1
|
Rolls ET. A Theory and Model of Scene Representations With Hippocampal Spatial View Cells. Hippocampus 2025; 35:e70013. [PMID: 40296500 DOI: 10.1002/hipo.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
A theory and network model are presented of how scene representations are built by forming spatial view cells in the ventromedial visual cortical scene pathway to the hippocampus in primates including humans. Layer 1, corresponding to V1-V4, connects to Layer 2 in the retrosplenial scene area and uses competitive learning to form visual feature combination neurons for the part of the scene being fixated, a visual fixation scene patch. In Layer 3, corresponding to the parahippocampal scene area and hippocampus, the visual fixation scene patches are stitched together to form whole scene representations. This is performed with a continuous attractor network for a whole scene made from the overlapping Gaussian receptive fields of the neurons as the head rotates to view the whole scene. In addition, in Layer 3, gain modulation by gaze direction maps visual fixation scene patches to the correct part of the whole scene representation when saccades are made. Each neuron in Layer 3 is thus a spatial view cell that responds to a location in a viewed scene based on visual features in a part of the scene. The novel conceptual advances are that this theory shows how scene representations may be built in primates, including humans, based on features in spatial scenes that anchor the scene representation to the world being viewed (to allocentric, world-based, space); and how gaze direction contributes to this. This offers a revolutionary approach to understanding the spatial representations for navigation and episodic memory in primates, including humans.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| |
Collapse
|
2
|
Spani F, Carducci F, Piervincenzi C, Ben‐Soussan TD, Mallio CA, Quattrocchi CC. Assessing brain neuroplasticity: Surface morphometric analysis of cortical changes induced by Quadrato motor training. J Anat 2025; 246:757-769. [PMID: 38924527 PMCID: PMC11996713 DOI: 10.1111/joa.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Morphological markers for brain plasticity are still lacking and their findings are challenged by the extreme variability of cortical brain surface. Trying to overcome the "correspondence problem," we applied a landmark-free method (the generalized procrustes surface analysis (GPSA)) for investigating the shape variation of cortical surface in a group of 40 healthy volunteers (i.e., the practice group) subjected to daily motor training known as Quadrato motor training (QMT). QMT is a sensorimotor walking meditation that aims at balancing body, cognition, and emotion. More specifically, QMT requires coordination and attention and consists of moving in one of three possible directions on corners of a 50 × 50 cm2. Brain magnetic resonance images (MRIs) of practice group (acquired at baseline, as well as after 6 and 12 weeks of QMT), were 3D reconstructed and here compared with brain MRIs of six more volunteers never practicing the QMT (naïve group). Cortical regions mostly affected by morphological variations were visualized on a 3D average color-scaled brain surface indicating from higher (red) to lower (blue) levels of variation. Cortical regions interested in most of the shape variations were as follows: (1) the supplementary motor cortex; (2) the inferior frontal gyrus (pars opercolaris) and the anterior insula; (3) the visual cortex; (4) the inferior parietal lobule (supramarginal gyrus and angular gyrus). Our results show that surface morphometric analysis (i.e., GPSA) can be applied to assess brain neuroplasticity processes, such as those stimulated by QMT.
Collapse
Affiliation(s)
- F. Spani
- Department of Science and Technology for Sustainable Development and One HealthUniversità Campus Bio‐Medico di RomaRomeItaly
| | - F. Carducci
- Neuroimaging Laboratory, Department of Physiology and PharmacologySapienza University of Rome (IT)RomeItaly
| | - C. Piervincenzi
- Department of Human NeurosciencesSapienza UniversityRomeItaly
| | - T. D. Ben‐Soussan
- Research Institute for Neuroscience, Education and Didactics (RINED), Patrizio Paoletti FoundationAssisiItaly
| | - C. A. Mallio
- Department of Medicine and Surgery, Research Unit of Diagnostic ImagingUniversità Campus Bio‐Medico di RomaRomeItaly
- Fondazione Policlinico Universitario Campus Bio‐Medico, Operative Research Unit of Diagnostic Imaging and Interventional RadiologyRomeItaly
| | | |
Collapse
|
3
|
Zhou L, Xu T, Feng T. The hippocampus-IPL connectivity links to ADHD traits through sensory processing sensitivity. Cereb Cortex 2025; 35:bhaf063. [PMID: 40103362 DOI: 10.1093/cercor/bhaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/20/2025] Open
Abstract
Accumulating evidence suggests that individuals with high sensory processing sensitivity often experience sensory overload and have difficulty sustaining attention, which can particularly resemble attention deficit symptoms of attention-deficit/hyperactivity disorder. However, due to the lack of understanding about the potential neural pathways involved in those processes, a comprehensive view of how sensory processing sensitivity and attention deficit are related is generally limited. Here, we quantified the sensory processing sensitivity and attention deficit using the Highly Sensitive Person Scale and the Adult Attention-deficit/Hyperactivity Disorder Self-Report Scale, respectively, to investigate the association between sensory processing sensitivity and attention deficit and further identify the corresponding neural substrates via the use of resting-state functional Magnetic Resonance Imaging (fMRI) analyses. On the behavioral level, the results indicated a significantly positive correlation between sensory processing sensitivity and attention deficit traits, while on the neural level, the sensory processing sensitivity score was positively correlated with functional connectivity between the rostral hippocampus and inferior parietal lobule, which is the core regions of the attention network. Mediation analysis revealed that hippocampus-Inferior Parietal Lobule (IPL) connectivity can further influence attention deficit through a mediating role of sensory processing sensitivity. Overall, these findings suggest that enhanced functional coupling between the hippocampus and attention network regions may heighten sensitivity to environmental stimuli, leading to increased distractibility and potentially contributing to attention deficit.
Collapse
Affiliation(s)
- Liyu Zhou
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Ting Xu
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
4
|
Li Z, Ma J, Bai H, Deng B, Lin J, Wang W. Brain local structural connectomes and the subtypes of the medial temporal lobe parcellations. Front Neurosci 2025; 19:1529123. [PMID: 40012681 PMCID: PMC11861214 DOI: 10.3389/fnins.2025.1529123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Objective To investigate the quantitative characteristics and major subtypes of local structural connectomes for medial temporal lobe (MTL) parcellations. Methods The Q-Space Diffeomorphic Reconstruction (QSDR) method was used to track white matter fibers for the ROIs within MTL based on the integrating high-resolution T1 structural MR imaging and diffusion MR imaging of 100 adult Chinese individuals. Graph theoretical analysis was employed to construct the local structural connectome models for ROIs within MTL and acquire the network parameters. These connectivity matrices of these connectomes were classified into major subtypes undergoing hierarchical clustering. Results (1) In the local brain connectomes, the overall network features exhibited a low characteristic path length paired with moderate to high global efficiency, suggesting the effectiveness of the local brain connectome construction. The amygdala connectomes exhibited longer characteristic path length and weaker global efficiency than the ipsilateral hippocampus and parahippocampal connectomes. (2) The hubs of the amygdala connectomes were dispersed across the ventral frontal, olfactory area, limbic, parietal regions and subcortical nuclei, and the hubs the hippocampal connectomes were mainly situated within the limbic, parietal, and subcortical regions. The hubs distribution of the parahippocampal connectomes resembled the hippocampal structural connectomes, but lacking interhemispheric connections and connectivity with subcortical nuclei. (3) The subtypes of the brain local structural connectomes for each ROI were classified by hierarchical clustering, The subtypes of the bilateral amygdala connectomes were the amygdala-prefrontal connectome; the amygdala-ipsilateral or contralateral limbic connectome and the amygdala-posterior connectome. The subtypes of the bilateral hippocampal connectomes primarily included the hippocampus-ipsilateral or contralateral limbic connectome and the anterior temporal-hippocampus-ventral temporal-occipital connectome in the domain hemisphere. The subtypes of the parahippocampal connectomes exhibited resemblances to those of the hippocampus. Conclusion We have constructed the brain local connectomes of the MTL parcellations and acquired the network parameters to delineate the hubs distribution through graph theory analysis. The connectomes can be classified into different major subtypes, which were closely related to the functional connectivity.
Collapse
Affiliation(s)
- Zhensheng Li
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jie Ma
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Hongmin Bai
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Bingmei Deng
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jian Lin
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Weimin Wang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| |
Collapse
|
5
|
Rey HG, Panagiotaropoulos TI, Gutierrez L, Chaure FJ, Nasimbera A, Cordisco S, Nishida F, Valentin A, Alarcon G, Richardson MP, Kochen S, Quian Quiroga R. Lack of context modulation in human single neuron responses in the medial temporal lobe. Cell Rep 2025; 44:115218. [PMID: 39823228 PMCID: PMC11781864 DOI: 10.1016/j.celrep.2024.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/13/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
In subjects implanted with intracranial electrodes, we use two different stories involving the same person (or place) to evaluate whether and to what extent context modulates human single-neuron responses. Nearly all neurons (97% during encoding and 100% during recall) initially responding to a person/place do not modulate their response with context. Likewise, nearly none (<1%) of the initially non-responsive neurons show conjunctive coding, responding to particular persons/places in a particular context during the tasks. In line with these findings, taking all neurons together it is possible to decode the person/place being depicted in each story, but not the particular story. Moreover, the neurons show consistent results across encoding and recall of the stories and during passive viewing of pictures. These results suggest a context invariant, non-conjunctive coding of memories at the single-neuron level in the human hippocampus and amygdala, in contrast to what has been described in other species.
