescription, Dongseo University, Busan, Republic of Korea
| | - Hana Ahn
- Department of Senior Exercise Prescription, Dongseo University, Busan, Republic of Korea
| | - Won-Sang Jung
- Department of Senior Exercise Prescription, Dongseo University, Busan, Republic of Korea
| |
Collapse
|
6
|
Pelletier C. Exercise prescription for persons with spinal cord injury: a review of physiological considerations and evidence-based guidelines. Appl Physiol Nutr Metab 2023; 48:882-895. [PMID: 37816259 DOI: 10.1139/apnm-2023-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Persons with spinal cord injury (SCI) experience gains in fitness, physical and mental health from regular participation in exercise and physical activity. Due to changes in physiological function of the cardiovascular, nervous, and muscular systems, general population physical activity guidelines and traditional exercise prescription methods are not appropriate for the SCI population. Exercise guidelines specific to persons with SCI recommend progressive training beginning at 20 min of moderate to vigorous intensity aerobic exercise twice per week transitioning to 30 min three times per week, with strength training of the major muscle groups two times per week. These population-specific guidelines were designed considering the substantial barriers to physical activity for persons with SCI and can be used to frame an individual exercise prescription. Rating of perceived exertion (i.e., perceptually regulated exercise) is a practical way to indicate moderate to vigorous intensity exercise in community settings. Adapted exercise modes include arm cycle ergometry, hybrid arm-leg cycling, and recumbent elliptical equipment. Body weight-supported treadmill training and other rehabilitation modalities may improve some aspects of health and fitness for people with SCI if completed at sufficient intensity. Disability-specific community programs offer beneficial opportunities for persons with SCI to experience quality exercise opportunities but are not universally available.
Collapse
Affiliation(s)
- Chelsea Pelletier
- School of Health Sciences, Faculty of Human and Health Sciences, University of Northern British Columbia, Prince George, BC, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Veith DD, Linde MB, Wiggins CC, Zhao KD, Garlanger KL. Intervention Design of High-Intensity Interval Training in Individuals With Spinal Cord Injury: Narrative Review and Future Perspectives. Top Spinal Cord Inj Rehabil 2023; 29:1-15. [PMID: 38076494 PMCID: PMC10704212 DOI: 10.46292/sci22-00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Background Individuals with spinal cord injury (SCI) have lower levels of physical activity compared to the nondisabled population. Exercise guidelines recommend moderate or vigorous exercise to improve cardiovascular health and reduce cardiometabolic risk factors in persons with SCI. High-intensity interval training (HIIT) is a popular exercise choice and encompasses brief periods of vigorous exercise paired with intermittent periods of recovery. Objectives This review describes the available literature on HIIT for individuals with SCI, including differences in protocol design and suggested areas of further investigation. Methods Our institution's library system performed the comprehensive search. The primary keywords and phrases used to search included spinal cord injury, high-intensity interval training, tetraplegia, paraplegia, and several other related terms. Results Initially 62 records were screened, and 36 were deemed outside the scope of this review. Twenty-six studies published between 2001 and 2021 fulfilled the eligibility criteria and were divided among two researchers for review and analysis. All records required persons with SCI and a standardized HIIT intervention. Study design varied widely with respect to mode of exercise, prescribed intensity, duration of performance intervals, and session duration. This variability necessitates further investigation into the specifics of a HIIT prescription and the associated outcomes for persons with SCI. Conclusion Standardization of HIIT protocols may lead to more robust conclusions regarding its effects on cardiorespiratory fitness as well as mitigation of cardiometabolic risk factors. Meta-analyses will eventually be needed on proper dosing and session parameters to improve cardiorespiratory fitness and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Daniel D. Veith
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota
| | - Margaux B. Linde
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kristin D. Zhao
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota
| | - Kristin L. Garlanger
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Hodgkiss DD, Bhangu GS, Lunny C, Jutzeler CR, Chiou SY, Walter M, Lucas SJE, Krassioukov AV, Nightingale TE. Exercise and aerobic capacity in individuals with spinal cord injury: A systematic review with meta-analysis and meta-regression. PLoS Med 2023; 20:e1004082. [PMID: 38011304 PMCID: PMC10712898 DOI: 10.1371/journal.pmed.1004082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/11/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND A low level of cardiorespiratory fitness [CRF; defined as peak oxygen uptake ([Formula: see text]O2peak) or peak power output (PPO)] is a widely reported consequence of spinal cord injury (SCI) and a major risk factor associated with chronic disease. However, CRF can be modified by exercise. This systematic review with meta-analysis and meta-regression aimed to assess whether certain SCI characteristics and/or specific exercise considerations are moderators of changes in CRF. METHODS AND FINDINGS Databases (MEDLINE, EMBASE, CENTRAL, and Web of Science) were searched from inception to March 2023. A primary meta-analysis was conducted including randomised controlled trials (RCTs; exercise interventions lasting >2 weeks relative to control groups). A secondary meta-analysis pooled independent exercise interventions >2 weeks from longitudinal pre-post and RCT studies to explore whether subgroup differences in injury characteristics and/or exercise intervention parameters explained CRF changes. Further analyses included cohort, cross-sectional, and observational study designs. Outcome measures of interest were absolute (A[Formula: see text]O2peak) or relative [Formula: see text]O2peak (R[Formula: see text]O2peak), and/or PPO. Bias/quality was assessed via The Cochrane Risk of Bias 2 and the National Institute of Health Quality Assessment Tools. Certainty of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Random effects models were used in all meta-analyses and meta-regressions. Of 21,020 identified records, 120 studies comprising 29 RCTs, 67 pre-post studies, 11 cohort, 7 cross-sectional, and 6 observational studies were included. The primary meta-analysis revealed significant improvements in A[Formula: see text]O2peak [0.16 (0.07, 0.25) L/min], R[Formula: see text]O2peak [2.9 (1.8, 3.9) mL/kg/min], and PPO [9 (5, 14) W] with exercise, relative to controls (p < 0.001). Ninety-six studies (117 independent exercise interventions comprising 1,331 adults with SCI) were included in the secondary, pooled meta-analysis which demonstrated significant increases in A[Formula: see text]O2peak [0.22 (0.17, 0.26) L/min], R[Formula: see text]O2peak [2.8 (2.2, 3.3) mL/kg/min], and PPO [11 (9, 13) W] (p < 0.001) following exercise interventions. There were subgroup differences for R[Formula: see text]O2peak based on exercise modality (p = 0.002) and intervention length (p = 0.01), but there were no differences for A[Formula: see text]O2peak. There were subgroup differences (p ≤ 0.018) for PPO based on time since injury, neurological level of injury, exercise modality, and frequency. The meta-regression found that studies with a higher mean age of participants were associated with smaller changes in A[Formula: see text]O2peak and R[Formula: see text]O2peak (p < 0.10). GRADE indicated a moderate level of certainty in the estimated effect for R[Formula: see text]O2peak, but low levels for A[Formula: see text]O2peak and PPO. This review may be limited by the small number of RCTs, which prevented a subgroup analysis within this specific study design. CONCLUSIONS Our primary meta-analysis confirms that performing exercise >2 weeks results in significant improvements to A[Formula: see text]O2peak, R[Formula: see text]O2peak, and PPO in individuals with SCI. The pooled meta-analysis subgroup comparisons identified that exercise interventions lasting up to 12 weeks yield the greatest change in R[Formula: see text]O2peak. Upper-body aerobic exercise and resistance training also appear the most effective at improving R[Formula: see text]O2peak and PPO. Furthermore, acutely injured, individuals with paraplegia, exercising for ≥3 sessions/week will likely experience the greatest change in PPO. Ageing seemingly diminishes the adaptive CRF responses to exercise training in individuals with SCI. REGISTRATION PROSPERO: CRD42018104342.
