1
|
Rouzbahani M, Ghanaati H. Intra-Arterial Stem Cell Injection for Treating Various Diseases: A New Frontier in Interventional Radiology. Cardiovasc Intervent Radiol 2025; 48:288-296. [PMID: 39789253 DOI: 10.1007/s00270-024-03947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
This article provides radiologists with insights into stem cells' functions, sources, and potentially successful clinical treatments via intravascular injection in organs such as the liver, kidney, pancreas, musculoskeletal system, and for ischemic conditions affecting the brain, heart and limbs. Understanding stem cells' significance in interventional radiology and its limitations enables tailored interventions for diverse conditions, ensuring efficient medical care and optimal treatment selection.
Collapse
Affiliation(s)
- Maedeh Rouzbahani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Ghanaati
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Tochaikul G, Daowtak K, Pilapong C, Moonkum N. In vitro investigation the effects of iodinated contrast media on endothelial cell viability, cell cycle, and apoptosis. Toxicol Mech Methods 2025; 35:64-71. [PMID: 39081123 DOI: 10.1080/15376516.2024.2386605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 12/28/2024]
Abstract
In medical practice, iodine contrast media are necessary for diagnostic techniques. However, it comes with a potential risk to the patient in the form of allergic reactions. The aim of this research is to study the effects of iodine contrast media on endothelial cells in an in vitro system at various concentrations, specifically investigating their impact on cell viability, cell cycle, and apoptosis in the treated cells within the field of diagnostic radiology. Our results showed that in iodine contrast media, when the concentration was within the range of 2.5-50 mgI/ml, cell viability decreased by 50%. Conversely, exposure to ioversol at concentrations between 12.5 and 50.0 mgI/ml resulted in a notable increase in the percentage of total apoptotic cells, including both early and late apoptosis. In conclusion, our in vitro investigation sheds light on the effect of iodinated contrast media on endothelial cell viability, cell cycle progression, and apoptosis. These findings contribute valuable insights to ensure the safety of their use, aligning with guidelines in radiological procedures. Further research and adherence to established guidelines are crucial for refining our understanding and promoting the safe application of iodinated contrast media in the field of radiology.
Collapse
Affiliation(s)
| | - Krai Daowtak
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Chalermchai Pilapong
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nutthapong Moonkum
- Faculty of Radiological Technology, Rangsit University, Patumthani, Thailand
| |
Collapse
|
4
|
Kubrova E, Qu W, Galvan ML, Paradise CR, Yang J, Dietz AB, Dudakovic A, Smith J, van Wijnen AJ. Hypothermia and nutrient deprivation alter viability of human adipose-derived mesenchymal stem cells. Gene 2019; 722:144058. [PMID: 31494240 DOI: 10.1016/j.gene.2019.144058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Adipose-derived mesenchymal stem cells (MSCs) are attractive biological agents in regenerative medicine. To optimize cell therapies, it is necessary to determine the most effective delivery method for MSCs. Therefore, we evaluated the biological properties of MSCs after exposure to various temperatures to define optimal storage conditions prior to therapeutic delivery of MSCs. DESIGN Prospective observational study. METHODS AND MATERIALS Adherent and non-adherent MSCs were incubated at multiple temperatures (i.e., 4, 23 and 37 °C) in Lactated Ringers (LR) solution lacking essential cell growth ingredients, or in culture media which is optimized for cell growth. Cells were assessed either after the temperature changes (4 h) or after recovery (24 h). Metabolic activity of MSCs, cell number and expression of representative mRNA biomarkers were evaluated to assess the biological effects of temperature. We monitored changes in mRNAs expression related to cytoprotective- or stress-related responses (e.g., FOS, JUN, ATF1, ATF4, EGR1, EGR2, MYC), proliferation (e.g., HIST2H4, CCNB2), and extracellular matrix production (ECM; e.g., COL3A1, COL1A1) by quantitative real time reverse-transcriptase polymerase chain reaction (RT-qPCR) analysis. RESULTS Our study demonstrates that storing MSCs in Lactated Ringers (LR) solution for 4 h decreases cell number and metabolic activity. The number of viable MSCs decreased significantly when cultured at physiological temperature (37 °C) and severe hypothermia (4 °C), while cells grown at ambient temperature (23 °C) exhibited the least detrimental effects. There were no appreciable biological differences in mRNA markers for proliferation or ECM deposition at any of the temperatures. However, biomarkers related to cytoprotective- or stress-responses were selectively elevated depending on temperature or media type (i.e., LR versus standard media). CONCLUSION The biological impact of nutrient-free media and temperature changes after 4 h exposure persists after a 24 h recovery period. Hence, storage temperature and media conditions should be optimized to improve effective dosing of MSCs.