Collapse
Affiliation(s)
- Hernan G Rey
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK; Departments of Neurosurgery, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Theofanis I Panagiotaropoulos
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK; Cognitive Neuroimaging Unit, INSERM, Universite Paris-Sud, Universite Paris-Saclay, Paris, France; Department of Psychology, National and Kapodistrian University of Athens, 15784 Athens, Greece; Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Lorenzo Gutierrez
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK; Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fernando J Chaure
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK; Institute of Biomedical Engineering, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Santiago Cordisco
- ENyS, CEMET, Av. Calchaquí 5401, Buenos Aires 1888, Argentina; Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fabian Nishida
- ENyS, CEMET, Av. Calchaquí 5401, Buenos Aires 1888, Argentina
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Gonzalo Alarcon
- Department of Clinical Neurophysiology. Royal Manchester Children's Hospital, Manchester, UK
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Silvia Kochen
- ENyS, CEMET, Av. Calchaquí 5401, Buenos Aires 1888, Argentina; Epilepsy Centre, El Cruce Hospital, Buenos Aires, Argentina
| | - Rodrigo Quian Quiroga
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK; Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain; Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Rolls ET. Hippocampal Discoveries: Spatial View Cells, Connectivity, and Computations for Memory and Navigation, in Primates Including Humans. Hippocampus 2025; 35:e23666. [PMID: 39690918 DOI: 10.1002/hipo.23666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/19/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Two key series of discoveries about the hippocampus are described. One is the discovery of hippocampal spatial view cells in primates. This discovery opens the way to a much better understanding of human episodic memory, for episodic memory prototypically involves a memory of where people or objects or rewards have been seen in locations "out there" which could never be implemented by the place cells that encode the location of a rat or mouse. Further, spatial view cells are valuable for navigation using vision and viewed landmarks, and provide for much richer, vision-based, navigation than the place to place self-motion update performed by rats and mice who live in dark underground tunnels. Spatial view cells thus offer a revolution in our understanding of the functions of the hippocampus in memory and navigation in humans and other primates with well-developed foveate vision. The second discovery describes a computational theory of the hippocampal-neocortical memory system that includes the only quantitative theory of how information is recalled from the hippocampus to the neocortex. It is shown how foundations for this research were the discovery of reward neurons for food reward, and non-reward, in the primate orbitofrontal cortex, and representations of value including of monetary value in the human orbitofrontal cortex; and the discovery of face identity and face expression cells in the primate inferior temporal visual cortex and how they represent transform-invariant information. This research illustrates how in order to understand a brain computation, a whole series of integrated interdisciplinary discoveries is needed to build a theory of the operation of each neural system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| |
Collapse
|
7
|
Wang S, Wang Y, Xu FH, Shen L, Zhao Y. Establishing group-level brain structural connectivity incorporating anatomical knowledge under latent space modeling. Med Image Anal 2025; 99:103309. [PMID: 39243600 DOI: 10.1016/j.media.2024.103309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Brain structural connectivity, capturing the white matter fiber tracts among brain regions inferred by diffusion MRI (dMRI), provides a unique characterization of brain anatomical organization. One fundamental question to address with structural connectivity is how to properly summarize and perform statistical inference for a group-level connectivity architecture, for instance, under different sex groups, or disease cohorts. Existing analyses commonly summarize group-level brain connectivity by a simple entry-wise sample mean or median across individual brain connectivity matrices. However, such a heuristic approach fully ignores the associations among structural connections and the topological properties of brain networks. In this project, we propose a latent space-based generative network model to estimate group-level brain connectivity. Within our modeling framework, we incorporate the anatomical information of brain regions as the attributes of nodes to enhance the plausibility of our estimation and improve biological interpretation. We name our method the attributes-informed brain connectivity (ABC) model, which compared with existing group-level connectivity estimations, (1) offers an interpretable latent space representation of the group-level connectivity, (2) incorporates the anatomical knowledge of nodes and tests its co-varying relationship with connectivity and (3) quantifies the uncertainty and evaluates the likelihood of the estimated group-level effects against chance. We devise a novel Bayesian MCMC algorithm to estimate the model. We evaluate the performance of our model through extensive simulations. By applying the ABC model to study brain structural connectivity stratified by sex among Alzheimer's Disease (AD) subjects and healthy controls incorporating the anatomical attributes (volume, thickness and area) on nodes, our method shows superior predictive power on out-of-sample structural connectivity and identifies meaningful sex-specific network neuromarkers for AD.
Collapse
Affiliation(s)
- Selena Wang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, United States of America.
| | - Yiting Wang
- Department of Statistics, Virginia University, United States of America
| | - Frederick H Xu
- Department of Bioengineering, University of Pennsylvania, United States of America
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, United States of America
| | - Yize Zhao
- Department of Biostatistics, Yale Univeristy, United States of America
| |
Collapse
|
8
|
He C, Zhou H, Chen L, Liu Z. NEAT1 Promotes Valproic Acid-Induced Autism Spectrum Disorder by Recruiting YY1 to Regulate UBE3A Transcription. Mol Neurobiol 2025; 62:846-860. [PMID: 38922486 DOI: 10.1007/s12035-024-04309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Evidence suggests that long non-coding RNAs (lncRNAs) play a significant role in autism. Herein, we explored the functional role and possible molecular mechanisms of NEAT1 in valproic acid (VPA)-induced autism spectrum disorder (ASD). A VPA-induced ASD rat model was constructed, and a series of behavioral tests were performed to examine motor coordination and learning-memory abilities. qRT-PCR and western blot assays were used to evaluate target gene expression levels. Loss-and-gain-of-function assays were conducted to explore the functional role of NEAT1 in ASD development. Furthermore, a combination of mechanistic experiments and bioinformatic tools was used to assess the relationship and regulatory role of the NEAT1-YY1-UBE3A axis in ASD cellular processes. Results showed that VPA exposure induced autism-like developmental delays and behavioral abnormalities in the VPA-induced ASD rat model. We found that NEAT1 was elevated in rat hippocampal tissues after VPA exposure. NEAT1 promoted VPA-induced autism-like behaviors and mitigated apoptosis, oxidative stress, and inflammation in VPA-induced ASD rats. Notably, NEAT1 knockdown improved autism-related behaviors and ameliorated hippocampal neuronal damage. Mechanistically, it was observed that NEAT1 recruited the transcription factor YY1 to regulate UBE3A expression. Additionally, in vitro experiments further confirmed that NEAT1 knockdown mitigated hippocampal neuronal damage, oxidative stress, and inflammation through the YY1/UBE3A axis. In conclusion, our study demonstrates that NEAT1 is highly expressed in ASD, and its inhibition prominently suppresses hippocampal neuronal injury and oxidative stress through the YY1/UBE3A axis, thereby alleviating ASD development. This provides a new direction for ASD-targeted therapy.
Collapse
Affiliation(s)
- Chuping He
- Department of Children's Health, Chenzhou First People's Hospital, No. 6, Feihong Road, Suxian District, Chenzhou, 423000, Hunan, China
| | - Huimei Zhou
- Department of Children's Health, Chenzhou First People's Hospital, No. 6, Feihong Road, Suxian District, Chenzhou, 423000, Hunan, China.
| | - Lei Chen
- Department of Children's Health, Chenzhou First People's Hospital, No. 6, Feihong Road, Suxian District, Chenzhou, 423000, Hunan, China
| | - Zeying Liu
- Department of Children's Health, Chenzhou First People's Hospital, No. 6, Feihong Road, Suxian District, Chenzhou, 423000, Hunan, China
| |
Collapse
|
9
|
Rolls ET, Zhang R, Deco G, Vatansever D, Feng J. Selective Brain Activations and Connectivities Related to the Storage and Recall of Human Object-Location, Reward-Location, and Word-Pair Episodic Memories. Hum Brain Mapp 2024; 45:e70056. [PMID: 39436048 PMCID: PMC11494686 DOI: 10.1002/hbm.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Different cortical systems to the hippocampus were activated using fMRI during different types of episodic memory task. For object with scene location episodic memory, the activations were high in cortical systems involved in spatial processing, including the ventromedial visual and medial parahippocampal system. These activations for the medial parahippocampal system were higher in the right hemisphere. The activations in the face and object processing ventrolateral visual cortical stream regions FFC, PIT, V8 and TE2p were higher in the object-location in scene task than the reward-location task, and were higher in the right hemisphere. For reward-location in scene episodic memory, activations were also high in the ventromedial visual cortical spatial stream to the hippocampus, but were also selectively high in storage in key reward cortical regions (ventromedial prefrontal 10r, 10v, 10d; pregenual anterior cingulate d32, p24, p32, s32; and medial orbitofrontal cortex reward-related pOFC, 11l, OFC). For word-pair episodic memory, activations were lower in the ventromedial visual and medial parahippocampal spatial cortical stream, and were higher in language-related regions in Broca's area (44, 45, 47l), and were higher in the left hemisphere for these regions and for the many highly connected inferior frontal gyrus regions in the left hemisphere. Further, effective connectivity analyses during the episodic memory tasks showed that the direction of connectivity for these systems was from early visual cortical regions V2-V4 to the ventromedial visual cortical regions VMV1-3 and VVC for spatial scene processing; was from the pregenual anterior cingulate and orbitofrontal cortex reward systems to the hippocampal system; and was from the FFC/V8/PIT system to TE2p in the visual inferior temporal visual cortex, which has connectivity to lateral parahippocampal TF, which in turn has forward effective connectivity to the hippocampus.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Department of Computer ScienceUniversity of WarwickCoventryUK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan UniversityShanghaiChina
- Oxford Centre for Computational NeuroscienceOxfordUK
| | - Ruohan Zhang
- Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
- Brain and Cognition, Pompeu Fabra UniversityBarcelonaSpain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu FabraBarcelonaSpain
| | - Deniz Vatansever
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan UniversityShanghaiChina
| | - Jianfeng Feng
- Department of Computer ScienceUniversity of WarwickCoventryUK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan UniversityShanghaiChina
| |
Collapse
|
10
|
Zhang S, Xie X, Xu Y, Mi J, Li Z, Guo Z, Xu G. Effects of transcranial magneto-acoustic stimulation on cognitive function and neural signal transmission in the hippocampal CA1 region of mice. Neuroscience 2024; 556:86-95. [PMID: 39047971 DOI: 10.1016/j.neuroscience.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/16/2023] [Accepted: 01/29/2024] [Indexed: 07/27/2024]
Abstract
As a new means of brain neuroregulation and research, transcranial magneto-acoustic stimulation (TMAS) uses the coupling effect of ultrasound and a static magnetic field to regulate neural activity in the corresponding brain areas. Calcium ions can promote the secretion of neurotransmitters and play a key role in the transmission of neural signals in brain cognition. In this study, to explore the effects of TMAS on cognitive function and neural signaling in the CA1 region of the hippocampus, TMAS was applied to male 2-month-old C57 mice with a magnetic field strength of 0.3 T and ultrasound intensity of 2.6 W/cm2. First, the efficiency of neural signaling in the CA1 region of the mouse hippocampus was detected by fiber photometry. Second, the effects of TMAS on cognitive function in mice were investigated through multiple behavioral experiments, including spatial learning and memory ability, anxiety and desire for novelty. The experimental results showed that TMAS could improve cognitive function in mice, and the efficiency of neural signaling in the CA1 area of the hippocampus was significantly increased during stimulation and maintained for one week after stimulation. In addition, the neural signaling efficiency in the CA1 area of the hippocampus increased in the open field (OF) experiment and recovered after one week, the neural signaling efficiency in the new object exploration (NOE) experiment was significantly enhanced, and the intensity slowed after one week. In conclusion, TMAS enhances cognitive performance and promotes neural signaling in the CA1 region of the mouse hippocampus.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Electromagnetic Field and Electrical Reliability, Hebei University of Technology, Tianjin 300130, China.