Collapse
Affiliation(s)
- Daniel D. Hodgkiss
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gurjeet S. Bhangu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- MD Undergraduate Program, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Carole Lunny
- Knowledge Translation Program, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, and University of British Columbia, Vancouver, Canada
| | - Catherine R. Jutzeler
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Schulthess Clinic, Zurich, Switzerland
| | - Shin-Yi Chiou
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Trauma Science Research, University of Birmingham, Birmingham, United Kingdom
| | - Matthias Walter
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, Canada
| | - Tom E. Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Centre for Trauma Science Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Vuu S, Barr CJ, Killington M, Howie J, Hutchins S, van den Berg MEL. The Buffalo Concussion Treadmill and Bike Tests in People With Mild-to-Moderate Traumatic Brain Injury: An Exploratory Clinical Audit. J Head Trauma Rehabil 2023; 38:E414-E423. [PMID: 37115938 DOI: 10.1097/htr.0000000000000879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
OBJECTIVE To assess the performance on the Buffalo Concussion Treadmill and Bike Tests in nonathletic people following a mild-to-moderate traumatic brain injury. SETTING An outpatient rehabilitation clinic. PARTICIPANTS Forty-nine patients with mild-to-moderate traumatic brain injury who underwent the Buffalo Concussion Treadmill or Bike Test as usual clinical care. DESIGN A retrospective clinical audit. MAIN MEASURES Demographics and brain injury-specific clinical data, Depression Anxiety Stress Scale; Rivermead Post-Concussion Symptom Questionnaire, and performance outcomes on the Buffalo Concussion Treadmill or Bike Test. RESULTS Forty-nine patients (mean age: 33.7 ± 13.0 years), on average 56.2 ± 36.4 days post-injury, completed the Buffalo Concussion Treadmill or Bike Test. Fourteen patients stopped the test due to symptom exacerbation with a mean test duration of 8.1 ± 4.5 minutes, reaching an age-predicted maximum heart rate of 72.9% ± 12.4% and reporting a rating of perceived exertion of 13.4 ± 2.2. Those who terminated the test for other reasons had a significantly longer test duration (14.0 ± 4.7 minutes, P = .01), with a higher age-predicted maximum heart rate (83.3% ± 12.8%, P = .01) and rating of perceived exertion (17.0 ± 2.5, P = .01). Within the group who stopped for other reasons, 10 were due to symptoms deemed unrelated to the injury at the time of the test and 2 were stopped by the therapist for safety reasons. A significant but weak correlation between heart rate and rating of perceived exertion existed only for those who terminated the test for other reasons ( r = 0.38, P = .02). Overall, a shorter test duration was associated with higher scores of both self-reported depression ( r = -0.41, P < .01) and late postconcussion symptoms ( r = -0.40, P < .01). CONCLUSION The Buffalo Concussion Treadmill or Bike Test can be used in the nonathletic mild-to-moderate traumatic brain injury population to differentiate between those who experience symptom exacerbation during exercise and those who do not based on symptom exacerbation, test duration, and poor perception of exertion. Further research is required to determine whether other reasons for test termination are related to the injury.
Collapse
Affiliation(s)
- Sally Vuu
- College of Nursing and Health Sciences, Flinders University, Adelaide, Australia (Ms Vuu and Drs Barr and van den Berg); Brain Injury Rehabilitation Services, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia (Dr Killington and Ms Hutchins); and Physiotherapy, Brain Injury Rehabilitation Services, Adelaide, Australia (Ms Howie)
| | | | | | | | | | | |
Collapse
|
10
|
Jung KS, Hutchinson MJ, Chotiyarnwong C, Kusumawardani MK, Yoon SH, Mikami Y, Laohasinnarong P, Tinduh D, Prachgosin P, Narasinta I, Chotiyarnwong P, Utami DA, Umemoto Y, Tajima F, Goosey-Tolfrey VL. Dissonance in views between healthcare professionals and adults with a spinal cord injury with their understanding and interpretation of exercise intensity for exercise prescription. BMJ Open Sport Exerc Med 2023; 9:e001487. [PMID: 36919123 PMCID: PMC10008421 DOI: 10.1136/bmjsem-2022-001487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Objectives To evaluate the difference between healthcare professionals (HCPs) and adults with spinal cord injury (SCI) in Asia regarding knowledge and interpretation of 'exercise intensity' for aerobic exercise prescription. Methods and study design A survey was distributed to practising HCP and adults with SCI. It was completed in participants' local language on topics related to the importance of exercise frequency, intensity, time and type; methods for monitoring and terms related to exercise intensity prescription. χ2 analysis was used to detect differences in HCP or those with SCI. Results 121 HCP and 107 adults with an SCI ≥1 years (C1-L4) participated. Responses revealed 61% of all HCP ranked 'intensity' being most important whereas only 38% respondents from the SCI group ranked it as high importance (p=0.008). For those with SCI, 'frequency' was most important (61%) which was significantly higher than the 45% selected by HCPs (p=0.030). Of the 228 respondents on average only 34% believed that the terms, 'moderate' and 'vigorous' provided enough information for aerobic exercise intensity prescription. HCP most often used HR methods compared with the SCI group (90% vs 54%; p<0.01). Both groups frequently used the subjective measures of exercise intensity, for example, Ratings of Perceived Exertion (8%3 vs 76% for HCP and SCI), HCP also frequently used speed (81%) and SCI also frequently relied on 'the affect' or feelings while exercising (69%). Conclusions These differences must be considered when developing clinical-practice exercise guidelines and health referral educational pathways for adults with SCI in Asia.
