1
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Valadares VS, Martins LC, Roman EA, Valente AP, Cino EA, Moraes AH. Conformational dynamics of Tetracenomycin aromatase/cyclase regulate polyketide binding and enzyme aggregation propensity. Biochim Biophys Acta Gen Subj 2021; 1865:129949. [PMID: 34139289 DOI: 10.1016/j.bbagen.2021.129949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The N-terminal domain of Tetracenomycin aromatase/cyclase (TcmN), an enzyme derived from Streptomyces glaucescens, is involved in polyketide cyclization, aromatization, and folding. Polyketides are a diverse class of secondary metabolites produced by certain groups of bacteria, fungi, and plants with various pharmaceutical applications. Examples include antibiotics, such as tetracycline, and anticancer drugs, such as doxorubicin. Because TcmN is a promising enzyme for in vitro production of polyketides, it is important to identify conditions that enhance its thermal resistance and optimize its function. METHODS TcmN unfolding, stability, and dynamics were evaluated by fluorescence spectroscopy, circular dichroism, nuclear magnetic resonance 15N relaxation experiments, and microsecond molecular dynamics (MD) simulations. RESULTS TcmN thermal resistance was enhanced at low protein and high salt concentrations, was pH-dependent, and denaturation was irreversible. Conformational dynamics on the μs-ms timescale were detected for residues in the substrate-binding cavity, and two predominant conformers representing opened and closed cavity states were observed in the MD simulations. CONCLUSION Based on the results, a mechanism was proposed in which the thermodynamics and kinetics of the TcmN conformational equilibrium modulate enzyme function by favoring ligand binding and avoiding aggregation. GENERAL SIGNIFICANCE Understanding the principles underlying TcmN stability and dynamics may help in designing mutants with optimal properties for biotechnological applications.
Collapse
Affiliation(s)
- Veronica S Valadares
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luan C Martins
- Graduate Program in Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ernesto A Roman
- Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Valente
- National Center of Nuclear Magnetic Resonance, Leopoldo de Meis Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elio A Cino
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
3
|
Kumar S, Akabayov SR, Kessler N, Cohen LS, Solanki J, Naider F, Kay LE, Anglister J. The methyl 13C-edited/ 13C-filtered transferred NOE for studying protein interactions with short linear motifs. JOURNAL OF BIOMOLECULAR NMR 2020; 74:681-693. [PMID: 32997264 DOI: 10.1007/s10858-020-00340-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Many proteins interact with their ligand proteins by recognition of short linear motifs that are often intrinsically disordered. These interactions are usually weak and are characterized by fast exchange. NMR spectroscopy is a powerful tool to study weak interactions. The methods that have been commonly used are analysis of chemicals shift perturbations (CSP) upon ligand binding and saturation transfer difference spectroscopy. These two methods identify residues at the binding interface between the protein and its ligand. In the present study, we used a combination of transferred-NOE, specific methyl-labeling and an optimized isotope-edited/isotope-filtered NOESY experiment to study specific interactions between the 42 kDa p38α mitogen-activated protein kinase and the kinase interaction motif (KIM) on the STEP phosphatase. These measurements distinguished between residues that both exhibit CSPs upon ligand binding and interact with the KIM peptide from residues that exhibit CSPs but do not interact with the peptide. In addition, these results provide information about pairwise interactions that is important for a more reliable docking of the KIM peptide into its interacting surface on p38α. This combination of techniques should be applicable for many protein-peptide complexes up to 80 kDa for which methyl resonance assignment can be achieved.
Collapse
Affiliation(s)
- Suresh Kumar
- Department of Structural Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Sabine R Akabayov
- Department of Structural Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Naama Kessler
- Department of Structural Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Leah S Cohen
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, 10314, USA
- The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Jacob Solanki
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, 10314, USA
- The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Fred Naider
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, 10314, USA
- The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Lewis E Kay
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5S1A8, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON, M5S1A8, Canada
- Department of Chemistry, The University of Toronto, Toronto, ON, M5S1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Jacob Anglister
- Department of Structural Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
4
|
Hoop CL, Zhu J, Bhattacharya S, Tobita CA, Radford SE, Baum J. Collagen I Weakly Interacts with the β-Sheets of β 2-Microglobulin and Enhances Conformational Exchange To Induce Amyloid Formation. J Am Chem Soc 2020; 142:1321-1331. [PMID: 31875390 PMCID: PMC7135851 DOI: 10.1021/jacs.9b10421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Amyloidogenesis is
significant in both protein function and pathology.