| | - Xiaofeng Xie
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Electromagnetic Field and Electrical Reliability, Hebei University of Technology, Tianjin 300130, China
| | - Yihao Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Electromagnetic Field and Electrical Reliability, Hebei University of Technology, Tianjin 300130, China
| | - Jinrui Mi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Electromagnetic Field and Electrical Reliability, Hebei University of Technology, Tianjin 300130, China
| | - Zichun Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Electromagnetic Field and Electrical Reliability, Hebei University of Technology, Tianjin 300130, China
| | - Zhongsheng Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Electromagnetic Field and Electrical Reliability, Hebei University of Technology, Tianjin 300130, China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Electromagnetic Field and Electrical Reliability, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
11
|
Rolls ET, Yan X, Deco G, Zhang Y, Jousmaki V, Feng J. A ventromedial visual cortical 'Where' stream to the human hippocampus for spatial scenes revealed with magnetoencephalography. Commun Biol 2024; 7:1047. [PMID: 39183244 PMCID: PMC11345434 DOI: 10.1038/s42003-024-06719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
The primate including the human hippocampus implicated in episodic memory and navigation represents a spatial view, very different from the place representations in rodents. To understand this system in humans, and the computations performed, the pathway for this spatial view information to reach the hippocampus was analysed in humans. Whole-brain effective connectivity was measured with magnetoencephalography between 30 visual cortical regions and 150 other cortical regions using the HCP-MMP1 atlas in 21 participants while performing a 0-back scene memory task. In a ventromedial visual stream, V1-V4 connect to the ProStriate region where the retrosplenial scene area is located. The ProStriate region has connectivity to ventromedial visual regions VMV1-3 and VVC. These ventromedial regions connect to the medial parahippocampal region PHA1-3, which, with the VMV regions, include the parahippocampal scene area. The medial parahippocampal regions have effective connectivity to the entorhinal cortex, perirhinal cortex, and hippocampus. In contrast, when viewing faces, the effective connectivity was more through a ventrolateral visual cortical stream via the fusiform face cortex to the inferior temporal visual cortex regions TE2p and TE2a. A ventromedial visual cortical 'Where' stream to the hippocampus for spatial scenes was supported by diffusion topography in 171 HCP participants at 7 T.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.
| | - Xiaoqian Yan
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Gustavo Deco
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona, Spain
| | - Yi Zhang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Veikko Jousmaki
- Aalto NeuroImaging, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Cai J, Xie M, Liang S, Gong J, Deng W, Guo W, Ma X, Sham PC, Wang Q, Li T. Dysfunction of thalamocortical circuits in early-onset schizophrenia. Cereb Cortex 2024; 34:bhae313. [PMID: 39106176 DOI: 10.1093/cercor/bhae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 08/09/2024] Open
Abstract
Previous studies have demonstrated that the thalamus is involved in multiple functional circuits in participants with schizophrenia. However, less is known about the thalamocortical circuit in the rare subtype of early-onset schizophrenia. A total of 110 participants with early-onset schizophrenia (47 antipsychotic-naive patients) and 70 matched healthy controls were recruited and underwent resting-state functional and diffusion-weighted magnetic resonance imaging scans. A data-driven parcellation method that combined the high spatial resolution of diffusion magnetic resonance imaging and the high sensitivity of functional magnetic resonance imaging was used to divide the thalamus. Next, the functional connectivity between each thalamic subdivision and the cortex/cerebellum was investigated. Compared to healthy controls, individuals with early-onset schizophrenia exhibited hypoconnectivity between subdivisions of the thalamus and the frontoparietal network, visual network, ventral attention network, somatomotor network and cerebellum, and hyperconnectivity between subdivisions of thalamus and the parahippocampal and temporal gyrus, which were included in limbic network. The functional connectivity between the right posterior cingulate cortex and 1 subdivision of the thalamus (region of interest 1) was positively correlated with the general psychopathology scale score. This study showed that the specific thalamocortical dysconnection in individuals with early-onset schizophrenia involves the prefrontal, auditory and visual cortices, and cerebellum. This study identified thalamocortical connectivity as a potential biomarker and treatment target for early-onset schizophrenia.
Collapse
Affiliation(s)
- Jia Cai
- Mental Health Center, West China Hospital of Sichuan University, No. 28th Dianxin Nan Str. Chengdu, Sichuan, 610041, China
| | - Min Xie
- Mental Health Center, West China Hospital of Sichuan University, No. 28th Dianxin Nan Str. Chengdu, Sichuan, 610041, China
| | - Sugai Liang
- Affiliated Mental Health Centre and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, No. 305th Tianmushan Road, Xihu District, Hangzhou, Zhejiang 310013, China
| | - Jinnan Gong
- School of Computer Science, Chengdu University of Information Technology, No. 2006th, Xiyuan Road, Pidu District, Chengdu, Sichuan 611700, China
| | - Wei Deng
- Affiliated Mental Health Centre and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, No. 305th Tianmushan Road, Xihu District, Hangzhou, Zhejiang 310013, China
| | - Wanjun Guo
- Affiliated Mental Health Centre and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, No. 305th Tianmushan Road, Xihu District, Hangzhou, Zhejiang 310013, China
| | - Xiaohong Ma
- Mental Health Center, West China Hospital of Sichuan University, No. 28th Dianxin Nan Str. Chengdu, Sichuan, 610041, China
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Central and Western District, Hong Kong, Special Administrative Region, 999077, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Pokfulam, Central and Western District, Hong Kong, Special Administrative Region, 999077, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Central and Western District, Hong Kong, Special Administrative Region, 999077, China
| | - Qiang Wang
- Mental Health Center, West China Hospital of Sichuan University, No. 28th Dianxin Nan Str. Chengdu, Sichuan, 610041, China
| | - Tao Li
- Affiliated Mental Health Centre and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, No. 305th Tianmushan Road, Xihu District, Hangzhou, Zhejiang 310013, China
| |
Collapse
|
13
|
Eichert N, DeKraker J, Howard AFD, Huszar IN, Zhu S, Sallet J, Miller KL, Mars RB, Jbabdi S, Bernhardt BC. Hippocampal connectivity patterns echo macroscale cortical evolution in the primate brain. Nat Commun 2024; 15:5963. [PMID: 39013855 PMCID: PMC11252401 DOI: 10.1038/s41467-024-49823-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
While the hippocampus is key for human cognitive abilities, it is also a phylogenetically old cortex and paradoxically considered evolutionarily preserved. Here, we introduce a comparative framework to quantify preservation and reconfiguration of hippocampal organisation in primate evolution, by analysing the hippocampus as an unfolded cortical surface that is geometrically matched across species. Our findings revealed an overall conservation of hippocampal macro- and micro-structure, which shows anterior-posterior and, perpendicularly, subfield-related organisational axes in both humans and macaques. However, while functional organisation in both species followed an anterior-posterior axis, we observed a marked reconfiguration in the latter across species, which mirrors a rudimentary integration of the default-mode-network in non-human primates. Here we show that microstructurally preserved regions like the hippocampus may still undergo functional reconfiguration in primate evolution, due to their embedding within heteromodal association networks.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Jordan DeKraker
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Amy F D Howard
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Istvan N Huszar
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Silei Zhu
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- INSERM U1208 Stem Cell and Brain Research Institute, Univ Lyon, Bron, France
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Boris C Bernhardt
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
14
|
Rolls ET, Treves A. A theory of hippocampal function: New developments. Prog Neurobiol 2024; 238:102636. [PMID: 38834132 DOI: 10.1016/j.pneurobio.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build 'where' spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for 'what' object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
15
|
Rolls ET. The memory systems of the human brain and generative artificial intelligence. Heliyon 2024; 10:e31965. [PMID: 38841455 PMCID: PMC11152951 DOI: 10.1016/j.heliyon.2024.e31965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Generative Artificial Intelligence foundation models (for example Generative Pre-trained Transformer - GPT - models) can generate the next token given a sequence of tokens. How can this 'generative AI' be compared with the 'real' intelligence of the human brain, when for example a human generates a whole memory in response to an incomplete retrieval cue, and then generates further prospective thoughts? Here these two types of generative intelligence, artificial in machines and real in the human brain are compared, and it is shown how when whole memories are generated by hippocampal recall in response to an incomplete retrieval cue, what the human brain computes, and how it computes it, are very different from generative AI. Key differences are the use of local associative learning rules in the hippocampal memory system, and of non-local backpropagation of error learning in AI. Indeed, it is argued that the whole operation of the human brain is performed computationally very differently to what is implemented in generative AI. Moreover, it is emphasized that the primate including human hippocampal system includes computations about spatial view and where objects and people are in scenes, whereas in rodents the emphasis is on place cells and path integration by movements between places. This comparison with generative memory and processing in the human brain has interesting implications for the further development of generative AI and for neuroscience research.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200403, China
| |
Collapse
|
16
|
Piza DB, Corrigan BW, Gulli RA, Do Carmo S, Cuello AC, Muller L, Martinez-Trujillo J. Primacy of vision shapes behavioral strategies and neural substrates of spatial navigation in marmoset hippocampus. Nat Commun 2024; 15:4053. [PMID: 38744848 PMCID: PMC11093997 DOI: 10.1038/s41467-024-48374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.
Collapse
Affiliation(s)
- Diego B Piza
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
| | - Benjamin W Corrigan
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | | | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Lyle Muller
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Applied Mathematics, Western University, London, ON, Canada
| | - Julio Martinez-Trujillo
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Western University, London, ON, Canada.
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.
- Department of Psychiatry, Western University, London, ON, Canada.
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.
| |
Collapse
|
17
|
Magrou L, Joyce MKP, Froudist-Walsh S, Datta D, Wang XJ, Martinez-Trujillo J, Arnsten AFT. The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition. Cereb Cortex 2024; 34:bhae174. [PMID: 38771244 PMCID: PMC11107384 DOI: 10.1093/cercor/bhae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.
Collapse
Affiliation(s)
- Loïc Magrou
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Sean Froudist-Walsh
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xiao-Jing Wang
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Julio Martinez-Trujillo
- Departments of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
18
|
Nakai S, Kitanishi T, Mizuseki K. Distinct manifold encoding of navigational information in the subiculum and hippocampus. SCIENCE ADVANCES 2024; 10:eadi4471. [PMID: 38295173 PMCID: PMC10830115 DOI: 10.1126/sciadv.adi4471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
The subiculum (SUB) plays a crucial role in spatial navigation and encodes navigational information differently from the hippocampal CA1 area. However, the representation of subicular population activity remains unknown. Here, we investigated the neuronal population activity recorded extracellularly from the CA1 and SUB of rats performing T-maze and open-field tasks. The trajectory of population activity in both areas was confined to low-dimensional neural manifolds homoeomorphic to external space. The manifolds conveyed position, speed, and future path information with higher decoding accuracy in the SUB than in the CA1. The manifolds exhibited common geometry across rats and regions for the CA1 and SUB and between tasks in the SUB. During post-task ripples in slow-wave sleep, population activity represented reward locations/events more frequently in the SUB than in CA1. Thus, the CA1 and SUB encode information distinctly into the neural manifolds that underlie navigational information processing during wakefulness and sleep.