Collapse
Affiliation(s)
- Kyung Su Jung
- Medical Center for Health Promotion and Sport Science, Wakayama Medical University, Wakayama, Japan
| | - Mike J Hutchinson
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Chayaporn Chotiyarnwong
- Department of Rehabilitation Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Martha K Kusumawardani
- Department of Physical Medicine and Rehabilitation, Universitas Airlangga, Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Seung-Hyun Yoon
- Department of Physical Medicine and Rehabilitation, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yukio Mikami
- Department of Rehabilitation Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Phairin Laohasinnarong
- Department of Rehabilitation Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Damayanti Tinduh
- Department of Physical Medicine and Rehabilitation, Universitas Airlangga, Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Pannika Prachgosin
- Department of Rehabilitation Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Inggar Narasinta
- Department of Physical Medicine and Rehabilitation, Universitas Airlangga, Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Pojchong Chotiyarnwong
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ditaruni A Utami
- Department of Physical Medicine and Rehabilitation, Universitas Airlangga, Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Yasonori Umemoto
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Vicky L Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
11
|
Valentino SE, Hutchinson MJ, Goosey-Tolfrey VL, MacDonald MJ. The effects of perceptually regulated exercise training on cardiorespiratory fitness and peak power output in adults with spinal cord injury: a systematic review and meta-analysis. Arch Phys Med Rehabil 2022; 103:1398-1409. [DOI: 10.1016/j.apmr.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
|
12
|
Yip CCH, Lam CY, Cheung KMC, Wong YW, Koljonen PA. Knowledge Gaps in Biophysical Changes After Powered Robotic Exoskeleton Walking by Individuals With Spinal Cord Injury-A Scoping Review. Front Neurol 2022; 13:792295. [PMID: 35359657 PMCID: PMC8960715 DOI: 10.3389/fneur.2022.792295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to helping individuals with spinal cord injury (SCI) regain the ability to ambulate, the rapidly evolving capabilities of robotic exoskeletons provide an array of secondary biophysical benefits which can reduce the complications resulting from prolonged immobilization. The proposed benefits of increased life-long over-ground walking capacity include improved upper body muscular fitness, improved circulatory response, improved bowel movement regularity, and reduced pain and spasticity. Beyond the positive changes related to physical and biological function, exoskeletons have been suggested to improve SCI individuals' quality of life (QOL) by allowing increased participation in day-to-day activities. Most of the currently available studies that have reported on the impact of exoskeletons on the QOL and prevention of secondary health complications on individuals with SCI, are of small scale and are heterogeneous in nature. Moreover, few meta-analyses and reviews have attempted to consolidate the dispersed data to reach more definitive conclusions of the effects of exoskeleton use. This scoping review seeks to provide an overview on the known effects of overground exoskeleton use, on the prevention of secondary health complications, changes to the QOL, and their effect on the independence of SCI individuals in the community settings. Moreover, the intent of the review is to identify gaps in the literature currently available, and to make recommendations on focus study areas and methods for future investigations.
Collapse
Affiliation(s)
- Christopher C. H. Yip
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chor-Yin Lam
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth M. C. Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yat Wa Wong
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Maclehose Medical Rehabilitation Centre, Hong Kong West Cluster, Hospital Authority, Kowloon, Hong Kong SAR, China
| | - Paul A. Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Maclehose Medical Rehabilitation Centre, Hong Kong West Cluster, Hospital Authority, Kowloon, Hong Kong SAR, China
| |
Collapse
|
13
|
Germano Maciel D, Santos Cerqueira M, Gabbett TJ, Elsangedy HM, de Brito Vieira WH. Should We Trust Perceived Effort for Loading Control and Resistance Exercise Prescription After ACL Reconstruction? Sports Health 2021; 14:764-769. [PMID: 34486455 DOI: 10.1177/19417381211041289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
CONTEXT The rating of perceived effort (RPE) is a common method used in clinical practice for monitoring, loading control, and resistance training prescription during rehabilitation after rupture and anterior cruciate ligament reconstruction (ACLR). It is suggested that the RPE results from the integration of the afferent feedback and corollary discharge in the motor and somatosensory cortex, and from the activation of brain areas related to emotions, affect, memory, and pain (eg, posterior cingulate cortex, precuneus, and prefrontal cortex). Recent studies have shown that rupture and ACLR induce neural adaptations in the brain commonly associated with the RPE. Therefore, we hypothesize that RPE could be affected because of neural adaptations induced by rupture and ACLR. STUDY DESIGN Clinical review. LEVEL OF EVIDENCE Level 5. RESULTS RPE could be directly altered by changes in the activation of motor cortex, posterior cingulate cortex, and prefrontal cortex. These neural adaptations may be induced by indirect mechanisms, such as the afferent feedback deficit, pain, and fear of movement (kinesiophobia) that patients may feel after rupture and ACLR. CONCLUSION Using only RPE for monitoring, loading control, and resistance training prescription in patients who had undergone ACLR could lead to under- or overdosing resistance exercise, and therefore, impair the rehabilitation process. STRENGTH-OF-RECOMMENDATION TAXONOMY 3C.