Collapse
Affiliation(s)
- Eva Kubrova
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Wenchun Qu
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Juan Yang
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jay Smith
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
6
|
Nie H, Kubrova E, Wu T, Denbeigh JM, Hunt C, Dietz AB, Smith J, Qu W, van Wijnen AJ. Effect of Lidocaine on Viability and Gene Expression of Human Adipose-derived Mesenchymal Stem Cells: An in vitro Study. PM R 2019; 11:1218-1227. [PMID: 30784215 DOI: 10.1002/pmrj.12141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To assess the biologic effects of lidocaine on the viability, proliferation, and function of human adipose tissue-derived mesenchymal stromal/stem cells (MSCs) in vitro. METHODS Adipose-derived MSCs from three donors were exposed to lidocaine at various dilutions (2 mg/mL to 8 mg/mL) and exposure times (0.5 to 4 hours). Cell number and viability, mitochondrial activity, and real-time reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) were analyzed at 0 (immediate effects) or 24 and 48 hours (recovery effects) after treatment with lidocaine. RESULTS Trypan blue staining showed that increasing concentrations of lidocaine decreased the number of observable viable cells. 3-[4,5,dimethylthiazol-2-yl]-5-[3-carboxymethoxy-phenyl]-2-[4-sulfophenyl]-2H-tetrazolium (MTS) assays revealed a concentration- and time- dependent decline of mitochondrial activity and proliferative ability. Gene expression analysis by RT-qPCR revealed that adipose-derived MSCs exposed to lidocaine express robust levels of stress response/cytoprotective genes. However, higher concentrations of lidocaine caused a significant downregulation of these genes. No significant differences were observed in expression of extracellular matrix (ECM) markers COL1A1 and DCN except for COL3A1 (P < .05). Levels of messenger RNA (mRNA) for proliferation markers (CCNB2, HIST2H4A, P < .001) and MKI67 (P < .001) increased at 24 and 48 hours. Expression levels of several transcription factors- including SP1, PRRX1, and ATF1-were modulated in the same manner. MSC surface markers CD44 and CD105 demonstrated decreased expression immediately after treatment, but at 24 and 48 hours postexposure, the MSC markers showed no significant difference among groups. CONCLUSION Lidocaine is toxic to MSCs in a dose- and time- dependent manner. MSC exposure to high (4-8 mg/mL) concentrations of lidocaine for prolonged periods can affect their biologic functions. Although the exposure time in vivo is short, it is essential to choose safe concentrations when applying lidocaine along with MSCs to avoid compromising the viability and potency of the stem cell therapy.
Collapse
Affiliation(s)
- Hai Nie
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Eva Kubrova
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Tao Wu
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Janet M Denbeigh
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Christine Hunt
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Jay Smith
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Wenchun Qu
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Andre J van Wijnen
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
7
|
Mathot F, Shin AY, Van Wijnen AJ. Targeted stimulation of MSCs in peripheral nerve repair. Gene 2019; 710:17-23. [PMID: 30849542 DOI: 10.1016/j.gene.2019.02.078] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) have considerable translational potential in a wide variety of clinical disciplines and are the cellular foundation of individualized treatments of auto-immune, cardiac, neurologic and musculoskeletal diseases and disorders. While the cellular mechanisms by which MSCs exert their biological effects remain to be ascertained, it has been hypothesized that MSCs are supportive of local tissue repair through secretion of essential growth factors. Therapeutic applications of MSCs in peripheral nerve repair have recently been reported. This review focuses on how MSCs can promote nerve regeneration by conversion into Schwann-like cells, and discusses differentiation methods including delivery and dosing of naive or differentiated MSCs, as well as in vitro and in vivo outcomes. While MSC-based therapies for nerve repair are still in early stages of development, current progress in the field provides encouragement that MSCs may have utility in the treatment of patients with peripheral nerve injury.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic Surgery, Radboudumc, Nijmegen, the Netherlands
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J Van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, MN, USA.
| |
Collapse
|