Collapse
Affiliation(s)
- Shinya Nakai
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Takuma Kitanishi
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| |
Collapse
|
19
|
Mısır E, Alıcı YH, Kocak OM. Functional connectivity in rumination: a systematic review of magnetic resonance imaging studies. J Clin Exp Neuropsychol 2023; 45:928-955. [PMID: 38346167 DOI: 10.1080/13803395.2024.2315312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/28/2023] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Rumination, defined as intrusive and repetitive thoughts in response to negative emotions, uncertainty, and inconsistency between goal and current situation, is a significant risk factor for depressive disorders. The rumination literature presents diverse findings on functional connectivity and shows heterogeneity in research methods. This systematic review seeks to integrate these findings and provide readers diverse perspectives. METHOD For this purpose, the literature on functional connectivity in rumination was reviewed according to the PRISMA guidelines. Regional connectivity and network connectivity results were scrutinized according to the presence of depression, research methods, and type of rumination. After screening 492 articles, a total of 36 studies were included. RESULTS The results showed that increased connectivity of the default mode network (DMN) was consistently reported. Other important findings include alterations in the connectivity between the DMN and the frontoparietal network and the salience network (SN) and impaired regulatory function of the SN. Region-level connectivity studies consistently show that increased connectivity between the posterior cingulate cortex and the prefrontal cortex is associated with rumination, which may cause the loss of control of the frontoparietal network over self-referential processes. We have seen that the number of studies examining brooding and reflective rumination as separate dimensions are relatively limited. Although there are overlaps between the connectivity patterns of the two types of rumination in these studies, it can be thought that reflective rumination is more associated with more increased functional connectivity of the prefrontal cortex. CONCLUSIONS Although there are many consistent functional connectivity outcomes associated with trait rumination, less is known about connectivity changes during state rumination. Relatively few studies have taken into account the subjective aspect of this thinking style. In order to better explain the relationship between rumination and depression, rumination induction studies during episode and remission periods of depression are needed.
Collapse
Affiliation(s)
- Emre Mısır
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
| | - Yasemin Hoşgören Alıcı
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
| | - Orhan Murat Kocak
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
20
|
Giari G, Vignali L, Xu Y, Bottini R. MEG frequency tagging reveals a grid-like code during attentional movements. Cell Rep 2023; 42:113209. [PMID: 37804506 DOI: 10.1016/j.celrep.2023.113209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023] Open
Abstract
Grid-cells firing fields tile the environment with a 6-fold periodicity during both locomotion and visual exploration. Here, we tested, in humans, whether movements of covert attention elicit grid-like coding using frequency tagging. Participants observed visual trajectories presented sequentially at fixed rate, allowing different spatial periodicities (e.g., 4-, 6-, and 8-fold) to have corresponding temporal periodicities (e.g., 1, 1.5, and 2 Hz), thus resulting in distinct spectral responses. We found a higher response for the (grid-like) 6-fold periodicity and localized this effect in medial-temporal sources. In a control experiment featuring the same temporal periodicity but lacking spatial structure, the 6-fold effect did not emerge, suggesting its dependency on spatial movements of attention. We report evidence that grid-like signals in the human medial-temporal lobe can be elicited by covert attentional movements and suggest that attentional coding may provide a suitable mechanism to support the activation of cognitive maps during conceptual navigation.
Collapse
Affiliation(s)
- Giuliano Giari
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy.
| | - Lorenzo Vignali
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy
| | - Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy
| | - Roberto Bottini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38123 Trento, Italy.
| |
Collapse
|
21
|
Xue H, Xu X, Yan Z, Cheng J, Zhang L, Zhu W, Cui G, Zhang Q, Qiu S, Yao Z, Qin W, Liu F, Liang M, Fu J, Xu Q, Xu J, Xie Y, Zhang P, Li W, Wang C, Shen W, Zhang X, Xu K, Zuo XN, Ye Z, Yu Y, Xian J, Yu C. Genome-wide association study of hippocampal blood-oxygen-level-dependent-cerebral blood flow correlation in Chinese Han population. iScience 2023; 26:108005. [PMID: 37822511 PMCID: PMC10562876 DOI: 10.1016/j.isci.2023.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/29/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Correlation between blood-oxygen-level-dependent (BOLD) and cerebral blood flow (CBF) has been used as an index of neurovascular coupling. Hippocampal BOLD-CBF correlation is associated with neurocognition, and the reduced correlation is associated with neuropsychiatric disorders. We conducted the first genome-wide association study of the hippocampal BOLD-CBF correlation in 4,832 Chinese Han subjects. The hippocampal BOLD-CBF correlation had an estimated heritability of 16.2-23.9% and showed reliable genome-wide significant association with a locus at 3q28, in which many variants have been linked to neuroimaging and cerebrospinal fluid markers of Alzheimer's disease. Gene-based association analyses showed four significant genes (GMNC, CRTC2, DENND4B, and GATAD2B) and revealed enrichment for mast cell calcium mobilization, microglial cell proliferation, and ubiquitin-related proteolysis pathways that regulate different cellular components of the neurovascular unit. This is the first unbiased identification of the association of hippocampal BOLD-CBF correlation, providing fresh insights into the genetic architecture of hippocampal neurovascular coupling.
Collapse
Affiliation(s)
- Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangbin Cui
- Functional and Molecular Imaging Key Lab of Shaanxi Province & Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Quan Zhang
- Department of Radiology, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Shijun Qiu
- Department of Medical Imaging, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Xiaochu Zhang
- Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Kai Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center at IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|
22
|
Maisson DJN, Cervera RL, Voloh B, Conover I, Zambre M, Zimmermann J, Hayden BY. Widespread coding of navigational variables in prefrontal cortex. Curr Biol 2023; 33:3478-3488.e3. [PMID: 37541250 PMCID: PMC10984098 DOI: 10.1016/j.cub.2023.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/01/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023]
Abstract
To navigate effectively, we must represent information about our location in the environment. Traditional research highlights the role of the hippocampal complex in this process. Spurred by recent research highlighting the widespread cortical encoding of cognitive and motor variables previously thought to have localized function, we hypothesized that navigational variables would be likewise encoded widely, especially in the prefrontal cortex, which is associated with volitional behavior. We recorded neural activity from six prefrontal regions while macaques performed a foraging task in an open enclosure. In all regions, we found strong encoding of allocentric position, allocentric head direction, boundary distance, and linear and angular velocity. These encodings were not accounted for by distance, time to reward, or motor factors. The strength of coding of all variables increased along a ventral-to-dorsal gradient. Together, these results argue that encoding of navigational variables is not localized to the hippocampus and support the hypothesis that navigation is continuous with other forms of flexible cognition in the service of action.
Collapse
Affiliation(s)
- David J-N Maisson
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roberto Lopez Cervera
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin Voloh
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Indirah Conover
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mrunal Zambre
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jan Zimmermann
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin Y Hayden
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Messina A, Cuccì G, Crescimanno C, Signorelli MS. Clinical anatomy of the precuneus and pathogenesis of the schizophrenia. Anat Sci Int 2023:10.1007/s12565-023-00730-w. [PMID: 37340095 DOI: 10.1007/s12565-023-00730-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/12/2023] [Indexed: 06/22/2023]
Abstract
Recent evidence has shown that the precuneus plays a role in the pathogenesis of schizophrenia. The precuneus is a structure of the parietal lobe's medial and posterior cortex, representing a central hub involved in multimodal integration processes. Although neglected for several years, the precuneus is highly complex and crucial for multimodal integration. It has extensive connections with different cerebral areas and is an interface between external stimuli and internal representations. In human evolution, the precuneus has increased in size and complexity, allowing the development of higher cognitive functions, such as visual-spatial ability, mental imagery, episodic memory, and other tasks involved in emotional processing and mentalization. This paper reviews the functions of the precuneus and discusses them concerning the psychopathological aspects of schizophrenia. The different neuronal circuits, such as the default mode network (DMN), in which the precuneus is involved and its alterations in the structure (grey matter) and the disconnection of pathways (white matter) are described.
Collapse
Affiliation(s)
- Antonino Messina
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy.
| | | | | | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| |
Collapse
|
24
|
Waters SJ, Basile BM, Murray EA. Reevaluating the role of the hippocampus in memory: A meta-analysis of neurotoxic lesion studies in nonhuman primates. Hippocampus 2023; 33:787-807. [PMID: 36649170 PMCID: PMC10213107 DOI: 10.1002/hipo.23499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023]
Abstract
The hippocampus and perirhinal cortex are both broadly implicated in memory; nevertheless, their relative contributions to visual item recognition and location memory remain disputed. Neuropsychological studies in nonhuman primates that examine memory function after selective damage to medial temporal lobe structures report various levels of memory impairment-ranging from minor deficits to profound amnesia. The discrepancies in published findings have complicated efforts to determine the exact magnitude of visual item recognition and location memory impairments following damage to the hippocampus and/or perirhinal cortex. To provide the most accurate estimate to date of the overall effect size, we use meta-analytic techniques on data aggregated from 26 publications that assessed visual item recognition and/or location memory in nonhuman primates with and without selective neurotoxic lesions of the hippocampus or perirhinal cortex. We estimated the overall effect size, evaluated the relation between lesion extent and effect size, and investigated factors that may account for between-study variation. Grouping studies by lesion target and testing method, separate meta-analyses were conducted. One meta-analysis indicated that impairments on tests of visual item recognition were larger after lesions of perirhinal cortex than after lesions of the hippocampus. A separate meta-analysis showed that performance on tests of location memory was severely impaired by lesions of the hippocampus. For the most part, meta-regressions indicated that greater impairment corresponds with greater lesion extent; paradoxically, however, more extensive hippocampal lesions predicted smaller impairments on tests of visual item recognition. We conclude the perirhinal cortex makes a larger contribution than the hippocampus to visual item recognition, and the hippocampus predominately contributes to spatial navigation.
Collapse
Affiliation(s)
- Spencer J. Waters
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, USA
| | - Benjamin M. Basile
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
- Department of Psychology, Dickinson College, Carlisle PA, USA
| | - Elisabeth A. Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| |
Collapse
|
25
|
Jessey TB, Lin B, Subramanium SV, Kraeutner SN. Disrupting somatosensory processing impairs motor execution but not motor imagery. Hum Mov Sci 2023; 90:103101. [PMID: 37247540 DOI: 10.1016/j.humov.2023.103101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
While motor imagery (MI) is thought to be 'functionally equivalent' with motor execution (ME), the equivalence of feedforward and feedback mechanisms between the two modalities is unexplored. Here, we tested the equivalence of these mechanisms between MI and ME via two experiments designed to probe the role of somatosensory processing (Exp 1), and cognitive processing (Exp 2). All participants were engaged in a previously established force-matching task adapted for MI. A reference force was applied (on scale of 1-10, with higher numbers indicative of greater force) to one index finger while participants matched the force with their opposite index finger via ME or MI (control conditions). Participants then rated the force on the same scale of 1-10. Exp 1: Participants (N = 27) performed the task with tactile stimulation (ME+TAC, MI+TAC) in addition to control conditions. Exp 2: Participants (N = 26) performed the task in dual-task conditions (ME+COG, MI+COG) in addition to control conditions. Results indicate that (Exp 1) tactile stimulation impaired performance in ME but not MI. Dual-task conditions (Exp 2) were not shown to impair performance in either practice modality. Findings suggest that while somatosensory processing is critical for ME, it is not for MI. Overall we indicate a functional equivalence between feedforward/back mechanisms in MI and ME may not exist.