Collapse
Affiliation(s)
- Daniel Germano Maciel
- Department of Physical Therapy, Laboratory of Neuromuscular Performance, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Mikhail Santos Cerqueira
- Department of Physical Therapy, Laboratory of Neuromuscular Performance, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Tim J Gabbett
- Gabbett Performance Solutions, Brisbane, Queensland, Australia.,University of Southern Queensland, Institute for Resilient Regions, Ipswich, Queensland, Australia
| | - Hassan Mohamed Elsangedy
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Wouber Hérickson de Brito Vieira
- Department of Physical Therapy, Laboratory of Neuromuscular Performance, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
14
|
The ability of heart rate or perceived exertion to predict oxygen uptake varies across exercise modes in persons with tetraplegia. Spinal Cord 2021; 59:1247-1255. [PMID: 34462547 DOI: 10.1038/s41393-021-00670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/14/2021] [Accepted: 07/02/2021] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Descriptive study. OBJECTIVES To examine grouped and intra-individual relationships between 1) exercise intensity and heart rate (EI-HR); 2) EI and oxygen uptake (EI-VO2); 3) VO2 and HR (VO2-HR); and 4) perceived exertion and VO2 (PE-VO2) in persons with tetraplegia (C4/5-C8) during different modes of exercise. SETTING Community in Winnipeg, Canada. METHODS Participants exercised at 3 graded intensities during arm ergometry (ERG), wheeling indoors on cement (MWC), or hand-cycling outdoors (HC). EI (Watts, km/hr) and VO2, HR and PE were recorded. RESULTS 22 persons completed ERG, 14/22 also completed MWC and 5/22 completed ERG, MWC and HC. Regression analysis of grouped data showed a significant relationship between EI-VO2 but not for EI-HR or HR-VO2. Intra-individual analyses showed a strong correlation (r or ρ > 0.7) for VO2-HR for 16/22 during ERG. In the participants completing multiple exercise modes, a strong VO2-HR relationship was present in 12/14 in ERG, but in only 6/14 in MWC. The 5 persons exercising with all 3 modes had a strong HR-VO2 relationship in 5/5 for ERG, 2/5 in MWC and 1/5 in HC. A strong relationship for PE-VO2 was observed in a higher proportion of participants (versus HR-VO2) during MWC (9/14) and HC (2/4). CONCLUSION Within the same individual, the HR-VO2 relationship varies across modes, despite exercising over similar ranges of steady-state VO2. HR appears less able to predict VO2 compared to PE. Based on these new findings, systematic investigation of the HR-VO2 relationship across modes of exercise in tetraplegia is warranted.
Collapse
|
15
|
Williams AM, Ma JK, Martin Ginis KA, West CR. Effects of a Tailored Physical Activity Intervention on Cardiovascular Structure and Function in Individuals With Spinal Cord Injury. Neurorehabil Neural Repair 2021; 35:692-703. [PMID: 34027716 PMCID: PMC8704204 DOI: 10.1177/15459683211017504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Spinal cord injury (SCI) leads to a loss of descending motor and sympathetic control below the level of injury (LOI), which ultimately results in chronically altered cardiovascular function and remodeling. While supervised, laboratory-based exercise training can generate cardiovascular adaptations in people with SCI, it is unknown whether behavioral community-based interventions effectively generate such adaptations for individuals with SCI. Objective Examine the effects of a tailored behavioral physical activity (PA) intervention on cardiac and vascular structure and function in individuals with SCI. Methods In this randomized controlled trial, 32 participants with SCI (18-65 years, SCI >1 year) were assigned to PA (8-week behavioral intervention) or control (CON) groups. At baseline and postintervention, measures of resting left ventricular (LV) structure and function, carotid intima-media thickness and pulse-wave velocity were assessed with ultrasound and tonometry. Results Twenty-eight participants completed the study (n = 14/group). Across the full study cohort there were no significant changes in indices of LV or vascular structure and function, despite notable improvements in peak power and oxygen uptake in the PA group. However, in a subanalysis for LOI, individuals in the PA group with LOIs below T6 had evidence of altered LV geometry (ie, increased LV internal diameter, reduced sphericity index and relative wall thickness; group × time P < 0.05 for all), which was not seen in individuals with higher LOIs at or above T6. Conclusion An 8-week behavioral PA intervention appears to promote adaptations in cardiac geometry more readily in individuals with lower level SCI than those with higher-level SCI.
Collapse
Affiliation(s)
| | - Jasmin K Ma
- University of British Columbia, Vancouver, British Columbia, Canada.,Arthritis Research Canada, Richmond, British Columbia, Canada
| | - Kathleen A Martin Ginis
- University of British Columbia, Vancouver, British Columbia, Canada.,University of British Columbia, Kelowna, British Columbia, Canada
| | | |
Collapse
|
16
|
Li F, Liu H, Zhang K, Xiao DJ, Wang C, Wang YS. Adipose-derived stromal cells improve functional recovery after spinal cord injury through TGF-β1/Smad3/PLOD2 pathway activation. Aging (Albany NY) 2021; 13:4370-4387. [PMID: 33495412 PMCID: PMC7906172 DOI: 10.18632/aging.202399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/19/2020] [Indexed: 12/19/2022]
Abstract
Transplantation of mesenchymal stromal cells (MSCs) improves functional recovery in experimental models of spinal cord injury (SCI), but the mechanism is not fully understood. Activation of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2), a collagen-modifying enzyme, reportedly follows MSC transplantation in an SCI animal model. We investigated the regulation of PLOD2 expression and its potential contribution to the neuroprotective effects of adipose-derived stromal cells (ADSCs) following mechanical injury to neurons in vitro and SCI in vivo. ADSCs enhanced wound healing in vitro and promoted functional recovery after their implantation near injury sites in a rat SCI model. These effects correlated with upregulation of PLOD2, MAP2, NSE and GAP43, and downregulation of GFAP, which is indicative of improved neuronal survival and axonal regeneration as well as reduced glial scar formation. The neurorestorative effect of ADSCs was weakened after inhibition of PLOD2 expression. ADSCs appeared to induce PLOD2 upregulation via TGF-β1 secretion, as ADSC-mediated PLOD2 expression, neuronal survival, and functional recovery after SCI were largely prevented by SB431542, a TGF-(1 receptor inhibitor. These findings indicate that ADSCs reduce lesion size and promote functional recovery after SCI mainly through activation of a TGF-β1/P-Samd3/PLOD2 pathway in spinal cord neurons.
Collapse
Affiliation(s)
- Fang Li
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan 250013, China
| | - Hua Liu
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan 250013, China
| | - Kun Zhang
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan 250013, China
| | - Dong-Jie Xiao
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan 250013, China
| | - Chang Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Jinan Dien Forensic Judical Appraisal Institute, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Yun-Shan Wang
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| |
Collapse
|
17
|
Comparison of two Borg exertion scales for monitoring exercise intensity in able-bodied participants, and those with paraplegia and tetraplegia. Spinal Cord 2021; 59:1162-1169. [PMID: 34040150 PMCID: PMC8560635 DOI: 10.1038/s41393-021-00642-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
STUDY DESIGN Cross-sectional cohort study. OBJECTIVES To compare ratings of perceived exertion (RPE) on Borg's 6-20 RPE scale and Category Ratio 10 (CR10) in able-bodied (AB) participants during upper and lower body exercise, and recreationally active participants with paraplegia (PARA) and athletes with tetraplegia (TETRA) during upper body exercise only. SETTING University and rehabilitation centre-based laboratories in UK and Netherlands. METHODS Twenty-four participants were equally split between AB, PARA, and TETRA. AB performed maximal tests using cycle (AB-CYC) and handcycle (AB-HC) ergometry. PARA and TETRA performed maximal handcycle and wheelchair propulsion tests, respectively. Oxygen uptake (V̇O2) and blood lactate concentration were monitored throughout. RPE was rated each stage on Borg's RPE scale and CR10. Thresholds were identified according to log-V̇O2 plotted against log-blood lactate (LT1), and 1.5 mmol L-1 greater than LT1 (LT2). RESULTS RPE from both scales were best fit against each other using a quadratic model, with high goodness of fit between scales that was independent of exercise mode and participant group (range R2: 0.965-0.970, P < 0.005). Though percentage peak V̇O2 was significantly greater in TETRA (P < 0.005), there was no difference in RPE at LT1 or LT2 between groups on Borg's RPE scale or CR10. CONCLUSION Strong association between Borg's RPE scale and CR10 suggests they can be used interchangeably. RPE at lactate thresholds were independent of mode of exercise and level of spinal cord injury. However, inter-individual variation precludes from making firm recommendations about using RPE for prescribing homogenous exercise intensity.
Collapse
|
18
|
Hansen RK, Samani A, Laessoe U, Handberg A, Larsen RG. Effect of wheelchair-modified rowing exercise on cardiometabolic risk factors in spinal cord injured wheelchair users: protocol for a randomised controlled trial. BMJ Open 2020; 10:e040727. [PMID: 33067301 PMCID: PMC7569950 DOI: 10.1136/bmjopen-2020-040727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Cardiovascular and metabolic diseases are a growing concern for individuals with spinal cord injury (SCI). Physical inactivity contributes to cardiometabolic morbidity and mortality in the SCI population. However, previous studies have shown mixed results regarding the effects of exercise on cardiometabolic risk factors in individuals with SCI. This discrepancy could be influenced by insufficient exercise stimuli. Recent guidelines recommend 30 min of moderate-to-vigorous intensity aerobic exercise, three times per week, for improvement in cardiometabolic health in individuals with SCI. However, to date, no studies have implemented an exercise intervention matching the new recommendations to examine the effects on cardiometabolic risk factors. Therefore, the primary objective of this study is to determine the effects of 12 weeks of wheelchair user-modified upper-body rowing exercise on both traditional (constituents of the metabolic syndrome) and novel (eg, vascular structure and function) cardiometabolic risk factors in manual wheelchair users with SCI. METHODS AND ANALYSIS A randomised controlled trial will compare 12 weeks of upper-body rowing exercise, 30 min three times per week, with a control group continuing their normal lifestyle. Outcome measurements will be performed immediately before (baseline), after 6 weeks (halfway), 12 weeks of training (post) and 6 months after the termination of the intervention period (follow-up). Outcomes will include inflammatory (eg, C reactive protein) and metabolic biomarkers determined from venous blood (with serum fasting insulin as primary outcome), body composition, arterial blood pressure, cardiorespiratory fitness level, brachial artery vascular structure and function and autonomic nervous system function. ETHICS AND DISSEMINATION This trial is reported to the Danish Data Protection Agency (J.nr. 2019-899/10-0406) and approved by the Committees on Health Research Ethics in The North Denmark Region on 12 December 2019 (J.nr. N-20190053). The principal investigator will collect written informed consent from all participants prior to inclusion. Irrespective of study outcomes, the results will be submitted to peer-reviewed scientific journals for publication. TRIAL REGISTRATION NUMBER NCT04390087.
Collapse
Affiliation(s)
- Rasmus Kopp Hansen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Research and Development, University College of Northern Jutland (UCN), Aalborg, Denmark
| | - Afshin Samani
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Uffe Laessoe
- Department of Research and Development, University College of Northern Jutland (UCN), Aalborg, Denmark
- Physical Therapy Department, University College of Northern Jutland (UCN), Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ryan Godsk Larsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
19
|
Koontz AM, Garfunkel CE, Crytzer TM, Anthony SJ, Nindl BC. Feasibility, acceptability, and preliminary efficacy of a handcycling high-intensity interval training program for individuals with spinal cord injury. Spinal Cord 2020; 59:34-43. [PMID: 32908194 PMCID: PMC7854955 DOI: 10.1038/s41393-020-00548-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/17/2023]
Abstract
Study Design: Pilot non-randomized clinical trial Objectives: To examine the feasibility, acceptability and preliminary efficacy of performing handcycling high intensity interval training (HIIT) for six weeks in wheelchair users with spinal cord injury. Setting: Participant’s home Methods: Participants completed pre and post graded exercise stress tests, exercise surveys and six weeks of handcycling HIIT. The HIIT program consisted of two weekly, 25 minute supervised at-home sessions (2-3 min warm-up, then 10 intervals of cycling with a ratio of 1 minute work at 90% peak power output (PPO) to 1 minute recovery at 0-20% PPO, then 2-3 min cool-down). Real-time power output and heart rate were recorded via sensors and a bike computer. The sensor data were analyzed to evaluate training efficacy. Results: Seven of the 10 enrolled participants (70%) completed the study. All but one completed the required 12 sessions. The participants met at least one of the HIIT target intensity criteria in 76 out of 89 total sessions (85.4%) performed. Participants expressed a high level of enjoyment on the Physical Activity Enjoyment Scale, mean (SD) = 114.8 (11.3), and satisfaction with the overall experience. Five of the seven participants (71%) who completed the study felt an increase in endurance, function and health. Objective physiological changes showed mixed results. Conclusions: Six weeks of handcycling HIIT appears to be safe, feasible and acceptable. A longer HIIT work interval may be needed to elicit significant physiological responses. Future investigation of the feasibility and efficacy of differing HIIT parameters is needed.