Collapse
Affiliation(s)
- Tarri B Jessey
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Okanagan Campus, Kelowna V1V1V7, British Columbia, Canada
| | - Beier Lin
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Okanagan Campus, Kelowna V1V1V7, British Columbia, Canada
| | - Soumyaa V Subramanium
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Okanagan Campus, Kelowna V1V1V7, British Columbia, Canada
| | - Sarah N Kraeutner
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, University of British Columbia, Okanagan Campus, Kelowna V1V1V7, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T1Z3, British Columbia, Canada.
| |
Collapse
|
26
|
Donoghue T, Cao R, Han CZ, Holman CM, Brandmeir NJ, Wang S, Jacobs J. Single neurons in the human medial temporal lobe flexibly shift representations across spatial and memory tasks. Hippocampus 2023; 33:600-615. [PMID: 37060325 PMCID: PMC10231142 DOI: 10.1002/hipo.23539] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/16/2023]
Abstract
Investigations into how individual neurons encode behavioral variables of interest have revealed specific representations in single neurons, such as place and object cells, as well as a wide range of cells with conjunctive encodings or mixed selectivity. However, as most experiments examine neural activity within individual tasks, it is currently unclear if and how neural representations change across different task contexts. Within this discussion, the medial temporal lobe is particularly salient, as it is known to be important for multiple behaviors including spatial navigation and memory, however the relationship between these functions is currently unclear. Here, to investigate how representations in single neurons vary across different task contexts in the medial temporal lobe, we collected and analyzed single-neuron activity from human participants as they completed a paired-task session consisting of a passive-viewing visual working memory and a spatial navigation and memory task. Five patients contributed 22 paired-task sessions, which were spike sorted together to allow for the same putative single neurons to be compared between the different tasks. Within each task, we replicated concept-related activations in the working memory task, as well as target-location and serial-position responsive cells in the navigation task. When comparing neuronal activity between tasks, we first established that a significant number of neurons maintained the same kind of representation, responding to stimuli presentations across tasks. Further, we found cells that changed the nature of their representation across tasks, including a significant number of cells that were stimulus responsive in the working memory task that responded to serial position in the spatial task. Overall, our results support a flexible encoding of multiple, distinct aspects of different tasks by single neurons in the human medial temporal lobe, whereby some individual neurons change the nature of their feature coding between task contexts.
Collapse
Affiliation(s)
| | - Runnan Cao
- Lane Department of Computer Science and Electrical Engineering, West Virginia University
| | - Claire Z. Han
- Department of Biomedical Engineering, Columbia University
| | | | | | - Shuo Wang
- Department of Radiology, Washington University in St. Louis
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University
- Department of Neurological Surgery, Columbia University
| |
Collapse
|
27
|
Rolls ET. Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in humans. Hippocampus 2023; 33:533-572. [PMID: 36070199 PMCID: PMC10946493 DOI: 10.1002/hipo.23467] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/08/2023]
Abstract
Hippocampal and parahippocampal gyrus spatial view neurons in primates respond to the spatial location being looked at. The representation is allocentric, in that the responses are to locations "out there" in the world, and are relatively invariant with respect to retinal position, eye position, head direction, and the place where the individual is located. The underlying connectivity in humans is from ventromedial visual cortical regions to the parahippocampal scene area, leading to the theory that spatial view cells are formed by combinations of overlapping feature inputs self-organized based on their closeness in space. Thus, although spatial view cells represent "where" for episodic memory and navigation, they are formed by ventral visual stream feature inputs in the parahippocampal gyrus in what is the parahippocampal scene area. A second "where" driver of spatial view cells are parietal inputs, which it is proposed provide the idiothetic update for spatial view cells, used for memory recall and navigation when the spatial view details are obscured. Inferior temporal object "what" inputs and orbitofrontal cortex reward inputs connect to the human hippocampal system, and in macaques can be associated in the hippocampus with spatial view cell "where" representations to implement episodic memory. Hippocampal spatial view cells also provide a basis for navigation to a series of viewed landmarks, with the orbitofrontal cortex reward inputs to the hippocampus providing the goals for navigation, which can then be implemented by hippocampal connectivity in humans to parietal cortex regions involved in visuomotor actions in space. The presence of foveate vision and the highly developed temporal lobe for object and scene processing in primates including humans provide a basis for hippocampal spatial view cells to be key to understanding episodic memory in the primate and human hippocampus, and the roles of this system in primate including human navigation.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
| |
Collapse
|
28
|
Han CZ, Donoghue T, Cao R, Kunz L, Wang S, Jacobs J. Using multi-task experiments to test principles of hippocampal function. Hippocampus 2023; 33:646-657. [PMID: 37042212 PMCID: PMC10249632 DOI: 10.1002/hipo.23540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/13/2023]
Abstract
Investigations of hippocampal functions have revealed a dizzying array of findings, from lesion-based behavioral deficits, to a diverse range of characterized neural activations, to computational models of putative functionality. Across these findings, there remains an ongoing debate about the core function of the hippocampus and the generality of its representation. Researchers have debated whether the hippocampus's primary role relates to the representation of space, the neural basis of (episodic) memory, or some more general computation that generalizes across various cognitive domains. Within these different perspectives, there is much debate about the nature of feature encodings. Here, we suggest that in order to evaluate hippocampal responses-investigating, for example, whether neuronal representations are narrowly targeted to particular tasks or if they subserve domain-general purposes-a promising research strategy may be the use of multi-task experiments, or more generally switching between multiple task contexts while recording from the same neurons in a given session. We argue that this strategy-when combined with explicitly defined theoretical motivations that guide experiment design-could be a fruitful approach to better understand how hippocampal representations support different behaviors. In doing so, we briefly review key open questions in the field, as exemplified by articles in this special issue, as well as previous work using multi-task experiments, and extrapolate to consider how this strategy could be further applied to probe fundamental questions about hippocampal function.
Collapse
Affiliation(s)
- Claire Z. Han
- Department of Biomedical Engineering, Columbia University
| | | | - Runnan Cao
- Department of Radiology, Washington University in St. Louis
| | - Lukas Kunz
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University
- Department of Neurological Surgery, Columbia University
| |
Collapse
|
29
|
Muller A, Garren JD, Cao K, Peterson MA, Ekstrom AD. Understanding the encoding of object locations in small-scale spaces during free exploration using eye tracking. Neuropsychologia 2023; 184:108565. [PMID: 37080425 DOI: 10.1016/j.neuropsychologia.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/14/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Navigation is instrumental to daily life and is often used to encode and locate objects, such as keys in one's house. Yet, little is known about how navigation works in more ecologically valid situations such as finding objects within a room. Specifically, it is not clear how vision vs. body movements contribute differentially to spatial memory in such small-scale spaces. In the current study, participants encoded object locations by viewing them while standing (stationary condition) or by additionally being guided by the experimenter while blindfolded (walking condition) after viewing the objects. They then retrieved the objects from the same or different viewpoint, creating a 2 × 2 within subject design. We simultaneously recorded participant eye movements throughout the experiment using mobile eye tracking. The results showed no statistically significant differences among our four conditions (stationary, same viewpoint as encoding; stationary, different viewpoint; walking, same viewpoint; walking, different viewpoint), suggesting that in a small real-world space, vision may be sufficient to remember object locations. Eye tracking analyses revealed that object locations were better remembered next to landmarks and that participants encoded items on one wall together, suggesting the use of local wall coordinates rather than global room coordinates. A multivariate regression analysis revealed that the only significant predictor of object placement accuracy was average looking time. These results suggest that vision may be sufficient for encoding object locations in a small-scale environment and that such memories may be formed largely locally rather than globally.
Collapse
Affiliation(s)
- Alana Muller
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ, 85721, USA.
| | - Joshua D Garren
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ, 85721, USA.
| | - Kayla Cao
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ, 85721, USA.
| | - Mary A Peterson
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ, 85721, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ, 85721, USA; Cognitive Science Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ, 85721, USA.
| | - Arne D Ekstrom
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ, 85721, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ, 85721, USA.
| |
Collapse
|
30
|
Ekstrom AD, Hill PF. Spatial navigation and memory: A review of the similarities and differences relevant to brain models and age. Neuron 2023; 111:1037-1049. [PMID: 37023709 PMCID: PMC10083890 DOI: 10.1016/j.neuron.2023.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023]
Abstract
Spatial navigation and memory are often seen as heavily intertwined at the cognitive and neural levels of analysis. We review models that hypothesize a central role for the medial temporal lobes, including the hippocampus, in both navigation and aspects of memory, particularly allocentric navigation and episodic memory. While these models have explanatory power in instances in which they overlap, they are limited in explaining functional and neuroanatomical differences. Focusing on human cognition, we explore the idea of navigation as a dynamically acquired skill and memory as an internally driven process, which may better account for the differences between the two. We also review network models of navigation and memory, which place a greater emphasis on connections rather than the functions of focal brain regions. These models, in turn, may have greater explanatory power for the differences between navigation and memory and the differing effects of brain lesions and age.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA.
| | - Paul F Hill
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA
| |
Collapse
|
31
|
Hao Y, Liu W, Liu Y, Liu Y, Xu Z, Ye Y, Zhou H, Deng H, Zuo H, Yang H, Li Y. Effects of Nonthermal Radiofrequency Stimulation on Neuronal Activity and Neural Circuit in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205988. [PMID: 36755196 PMCID: PMC10104648 DOI: 10.1002/advs.202205988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Whether the nonthermal effects of radiofrequency radiation (RFR) exist and how nonthermal RFR acts on the nervous system are unknown. An animal model of spatial memory impairment is established by exposing mice to 2856-MHz RFR in the range of thermal noise (≤1 °C). Glutamate release in the dorsal hippocampus (dHPC) CA1 region is not significantly changed after radiofrequency exposure, whereas dopamine release is reduced. Importantly, RFR enhances glutamatergic CA1 pyramidal neuron calcium activity by nonthermal mechanisms, which recover to the basal level with RFR termination. Furthermore, suppressed dHPC dopamine release induced by radiofrequency exposure is due to decreased density of dopaminergic projections from the locus coeruleus to dHPC, and artificial activation of dopamine axon terminals or D1 receptors in dHPC CA1 improve memory damage in mice exposed to RFR. These findings indicate that nonthermal radiofrequency stimulation modulates ongoing neuronal activity and affects nervous system function at the neural circuit level.