Collapse
Affiliation(s)
- Alicia M Koontz
- Department of Veterans Affairs, Rehabilitation Research and Development Service, Human Engineering Research Laboratories, Pittsburgh, PA, USA. .,Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Cecile E Garfunkel
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Theresa M Crytzer
- Department of Veterans Affairs, Rehabilitation Research and Development Service, Human Engineering Research Laboratories, Pittsburgh, PA, USA.,Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA, USA.,Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven J Anthony
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
van der Woude LHV, Houdijk HJP, Janssen TWJ, Seves B, Schelhaas R, Plaggenmarsch C, Mouton NLJ, Dekker R, van Keeken H, de Groot S, Vegter RJK. Rehabilitation: mobility, exercise & sports; a critical position stand on current and future research perspectives. Disabil Rehabil 2020; 43:3476-3491. [PMID: 32805152 DOI: 10.1080/09638288.2020.1806365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Human movement, rehabilitation, and allied sciences have embraced their ambitions within the cycle of "RehabMove" congresses over the past 30 years. This combination of disciplines and collaborations in the Netherlands has tried to provide answers to questions in the fields of rehabilitation and adapted sports, while simultaneously generating new questions and challenges. These research questions help us to further deepen our understanding of (impaired) human movement and functioning, with and without supportive technologies, and stress the importance of continued multidisciplinary (inter)national collaboration. METHODS This position stand provides answers that were conceived by the authors in a creative process underlining the preparation of the 6th RehabMove Congress. RESULTS The take-home message of the RehabMove2018 Congress is a plea for continued multidisciplinary research in the fields of rehabilitation and adapted sports. This should be aimed at more individualized notions of human functioning, practice, and training, but also of performance, improved supportive technology, and appropriate "human and technology asset management" at both individual and organization levels and over the lifespan. CONCLUSIONS With this, we anticipate to support the development of rehabilitation sciences and technology and to stimulate the use of rehabilitation notions in general health care. We also hope to help ensure a stronger embodiment of preventive and lifestyle medicine in rehabilitation practice. Indeed, general health care and rehabilitation practice require a healthy and active lifestyle management and research agenda in the context of primary, secondary, and tertiary prevention.IMPLICATIONS FOR REHABILITATIONContinued multidisciplinary (international) collaboration will stimulate the development of rehabilitation and human movement sciences.Notions from "human and technology asset management and ergonomics" are fundamental to rehabilitation practice and research.The rehabilitation concept will further merge into general health care and the quality there-off.
Collapse
Affiliation(s)
- Lucas H V van der Woude
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Center for Rehabilitation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han J P Houdijk
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Research & Development, Heliomare Rehabilitation Center, Wijk aan Zee, The Netherlands
| | - Thomas W J Janssen
- Amsterdam Rehabilitation Research Center, Amsterdam, The Netherlands.,Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Research Institute MOVE, VU University, Amsterdam, The Netherlands
| | - Bregje Seves
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Reslin Schelhaas
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Corien Plaggenmarsch
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Noor L J Mouton
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rienk Dekker
- Center for Rehabilitation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Helco van Keeken
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sonja de Groot
- Amsterdam Rehabilitation Research Center, Amsterdam, The Netherlands.,Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Research Institute MOVE, VU University, Amsterdam, The Netherlands
| | - Riemer J K Vegter
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Hicks AL. Locomotor training in people with spinal cord injury: is this exercise? Spinal Cord 2020; 59:9-16. [PMID: 32581307 DOI: 10.1038/s41393-020-0502-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022]
Abstract
Locomotor training holds tremendous appeal to people with spinal cord injury who are wheelchair dependent, as the reacquisition of gait remains one of the most coveted goals in this population. For the last few decades this type of training has remained primarily in the clinical environment, as it requires the use of expensive treadmills with bodyweight support or complex overhead suspension tracks to facilitate overground walking. The development of powered exoskeletons has taken locomotor training out of the clinic, both improving accessibility and providing a potential option for community ambulation in people with lower limb paralysis. A question that has yet to be answered, however, is whether or not locomotor training offers a sufficiently intense stimulus to induce improvements in fitness or health. As inactivity-related secondary health complications are a major source of morbidity and mortality in people with SCI, it would be important to characterize the potential of locomotor training to not only improve functional walking ability, but also improve health-related fitness. This narrative review will summarize the key literature in this area to determine whether locomotor training challenges the cardiovascular, muscular or metabolic systems enough to be considered a viable form of exercise.
Collapse
Affiliation(s)
- Audrey L Hicks
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
22
|
Bailey DP, Withers TM, Goosey‐Tolfrey VL, Dunstan DW, Leicht CA, Champion RB, Charlett OP, Ferrandino L. Acute effects of breaking up prolonged sedentary time on cardiovascular disease risk markers in adults with paraplegia. Scand J Med Sci Sports 2020; 30:1398-1408. [DOI: 10.1111/sms.13671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/04/2020] [Accepted: 03/24/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel P. Bailey
- Institute for Sport and Physical Activity Research School of Sport Science and Physical Activity University of Bedfordshire Bedford UK
| | - Thomas M. Withers
- Institute for Sport and Physical Activity Research School of Sport Science and Physical Activity University of Bedfordshire Bedford UK
| | - Vicky L. Goosey‐Tolfrey
- School of Sport, Exercise and Health Sciences The Peter Harrison Centre for Disability Sport Loughborough University Loughborough UK
| | - David W. Dunstan
- Baker Heart and Diabetes Institute Melbourne Vic. Australia
- Mary MacKillop Institute for Health Research Australian Catholic University Melbourne Vic. Australia
| | - Christof A. Leicht
- School of Sport, Exercise and Health Sciences The Peter Harrison Centre for Disability Sport Loughborough University Loughborough UK
| | - Rachael B. Champion
- Institute for Sport and Physical Activity Research School of Sport Science and Physical Activity University of Bedfordshire Bedford UK
| | - Opie P. Charlett
- Institute for Sport and Physical Activity Research School of Sport Science and Physical Activity University of Bedfordshire Bedford UK
| | - Louise Ferrandino
- Institute for Sport and Physical Activity Research School of Sport Science and Physical Activity University of Bedfordshire Bedford UK
| |
Collapse
|
23
|
Hutchinson MJ, Kilgallon JW, Leicht CA, Goosey-Tolfrey VL. Perceived exertion responses to wheelchair propulsion differ between novice able-bodied and trained wheelchair sportspeople. J Sci Med Sport 2019; 23:403-407. [PMID: 31706827 DOI: 10.1016/j.jsams.2019.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To investigate peripheral (RPEP) and central (RPEC) Ratings of Perceived Exertion during wheelchair propulsion in untrained able-bodied (AB) participants, and trained wheelchair rugby athletes with and without cervical spinal cord injury (CSCI). DESIGN Cross-sectional study. METHODS 38 participants (AB: n=20; wheelchair rugby athletes with CSCI: n=9; without CSCI: n=9) completed an incremental wheelchair propulsion test to exhaustion on a motorised treadmill. Gas exchange measures and heart rate (HR) were collected throughout. RPEP and RPEC on the Category Ratio-10 were verbally recorded each minute. Blood lactate concentration ([BLa]) was determined post-test. RESULTS Between 50-100% peak oxygen uptake (V̇O2peak), RPEP was greater than RPEC in AB (p<0.05), but not in athletes with (p=0.07) or without (p=0.16) CSCI. RPEP was greater in AB compared to players with CSCI (Effect sizes: 1.24-1.62), as were respiratory exchange ratio (1.02±0.10 vs 0.82±0.11, p<0.05) and [BLa]peak (7.98±2.53 vs 4.66±1.57mmol·L-1). RPEC was greater in athletes without CSCI compared to those with CSCI (Effect sizes: 0.70-1.38), as were HR (166±20 vs 104±15 beats·min-1, p<0.05) and ventilation (59.2±28.8 vs 35.1±16.6L·min-1, p=0.01). CONCLUSIONS RPEP was dominant over RPEC during wheelchair propulsion for untrained AB participants. For athletes with CSCI, lower RPEP and RPEC were reported at the same %V̇O2peak compared to those without CSCI. The mechanism for this remains to be fully elucidated.
Collapse
Affiliation(s)
- Michael J Hutchinson
- The Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences Loughborough University, United Kingdom
| | - Jonathan W Kilgallon
- The Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences Loughborough University, United Kingdom
| | - Christof A Leicht
- The Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences Loughborough University, United Kingdom
| | - Victoria L Goosey-Tolfrey
- The Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences Loughborough University, United Kingdom.
| |
Collapse
|
24
|
Mcleod JC, Diana H, Hicks AL. Sprint interval training versus moderate-intensity continuous training during inpatient rehabilitation after spinal cord injury: a randomized trial. Spinal Cord 2019; 58:106-115. [DOI: 10.1038/s41393-019-0345-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 11/09/2022]
|
25
|
Hutchinson MJ, Valentino SE, Totosy de Zepetnek J, MacDonald MJ, Goosey-Tolfrey VL. Perceptually regulated training does not influence the differentiated RPE response following 16-weeks of aerobic exercise in adults with spinal cord injury. Appl Physiol Nutr Metab 2019; 45:129-134. [PMID: 31251892 DOI: 10.1139/apnm-2019-0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effect of prolonged familiarisation with ratings of perceived exertion (RPE) on the peripheral (RPEP) and central (RPEC) RPE responses to moderate-vigorous exercise in adults with spinal cord injury (SCI). RPEP and RPEC characterise the exertion of the working musculature and cardiorespiratory systems, respectively. Nineteen participants (age, 41.4 ± 11.4 years; peak oxygen uptake, 19.2 ± 7.2 mL·kg-1·min-1) with chronic SCI were randomly assigned to RPE-guided (n = 11; EXP) or active control (n = 8; CON) groups. EXP performed 16-weeks of RPE-guided, supervised aerobic training for 20 min, twice weekly, at RPE 3-6 (Category-Ratio 10 scale). CON had access to the same exercise equipment but received no specific advice on their exercise-training regime. Participants completed a graded exercise test, using an arm crank ergometer at pre- and post-training to determine peak oxygen uptake, with RPEP and RPEC recorded every minute throughout tests. Sixteen weeks training did not improve peak oxygen uptake. RPE decreased post-training at 50% (p = 0.02) and 70% peak oxygen uptake (p = 0.03), though there was no effect of group at either intensity (p = 0.54, 0.42, respectively). At 70% peak oxygen uptake, RPEP was greater than RPEC (4.2 ± 1.7 vs 3.4 ± 1.8, p < 0.005). Training with RPE-guidance for 16 weeks had no additional effect on the differentiated RPE responses to moderate-vigorous exercise in adults with SCI. Novelty In adults with SCI, differentiated RPE responses were not different between those who did, and did not, perform 16 weeks of RPE-guided training. This challenges whether familiarisation with RPE is necessary to be an effective regulator of exercise intensity in this population.
Collapse
Affiliation(s)
- Michael John Hutchinson
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Sydney Ella Valentino
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Julia Totosy de Zepetnek
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada.,Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Maureen Jane MacDonald
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.,Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Victoria Louise Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
26
|
Kouwijzer I, Cowan RE, Maher JL, Groot FP, Riedstra F, Valent LJM, van der Woude LHV, de Groot S. Interrater and intrarater reliability of ventilatory thresholds determined in individuals with spinal cord injury. Spinal Cord 2019; 57:669-678. [PMID: 30820032 DOI: 10.1038/s41393-019-0262-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
STUDY DESIGN Cross-sectional. OBJECTIVES Individualized training regimes are often based on ventilatory thresholds (VTs). The objectives were to study: (1) whether VTs during arm ergometry could be determined in individuals with spinal cord injury (SCI), (2) the intrarater and interrater reliability of VT determination. SETTING University research laboratory. METHODS Thirty graded arm crank ergometry exercise tests with 1-min increments of recreationally active individuals (tetraplegia (N = 11), paraplegia (N = 19)) were assessed. Two sports physicians assessed all tests blinded, randomly, in two sessions, for VT1 and VT2, resulting in 240 possible VTs. Power output (PO), heart rate (HR), and oxygen uptake (VO2) at each VT were compared between sessions or raters using paired samples t-tests, Wilcoxon signed-rank tests, intraclass correlation coefficients (ICC, relative agreement), and Bland-Altman plots (random error, absolute agreement). RESULTS Of the 240 VTs, 217 (90%) could be determined. Of the 23 undetermined VTs, 2 (9%) were VT1 and 21 (91%) were VT2; 7 (30%) among individuals with paraplegia, and 16 (70%) among individuals with tetraplegia. For the successfully determined VTs, there were no systematic differences between sessions or raters. Intrarater and interrater ICCs for PO, HR, and VO2 at each VT were high to very high (0.82-1.00). Random error was small to large within raters, and large between raters. CONCLUSIONS For VTs that could be determined, relative agreement was high to very high, absolute agreement varied. For some individuals, often with tetraplegia, VT determination was not possible, thus other methods should be considered to prescribe exercise intensity.