Collapse
Affiliation(s)
- Yanhui Hao
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Weiqi Liu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Yujie Liu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Ying Liu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Zhengtao Xu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Yumeng Ye
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Hongmei Zhou
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Hua Deng
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Hongyan Zuo
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Hong Yang
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Yang Li
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Academy of Life ScienceAnhui Medical UniversityHefei230032China
- Department of PathologyChengde Medical CollegeChengde067000China
| |
Collapse
|
32
|
Quian Quiroga R. An integrative view of human hippocampal function: Differences with other species and capacity considerations. Hippocampus 2023; 33:616-634. [PMID: 36965048 DOI: 10.1002/hipo.23527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/11/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
We describe an integrative model that encodes associations between related concepts in the human hippocampal formation, constituting the skeleton of episodic memories. The model, based on partially overlapping assemblies of "concept cells," contrast markedly with the well-established notion of pattern separation, which relies on conjunctive, context dependent single neuron responses, instead of the invariant, context independent responses found in the human hippocampus. We argue that the model of partially overlapping assemblies is better suited to cope with memory capacity limitations, that the finding of different types of neurons and functions in this area is due to a flexible and temporary use of the extraordinary machinery of the hippocampus to deal with the task at hand, and that only information that is relevant and frequently revisited will consolidate into long-term hippocampal representations, using partially overlapping assemblies. Finally, we propose that concept cells are uniquely human and that they may constitute the neuronal underpinnings of cognitive abilities that are much further developed in humans compared to other species.
Collapse
Affiliation(s)
- Rodrigo Quian Quiroga
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK
- Department of neurosurgery, clinical neuroscience center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Page WK, Sulon DW, Duffy CJ. Neural activity during monkey vehicular wayfinding. J Neurol Sci 2023; 446:120593. [PMID: 36827811 DOI: 10.1016/j.jns.2023.120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Navigation gets us from place to place, creating a path to arrive at a goal. We trained a monkey to steer a motorized cart in a large room, beginning at its trial-by-trial start location and ending at a trial-by-trial cued goal location. While the monkey steered its autonomously chosen path to its goal, we recorded neural activity simultaneously in both the hippocampus (HPC) and medial superior temporal (MST) cortex. Local field potentials (LFPs) in these sites show similar patterns of activity with the 15-30 Hz band highlighting specific room locations. In contrast, 30-100 Hz LFPs support a unified map of the behaviorally relevant start and goal locations. The single neuron responses (SNRs) do not substantially contribute to room or start-goal maps. Rather, the SNRs form a continuum from neurons that are most active when the monkey is moving on a path toward the goal, versus other neurons that are most active when the monkey deviates from paths toward the goal. Granger analyses suggest that HPC firing precedes MST firing during cueing at the trial start location, mainly mediated by off-path neurons. In contrast, MST precedes HPC firing during steering, mainly mediated by on-path neurons. Interactions between MST and HPC are mediated by the parallel activation of on-path and off-path neurons, selectively activated across stages of this wayfinding task.
Collapse
Affiliation(s)
- William K Page
- Dept. of Neurology, University of Rochester Medical Ctr., Rochester, NY 14642, USA
| | - David W Sulon
- Dept. of Neurology, Penn State Health Medical Ctr., Hershey, PA 17036, USA
| | - Charles J Duffy
- Dept. of Neurology, University of Rochester Medical Ctr., Rochester, NY 14642, USA; Dept. of Neurology, Penn State Health Medical Ctr., Hershey, PA 17036, USA; Dept. of Neurology, University Hospitals and Case Western Reserve University, Cleveland, OH 44122, USA.
| |
Collapse
|
34
|
Sun JT, Hu B, Chen TQ, Chen ZH, Shang YX, Li YT, Wang R, Wang W. Internet addiction-induced brain structure and function alterations: a systematic review and meta-analysis of voxel-based morphometry and resting-state functional connectivity studies. Brain Imaging Behav 2023; 17:329-342. [PMID: 36899209 DOI: 10.1007/s11682-023-00762-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/12/2023]
Abstract
Internet addiction (IA) is a growing social concern and has been intensively studied in recent years. Previous imaging studies have shown that IA may impair brain structure and function, but with no robust conclusions. We conducted a systematic review and meta-analysis of neuroimaging studies in IA. Two separate meta-analyses were conducted for voxel-based morphometry (VBM) studies and resting-state functional connectivity (rsFC) studies. All meta-analyses were performed using two analysis methods activation likelihood estimation (ALE) and seed-based d mapping with permutation of subject images (SDM-PSI). The ALE analysis of VBM studies revealed less gray matter volume (GMV) in the supplementary motor area (SMA) (1176 mm3), anterior cingulate cortex (ACC) (one cluster size is 744 mm3 and the other is 688 mm3), and orbitofrontal cortex (OFC) (624 mm3) in subjects with IA. The SDM-PSI analysis showed less GMV in the ACC (56 voxels). The ALE analysis of rsFC studies showed stronger rsFC from posterior cingulate cortex (PCC) (880 mm3) or insula (712 mm3) to the whole brain in subjects with IA; however, the SDM-PSI analysis revealed no obvious rsFC alteration. These changes may underlie the core symptoms of IA, which include emotional regulation disorder, distraction, and impaired executive control. Our results reflect the common features of neuroimaging studies related to IA in recent years and may potentially help inform the development of more effective diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Jing-Ting Sun
- Department of Medical Technology, Middle section of Century Avenue, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, China.,Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Tian-Qi Chen
- Institute of basic medicine, Fourth Military Medical University (Air Force Medical University, 169 Changle Road, 710032, Xi'an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Yu-Xuan Shang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Yu-Ting Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Rui Wang
- Military medical center, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China.
| | - Wen Wang
- Department of Medical Technology, Middle section of Century Avenue, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, China. .,Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China.
| |
Collapse
|
35
|
Rolls ET, Deco G, Huang CC, Feng J. The human posterior parietal cortex: effective connectome, and its relation to function. Cereb Cortex 2023; 33:3142-3170. [PMID: 35834902 PMCID: PMC10401905 DOI: 10.1093/cercor/bhac266] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/04/2023] Open
Abstract
The effective connectivity between 21 regions in the human posterior parietal cortex, and 360 cortical regions was measured in 171 Human Connectome Project (HCP) participants using the HCP atlas, and complemented with functional connectivity and diffusion tractography. Intraparietal areas LIP, VIP, MIP, and AIP have connectivity from early cortical visual regions, and to visuomotor regions such as the frontal eye fields, consistent with functions in eye saccades and tracking. Five superior parietal area 7 regions receive from similar areas and from the intraparietal areas, but also receive somatosensory inputs and connect with premotor areas including area 6, consistent with functions in performing actions to reach for, grasp, and manipulate objects. In the anterior inferior parietal cortex, PFop, PFt, and PFcm are mainly somatosensory, and PF in addition receives visuo-motor and visual object information, and is implicated in multimodal shape and body image representations. In the posterior inferior parietal cortex, PFm and PGs combine visuo-motor, visual object, and reward input and connect with the hippocampal system. PGi in addition provides a route to motion-related superior temporal sulcus regions involved in social interactions. PGp has connectivity with intraparietal regions involved in coordinate transforms and may be involved in idiothetic update of hippocampal visual scene representations.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, United Kingdom
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, Shanghai 200602, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
36
|
Johnston R, Abbass M, Corrigan B, Gulli R, Martinez-Trujillo J, Sachs A. Decoding spatial locations from primate lateral prefrontal cortex neural activity during virtual navigation. J Neural Eng 2023; 20. [PMID: 36693278 DOI: 10.1088/1741-2552/acb5c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
Objective. Decoding the intended trajectories from brain signals using a brain-computer interface system could be used to improve the mobility of patients with disabilities.Approach. Neuronal activity associated with spatial locations was examined while macaques performed a navigation task within a virtual environment.Main results.Here, we provide proof of principle that multi-unit spiking activity recorded from the lateral prefrontal cortex (LPFC) of non-human primates can be used to predict the location of a subject in a virtual maze during a navigation task. The spatial positions within the maze that require a choice or are associated with relevant task events can be better predicted than the locations where no relevant events occur. Importantly, within a task epoch of a single trial, multiple locations along the maze can be independently identified using a support vector machine model.Significance. Considering that the LPFC of macaques and humans share similar properties, our results suggest that this area could be a valuable implant location for an intracortical brain-computer interface system used for spatial navigation in patients with disabilities.
Collapse
Affiliation(s)
- Renée Johnston
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mohamad Abbass
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada.,Western Institute for Neuroscience, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Benjamin Corrigan
- Western Institute for Neuroscience, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Roberto Gulli
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States of America.,Center for Theoretical Neuroscience, Columbia University, New York, NY, United States of America
| | - Julio Martinez-Trujillo
- Western Institute for Neuroscience, Western University, London, ON, Canada.,Department of Physiology, Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Adam Sachs
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Division of Neurosurgery, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
37
|
Social navigation modulates the anterior and posterior hippocampal circuits in the resting brain. Brain Struct Funct 2023; 228:799-813. [PMID: 36813907 DOI: 10.1007/s00429-023-02622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Social navigation is a dynamic and complex process that requires the collaboration of multiple brain regions. However, the neural networks for navigation in a social space remain largely unknown. This study aimed to investigate the role of hippocampal circuit in social navigation from a resting-state fMRI data. Here, resting-state fMRI data were acquired before and after participants performed a social navigation task. By taking the anterior and posterior hippocampus (HPC) as the seeds, we calculated their connectivity with the whole brain using the seed-based static functional connectivity (sFC) and dynamic FC (dFC) approaches. We found that the sFC and dFC between the anterior HPC and supramarginal gyrus, sFC or dFC between posterior HPC and middle cingulate cortex, inferior parietal gyrus, angular gyrus, posterior cerebellum, medial superior frontal gyrus were increased after the social navigation task. These alterations were related to social cognition of tracking location in the social navigation. Moreover, participants who had more social support or less neuroticism showed a greater increase in hippocampal connectivity. These findings may highlight a more important role of the posterior hippocampal circuit in the social navigation, which is crucial for social cognition.