Collapse
Affiliation(s)
- Ingrid Kouwijzer
- Research and Development, Heliomare Rehabilitation Center, Wijk aan Zee, the Netherlands. .,University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands. .,Amsterdam Rehabilitation Research Center
- Reade, Amsterdam, the Netherlands.
| | - Rachel E Cowan
- Department of Neurological Surgery, Miller School of Medicine & The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - Jennifer L Maher
- Department of Neurological Surgery, Miller School of Medicine & The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - Floor P Groot
- Heliomare Rehabilitation Center, Wijk aan Zee, the Netherlands.,Sport- en Beweegkliniek, Haarlem, the Netherlands
| | - Feikje Riedstra
- Heliomare Rehabilitation Center, Wijk aan Zee, the Netherlands.,Sport- en Beweegkliniek, Haarlem, the Netherlands
| | - Linda J M Valent
- Research and Development, Heliomare Rehabilitation Center, Wijk aan Zee, the Netherlands
| | - Lucas H V van der Woude
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Center for Rehabilitation, Groningen, the Netherlands
| | - Sonja de Groot
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands.,Amsterdam Rehabilitation Research Center
- Reade, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Hutchinson MJ, MacDonald MJ, Eston R, Goosey-Tolfrey VL. Peak oxygen uptake measured during a perceptually-regulated exercise test is reliable in community-based manual wheelchair users. J Sports Sci 2018; 37:701-707. [PMID: 30547732 DOI: 10.1080/02640414.2018.1522941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study compares test-retest reliability and peak exercise responses from ramp-incremented (RAMP) and maximal perceptually-regulated (PRETmax) exercise tests during arm crank exercise in individuals reliant on manual wheelchair propulsion (MWP). Ten untrained participants completed four trials over 2-weeks (two RAMP (0-40 W + 5-10 W · min-1) trials and two PRETmax. PRETmax consisted of five, 2-min stages performed at Ratings of Perceived Exertion (RPE) 11, 13, 15, 17 and 20). Participants freely changed the power output to match the required RPE. Gas exchange variables, heart rate, power output, RPE and affect were determined throughout trials. The V̇O2peak from RAMP (14.8 ± 5.5 ml · kg-1 · min-1) and PRETmax (13.9 ± 5.2 ml · kg-1 · min-1) trials were not different (P = 0.08). Measurement error was 1.7 and 2.2 ml · kg-1 · min-1 and coefficient of variation 5.9% and 8.1% for measuring V̇O2peak from RAMP and PRETmax, respectively. Affect was more positive at RPE 13 (P = 0.02), 15 (P = 0.01) and 17 (P = 0.01) during PRETmax. Findings suggest that PRETmax can be used to measure V̇O2peak in participants reliant on MWP and leads to a more positive affective response compared to RAMP.
Collapse
Affiliation(s)
- Michael John Hutchinson
- a The Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Maureen Jane MacDonald
- a The Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b Exercise Metabolism Research Group, Department of Kinesiology , McMaster University , Hamilton , Canada
| | - Roger Eston
- c Alliance for Research in Exercise, Nutrition and Activity, Sansom Institute for Health Research, School of Health Sciences , University of South Australia , Adelaide , Australia
| | - Victoria Louise Goosey-Tolfrey
- a The Peter Harrison Centre for Disability Sport, School for Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| |
Collapse
|
28
|
Withers TM, Croft L, Goosey-Tolfrey VL, Dunstan DW, Leicht CA, Bailey DP. Cardiovascular disease risk marker responses to breaking up prolonged sedentary time in individuals with paraplegia: the Spinal Cord Injury Move More (SCIMM) randomised crossover laboratory trial protocol. BMJ Open 2018; 8:e021936. [PMID: 29934392 PMCID: PMC6020957 DOI: 10.1136/bmjopen-2018-021936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Sedentary behaviour is a distinct risk factor for cardiovascular disease (CVD) and could partly explain the increased prevalence of CVD in people with spinal cord injury (SCI). Interrupting prolonged sitting periods with regular short bouts of walking acutely suppresses postprandial glucose and lipids in able-bodied individuals. However, the acute CVD risk marker response to breaking up prolonged sedentary time in people with SCI has not been investigated. METHODS AND ANALYSIS A randomised two-condition laboratory crossover trial will compare: (1) breaking up prolonged sedentary time with 2 min moderate-intensity arm-crank activity every 20 min, with (2) uninterrupted prolonged sedentary time (control) in people with SCI. Outcomes will include acute effects on postprandial glucose, insulin, lipids and blood pressure. Blood samples will be collected and blood pressure measured at regular intervals during each 5½-hour condition. ETHICS AND DISSEMINATION This study was approved by the Cambridge South National Health Service Research Ethics Committee. This research will help determine if breaking up prolonged sedentary time could be effective in lowering CVD risk in people with SCI. The findings of the research will be published in a peer-reviewed journal and disseminated to relevant user groups. TRIAL REGISTRATION NUMBER ISRCTN51868437; Pre-results.
Collapse
Affiliation(s)
- Thomas M Withers
- Institute for Sport and Physical Activity Research, School of Sport Science and Physical Activity, University of Bedfordshire, Bedford, UK
| | - Louise Croft
- Institute for Sport and Physical Activity Research, School of Sport Science and Physical Activity, University of Bedfordshire, Bedford, UK
| | - Victoria L Goosey-Tolfrey
- School of Sport, Exercise and Health Sciences, The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | - David W Dunstan
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Christof A Leicht
- School of Sport, Exercise and Health Sciences, The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
| | - Daniel P Bailey
- Institute for Sport and Physical Activity Research, School of Sport Science and Physical Activity, University of Bedfordshire, Bedford, UK
| |
Collapse
|