Collapse
|
38
|
Donoghue T, Cao R, Han CZ, Holman CM, Brandmeir NJ, Wang S, Jacobs J. Single neurons in the human medial temporal lobe flexibly shift representations across spatial and memory tasks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529437. [PMID: 36865334 PMCID: PMC9980106 DOI: 10.1101/2023.02.22.529437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Investigations into how individual neurons encode behavioral variables of interest have revealed specific representations in single neurons, such as place and object cells, as well as a wide range of cells with conjunctive encodings or mixed selectivity. However, as most experiments examine neural activity within individual tasks, it is currently unclear if and how neural representations change across different task contexts. Within this discussion, the medial temporal lobe is particularly salient, as it is known to be important for multiple behaviors including spatial navigation and memory, however the relationship between these functions is currently unclear. Here, to investigate how representations in single neurons vary across different task contexts in the MTL, we collected and analyzed single-neuron activity from human participants as they completed a paired-task session consisting of a passive-viewing visual working memory and a spatial navigation and memory task. Five patients contributed 22 paired-task sessions, which were spike sorted together to allow for the same putative single neurons to be compared between the different tasks. Within each task, we replicated concept-related activations in the working memory task, as well as target-location and serial-position responsive cells in the navigation task. When comparing neuronal activity between tasks, we first established that a significant number of neurons maintained the same kind of representation, responding to stimuli presentations across tasks. Further, we found cells that changed the nature of their representation across tasks, including a significant number of cells that were stimulus responsive in the working memory task that responded to serial position in the spatial task. Overall, our results support a flexible encoding of multiple, distinct aspects of different tasks by single neurons in the human MTL, whereby some individual neurons change the nature of their feature coding between task contexts.
Collapse
Affiliation(s)
| | - Runnan Cao
- Lane Department of Computer Science and Electrical Engineering, West Virginia University
| | - Claire Z Han
- Department of Biomedical Engineering, Columbia University
| | | | | | - Shuo Wang
- Department of Radiology, Washington University in St. Louis
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University
- Department of Neurological Surgery, Columbia University
| |
Collapse
|
39
|
Marks DF. The Action Cycle Theory of Perception and Mental Imagery. Vision (Basel) 2023; 7:vision7010012. [PMID: 36810316 PMCID: PMC9944880 DOI: 10.3390/vision7010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The Action Cycle Theory (ACT) is an enactive theory of the perception and a mental imagery system that is comprised of six modules: Schemata, Objects, Actions, Affect, Goals and Others' Behavior. The evidence supporting these six connected modules is reviewed in light of research on mental imagery vividness. The six modules and their interconnections receive empirical support from a wide range of studies. All six modules of perception and mental imagery are influenced by individual differences in vividness. Real-world applications of ACT show interesting potential to improve human wellbeing in both healthy people and patients. Mental imagery can be applied in creative ways to make new collective goals and actions for change that are necessary to maximize the future prospects of the planet.
Collapse
Affiliation(s)
- David F Marks
- Independent Researcher, Provence-Alpes-Côte d'Azur, 13200 Arles, France
| |
Collapse
|
40
|
Fan CL, Sokolowski HM, Rosenbaum RS, Levine B. What about "space" is important for episodic memory? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1645. [PMID: 36772875 DOI: 10.1002/wcs.1645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Early cognitive neuroscientific research revealed that the hippocampus is crucial for spatial navigation in rodents, and for autobiographical episodic memory in humans. Researchers quickly linked these streams to propose that the human hippocampus supports memory through its role in representing space, and research on the link between spatial cognition and episodic memory in humans has proliferated over the past several decades. Different researchers apply the term "spatial" in a variety of contexts, however, and it remains unclear what aspect of space may be critical to memory. Similarly, "episodic" has been defined and tested in different ways. Naturalistic assessment of spatial memory and episodic memory (i.e., episodic autobiographical memory) is required to unify the scale and biological relevance in comparisons of spatial and mnemonic processing. Limitations regarding the translation of rodent to human research, human ontogeny, and inter-individual variability require greater consideration in the interpretation of this literature. In this review, we outline the aspects of space that are (and are not) commonly linked to episodic memory, and then we discuss these dimensions through the lens of individual differences in naturalistic autobiographical memory. Future studies should carefully consider which aspect(s) of space are being linked to memory within the context of naturalistic human cognition. This article is categorized under: Psychology > Memory.
Collapse
Affiliation(s)
- Carina L Fan
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | | | - R Shayna Rosenbaum
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Psychology, York University, Toronto, Ontario, Canada
| | - Brian Levine
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Yang C, Chen H, Naya Y. Allocentric information represented by self-referenced spatial coding in the primate medial temporal lobe. Hippocampus 2023; 33:522-532. [PMID: 36728411 DOI: 10.1002/hipo.23501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 02/03/2023]
Abstract
For living organisms, the ability to acquire information regarding the external space around them is critical for future actions. While the information must be stored in an allocentric frame to facilitate its use in various spatial contexts, each case of use requires the information to be represented in a particular self-referenced frame. Previous studies have explored neural substrates responsible for the linkage between self-referenced and allocentric spatial representations based on findings in rodents. However, the behaviors of rodents are different from those of primates in several aspects; for example, rodents mainly explore their environments through locomotion, while primates use eye movements. In this review, we discuss the brain mechanisms responsible for the linkage in nonhuman primates. Based on recent physiological studies, we propose that two types of neural substrates link the first-person perspective with allocentric coding. The first is the view-center background signal, which represents an image of the background surrounding the current position of fixation on the retina. This perceptual signal is transmitted from the ventral visual pathway to the hippocampus (HPC) via the perirhinal cortex and parahippocampal cortex. Because images that share the same objective-position in the environment tend to appear similar when seen from different self-positions, the view-center background signals are easily associated with one another in the formation of allocentric position coding and storage. The second type of neural substrate is the HPC neurons' dynamic activity that translates the stored location memory to the first-person perspective depending on the current spatial context.
Collapse
Affiliation(s)
- Cen Yang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - He Chen
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
42
|
Rolls ET, Wirth S, Deco G, Huang C, Feng J. The human posterior cingulate, retrosplenial, and medial parietal cortex effective connectome, and implications for memory and navigation. Hum Brain Mapp 2023; 44:629-655. [PMID: 36178249 PMCID: PMC9842927 DOI: 10.1002/hbm.26089] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
The human posterior cingulate, retrosplenial, and medial parietal cortex are involved in memory and navigation. The functional anatomy underlying these cognitive functions was investigated by measuring the effective connectivity of these Posterior Cingulate Division (PCD) regions in the Human Connectome Project-MMP1 atlas in 171 HCP participants, and complemented with functional connectivity and diffusion tractography. First, the postero-ventral parts of the PCD (31pd, 31pv, 7m, d23ab, and v23ab) have effective connectivity with the temporal pole, inferior temporal visual cortex, cortex in the superior temporal sulcus implicated in auditory and semantic processing, with the reward-related vmPFC and pregenual anterior cingulate cortex, with the inferior parietal cortex, and with the hippocampal system. This connectivity implicates it in hippocampal episodic memory, providing routes for "what," reward and semantic schema-related information to access the hippocampus. Second, the antero-dorsal parts of the PCD (especially 31a and 23d, PCV, and also RSC) have connectivity with early visual cortical areas including those that represent spatial scenes, with the superior parietal cortex, with the pregenual anterior cingulate cortex, and with the hippocampal system. This connectivity implicates it in the "where" component for hippocampal episodic memory and for spatial navigation. The dorsal-transitional-visual (DVT) and ProStriate regions where the retrosplenial scene area is located have connectivity from early visual cortical areas to the parahippocampal scene area, providing a ventromedial route for spatial scene information to reach the hippocampus. These connectivities provide important routes for "what," reward, and "where" scene-related information for human hippocampal episodic memory and navigation. The midcingulate cortex provides a route from the anterior dorsal parts of the PCD and the supracallosal part of the anterior cingulate cortex to premotor regions.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
- Institute of Science and Technology for Brain Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain Inspired IntelligenceFudan University, Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
| | - Sylvia Wirth
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229CNRS and University of LyonBronFrance
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
- Brain and CognitionPompeu Fabra UniversityBarcelonaSpain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA)Universitat Pompeu FabraBarcelonaSpain
| | - Chu‐Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
| | - Jianfeng Feng
- Department of Computer ScienceUniversity of WarwickCoventryUK
- Institute of Science and Technology for Brain Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain Inspired IntelligenceFudan University, Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
| |
Collapse
|
43
|
Burnatowska E, Wikarek A, Oboza P, Ogarek N, Glinianowicz M, Kocelak P, Olszanecka-Glinianowicz M. Emotional Eating and Binge Eating Disorders and Night Eating Syndrome in Polycystic Ovary Syndrome-A Vicious Circle of Disease: A Systematic Review. Nutrients 2023; 15:nu15020295. [PMID: 36678165 PMCID: PMC9865055 DOI: 10.3390/nu15020295] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
Obesity is an established risk factor for the development of polycystic ovary syndrome (PCOS), especially phenotype A. PCOS is an important cause of fertility disorders in a large group of women of reproductive age. For many years, effective methods of treating hormonal disorders associated with PCOS have been sought in order to restore ovulation with regular menstrual cycles. Numerous studies support obesity treatment as an effective therapeutic method for many women. A seemingly simple method of treatment may prove to be particularly difficult in this group of women. The reason for this may be the lack of recognition the primary cause of obesity development or the occurrence of a vicious circle of disease. Primary causes of developing obesity may be emotional eating (EE) and eating disorders (EDs), such as binge eating disorder (BED) and its extreme form, addictive eating, as well as night eating syndrome (NES). All of these are caused by impaired function of the reward system. Consequently, these disorders can develop or be exacerbated in women with obesity and PCOS as a result of depression and anxiety related to hirsutism and fertility disturbances. Therefore, for the effective treatment of obesity, it is very important to recognize and treat EE, BED, and NES, including the appropriate selection of pharmacotherapy and psychotherapy. Therefore, the aim of our manuscript is to analyze the available data on the relationships between EE, BED, NES, obesity, and PCOS and their impact on the treatment of obesity in women with PCOS.
Collapse
Affiliation(s)
- Ewelina Burnatowska
- Students’ Scientific Society at the Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, 40-752 Katowice, Poland
| | - Agnieszka Wikarek
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, 40-752 Katowice, Poland
| | - Paulina Oboza
- Students’ Scientific Society at the Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, 40-752 Katowice, Poland
| | - Natalia Ogarek
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, 40-752 Katowice, Poland
| | - Mateusz Glinianowicz
- Department of Psychology, Social Sciences, and Humanities, School of Health Sciences in Katowice, the Medical University of Silesia, 40-752 Katowice, Poland
| | - Piotr Kocelak
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence:
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
44
|
Gupta A, Bhushan B, Behera L. Neural response to sad autobiographical recall and sad music listening post recall reveals distinct brain activation in alpha and gamma bands. PLoS One 2023; 18:e0279814. [PMID: 36607985 PMCID: PMC9821717 DOI: 10.1371/journal.pone.0279814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Although apparently paradoxical, sad music has been effective in coping with sad life experiences. The underpinning brain neural correlates of this are not well explored. We performed Electroencephalography (EEG) source-level analysis for the brain during a sad autobiographical recall (SAR) and upon exposure to sad music. We specifically investigated the Cingulate cortex complex and Parahippocampus (PHC) regions, areas prominently involved in emotion and memory processing. Results show enhanced alpha band lag phase-synchronization in the brain during sad music listening, especially within and between the Posterior cingulate cortex (PCC) and (PHC) compared to SAR. This enhancement was lateralized for alpha1 and alpha2 bands in the left and right hemispheres, respectively. We also observed a significant increase in alpha2 brain current source density (CSD) during sad music listening compared to SAR and baseline resting state in the region of interest (ROI). Brain during SAR condition had enhanced right hemisphere lateralized functional connectivity and CSD in gamma band compared to sad music listening and baseline resting state. Our findings show that the brain during the SAR state had enhanced gamma-band activity, signifying increased content binding capacity. At the same time, the brain is associated with an enhanced alpha band activity while sad music listening, signifying increased content-specific information processing. Thus, the results suggest that the brain's neural correlates during sad music listening are distinct from the SAR state as well as the baseline resting state and facilitate enhanced content-specific information processing potentially through three-channel neural pathways-(1) by enhancing the network connectivity in the region of interest (ROI), (2) by enhancing local cortical integration of areas in ROI, and (3) by enhancing sustained attention. We argue that enhanced content-specific information processing possibly supports the positive experience during sad music listening post a sad experience in a healthy population. Finally, we propose that sadness has two different characteristics under SAR state and sad music listening.
Collapse
Affiliation(s)
- Ashish Gupta
- Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India
| | - Braj Bhushan
- Department of Humanities and Social Sciences, Indian Institute of Technology, Kanpur, India
| | - Laxmidhar Behera
- Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, India
| |
Collapse
|
45
|
Xu H, Chen K, Zhu H, Bu J, Yang L, Chen F, Ma H, Qu X, Zhang R, Liu H. Neurovascular coupling changes in patients with magnetic resonance imaging negative focal epilepsy. Epilepsy Behav 2023; 138:109035. [PMID: 36535109 DOI: 10.1016/j.yebeh.2022.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Brain neuron activity is closely related to cerebral blood flow (CBF) changes. Alterations in the regional homogeneity (ReHo) and CBF occur in patients with magnetic resonance imaging negative focal epilepsy (FEP-MRI-). However, the coupling alterations of ReHo and CBF in FEP-MRI- remain unclear. The study aims to explore neurovascular coupling alterations and their clinical implication in FEP-MRI-. We collected resting-state magnetic resonance imaging (MRI) data from 31 healthy controls (HCs) and 48 patients with FEP-MRI-,including three-dimensional (3D) T1-weighted imaging, 3D arterial spin labeling (ASL) imaging,and resting-state functional MRI (rs-fMRI). The CBF and ReHo values were calculated from the ASL and rs-fMRI data, respectively. The CBF/ReHo ratio per voxel and whole-brain CBF-ReHo coupling were compared between the two groups. Correlation analysis involved the CBF/ReHo ratio and clinical indicators in FEP-MRI-. Patients with FEP-MRI- showed significantly increased cross-subject CBF-ReHo and global cross-voxel CBF-ReHo coupling. The CBF/ReHo ratio was higher in the bilateral orbitofrontal gyrus, right parietal lobe, and right middle frontal gyrus of patients with FEP-MRI-. Nevertheless, this ratio was lower in the bilateral supplementary motor areas, the left middle and posterior cingulate gyrus, and the right central sulcus cover. The CBF/ReHo ratio was markedly correlated with cognitive function, memory, intelligence, and epilepsy duration in the above abnormal brain regions. CBF/ReHo ratio may be useful as an indicator of neuropathological mechanisms. These results support the hypothesis that CBF/ReHo ratio relates to the neuropathological mechanisms of FEP-MRI-. Furthermore, it offers new perspectives for studying the mechanisms of MRI-negative epilepsy.
Collapse
Affiliation(s)
- Honghao Xu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Kefan Chen
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Haitao Zhu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Jinxin Bu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Lu Yang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Fangqing Chen
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Haiyan Ma
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Xuefeng Qu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Rui Zhang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China.
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
46
|
Zhang Y, Huang CC, Zhao J, Liu Y, Xia M, Wang X, Wei D, Chen Y, Liu B, Zheng Y, Wu Y, Chen T, Cheng Y, Xu X, Gong Q, Si T, Qiu S, Cheng J, Tang Y, Wang F, Qiu J, Xie P, Li L, He Y, Lin CP, Zac Lo CY. Resting-state functional connectivity of the raphe nuclei in major depressive Disorder: A Multi-site study. Neuroimage Clin 2023; 37:103359. [PMID: 36878150 PMCID: PMC9999207 DOI: 10.1016/j.nicl.2023.103359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/06/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Accumulating evidence showed that major depressive disorder (MDD) is characterized by a dysfunction of serotonin neurotransmission. Raphe nuclei are the sources of most serotonergic neurons that project throughout the brain. Incorporating measurements of activity within the raphe nuclei into the analysis of connectivity characteristics may contribute to understanding how neurotransmitter synthesized centers are involved in thepathogenesisof MDD. Here, we analyzed the resting-state functional magnetic resonance imaging (RS-fMRI) dataset from 1,148 MDD patients and 1,079 healthy individuals recruited across nine centers. A seed-based analysis with the dorsal raphe and median raphe nuclei was performed to explore the functional connectivity (FC) alterations. Compared to controls, for dorsal raphe, the significantly decreased FC linking with the right precuneus and median cingulate cortex were found; for median raphe, the increased FC linking with right superior cerebellum (lobules V/VI) was found in MDD patients. In further exploratory analyzes, MDD-related connectivity alterations in dorsal and median raphe nuclei in different clinical factors remained highly similar to the main findings, indicating these abnormal connectivities are a disease-related alteration. Our study highlights a functional dysconnection pattern of raphe nuclei in MDD with multi-site big data. These findings help improve our understanding of the pathophysiology of depression and provide evidence of the theoretical foundation for the development of novel pharmacotherapies.
Collapse
Affiliation(s)
- Yajuan Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China.
| | - Jiajia Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Yuchen Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaoqin Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bangshan Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Yanting Zheng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yankun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Tianmei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Lingjiang Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Institute for Brain Research, Beijing, China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | | | - Chun-Yi Zac Lo
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| |
Collapse
|
47
|
Rolls ET, Deco G, Huang CC, Feng J. The human orbitofrontal cortex, vmPFC, and anterior cingulate cortex effective connectome: emotion, memory, and action. Cereb Cortex 2022; 33:330-356. [PMID: 35233615 DOI: 10.1093/cercor/bhac070] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/17/2023] Open
Abstract
The human orbitofrontal cortex, ventromedial prefrontal cortex (vmPFC), and anterior cingulate cortex are involved in reward processing and thereby in emotion but are also implicated in episodic memory. To understand these regions better, the effective connectivity between 360 cortical regions and 24 subcortical regions was measured in 172 humans from the Human Connectome Project and complemented with functional connectivity and diffusion tractography. The orbitofrontal cortex has effective connectivity from gustatory, olfactory, and temporal visual, auditory, and pole cortical areas. The orbitofrontal cortex has connectivity to the pregenual anterior and posterior cingulate cortex and hippocampal system and provides for rewards to be used in memory and navigation to goals. The orbitofrontal and pregenual anterior cortex have connectivity to the supracallosal anterior cingulate cortex, which projects to midcingulate and other premotor cortical areas and provides for action-outcome learning including limb withdrawal or flight or fight to aversive and nonreward stimuli. The lateral orbitofrontal cortex has outputs to language systems in the inferior frontal gyrus. The medial orbitofrontal cortex connects to the nucleus basalis of Meynert and the pregenual cingulate to the septum, and damage to these cortical regions may contribute to memory impairments by disrupting cholinergic influences on the neocortex and hippocampus.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain.,Cognition, Pompeu Fabra University, Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
| |
Collapse
|
48
|
Strange BA. Connecting to the long axis. eLife 2022; 11:e83718. [PMID: 36346216 PMCID: PMC9643000 DOI: 10.7554/elife.83718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
New study reveals how various regions of the human cortex connect to the hippocampus along its longer anterior-posterior axis, shedding light on the way this structure is functionally organized.
Collapse
Affiliation(s)
- Bryan A Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, University Politécnica de MadridMadridSpain
- Reina Sofia Centre for Alzheimer's ResearchMadridSpain
| |
Collapse
|
49
|
Hussin AT, Abbaspoor S, Hoffman KL. Retrosplenial and Hippocampal Synchrony during Retrieval of Old Memories in Macaques. J Neurosci 2022; 42:7947-7956. [PMID: 36261267 PMCID: PMC9617609 DOI: 10.1523/jneurosci.0001-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Memory for events from the distant past relies on multiple brain regions, but little is known about the underlying neural dynamics that give rise to such abilities. We recorded neural activity in the hippocampus and retrosplenial cortex of two female rhesus macaques as they visually selected targets in year-old and newly acquired object-scene associations. Whereas hippocampal activity was unchanging with memory age, the retrosplenial cortex responded with greater magnitude alpha oscillations (10-15 Hz) and greater phase locking to memory-guided eye movements during retrieval of old events. A similar old-memory enhancement was observed in the anterior cingulate cortex but in a beta2/gamma band (28-35 Hz). In contrast, remote retrieval was associated with decreased gamma-band synchrony between the hippocampus and each neocortical area. The increasing retrosplenial alpha oscillation and decreasing hippocampocortical synchrony with memory age may signify a shift in frank memory allocation or, alternatively, changes in selection among distributed memory representations in the primate brain.SIGNIFICANCE STATEMENT Memory depends on multiple brain regions, whose involvement is thought to change with time. Here, we recorded neuronal population activity from the hippocampus and retrosplenial cortex as nonhuman primates searched for objects embedded in scenes. These memoranda were either newly presented or a year old. Remembering old material drove stronger oscillations in the retrosplenial cortex and led to a greater locking of neural activity to search movements. Remembering new material revealed stronger oscillatory synchrony between the hippocampus and retrosplenial cortex. These results suggest that with age, memories may come to rely more exclusively on neocortical oscillations for retrieval and search guidance and less on long-range coupling with the hippocampus.
Collapse
Affiliation(s)
- Ahmed T Hussin
- Department of Biology, Centre for Vision Research, York University, Toronto Ontario M3J 1P3, Canada
| | | | - Kari L Hoffman
- Department of Biology, Centre for Vision Research, York University, Toronto Ontario M3J 1P3, Canada
- Departments of Psychology
- Biomedical Engineering, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37240
| |
Collapse
|
50
|
Corollary discharge: Linking saccades and memory circuits in the human brain. Curr Biol 2022; 32:R774-R776. [PMID: 35882196 DOI: 10.1016/j.cub.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new study has found that, in primates with highly specialized visual systems, a corollary discharge of motor commands to make exploratory saccades arises in the midbrain, propagates to the thalamus, and then reaches hippocampal circuits in the depths of the temporal lobe where it shapes the making of memories.
Collapse
|