Amyloid formation of folded, globular proteins is commonly initiated
by partial or complete unfolding. However, how this unfolding event
is triggered for proteins that are otherwise stable in their native
environments is not well understood. The accumulation of the immunoglobulin
protein β2-microglobulin (β2m) into
amyloid plaques in the joints of long-term hemodialysis patients is
the hallmark of dialysis-related amyloidosis (DRA). While β2m does not form amyloid unassisted near neutral pH in vitro, the localization of β2m deposits
to joint spaces suggests a role for the local extracellular matrix
(ECM) proteins, specifically collagens, in promoting amyloid formation.
Indeed, collagen and other ECM components have been observed to facilitate
β2m amyloid formation, but the large size and anisotropy
of the complex, combined with the low affinity of these interactions,
have limited atomic-level elucidation of the amyloid-promoting mechanism(s)
by these molecules. Using solution NMR approaches that uniquely probe
weak interactions in large molecular weight complexes, we are able
to map the binding interfaces on β2m for collagen
I and detect collagen I-induced μs–ms time-scale dynamics
in the β2m backbone. By combining solution NMR relaxation
methods and 15N-dark-state exchange saturation transfer
experiments, we propose a model in which weak, multimodal collagen
I−β2m interactions promote exchange with a
minor population of amyloid-competent species to induce fibrillogenesis.
The results portray the intimate role of the environment in switching
an innocuous protein into an amyloid-competent state, rationalizing
the localization of amyloid deposits in DRA.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Jie Zhu
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | | | - Caitlyn A Tobita
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Jean Baum
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
5
|
van Emmerik CL, van Ingen H. Unspinning chromatin: Revealing the dynamic nucleosome landscape by NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:1-19. [PMID: 30803691 DOI: 10.1016/j.pnmrs.2019.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 05/09/2023]
Abstract
NMR is an essential technique for obtaining information at atomic resolution on the structure, motions and interactions of biomolecules. Here, we review the contribution of NMR to our understanding of the fundamental unit of chromatin: the nucleosome. Nucleosomes compact the genome by wrapping the DNA around a protein core, the histone octamer, thereby protecting genomic integrity. Crucially, the imposed barrier also allows strict regulation of gene expression, DNA replication and DNA repair processes through an intricate system of histone and DNA modifications and a wide range of interactions between nucleosomes and chromatin factors. In this review, we describe how NMR has contributed to deciphering the molecular basis of nucleosome function. Starting from pioneering studies in the 1960s using natural abundance NMR studies, we focus on the progress in sample preparation and NMR methodology that has allowed high-resolution studies on the nucleosome and its subunits. We summarize the results and approaches of state-of-the-art NMR studies on nucleosomal DNA, histone complexes, nucleosomes and nucleosomal arrays. These studies highlight the particular strength of NMR in studying nucleosome dynamics and nucleosome-protein interactions. Finally, we look ahead to exciting new possibilities that will be afforded by on-going developments in solution and solid-state NMR. By increasing both the depth and breadth of nucleosome NMR studies, it will be possible to offer a unique perspective on the dynamic landscape of nucleosomes and its interacting proteins.
Collapse
Affiliation(s)
- Clara L van Emmerik
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Blaffert J, Haeri HH, Blech M, Hinderberger D, Garidel P. Spectroscopic methods for assessing the molecular origins of macroscopic solution properties of highly concentrated liquid protein solutions. Anal Biochem 2018; 561-562:70-88. [PMID: 30243977 DOI: 10.1016/j.ab.2018.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/08/2018] [Accepted: 09/17/2018] [Indexed: 01/14/2023]
Abstract
In cases of subcutaneous injection of therapeutic monoclonal antibodies, high protein concentrations (>50 mg/ml) are often required. During the development of these high concentration liquid formulations (HCLF), challenges such as aggregation, gelation, opalescence, phase separation, and high solution viscosities are more prone compared to low concentrated protein formulations. These properties can impair manufacturing processes, as well as protein stability and shelf life. To avoid such unfavourable solution properties, a detailed understanding about the nature of these properties and their driving forces are required. However, the fundamental mechanisms that lead to macroscopic solution properties, as above mentioned, are complex and not fully understood, yet. Established analytical methods for assessing the colloidal stability, i.e. the ability of a native protein to remain dispersed in solution, are restricted to dilute conditions and provide parameters such as the second osmotic virial coefficient, B22, and the diffusion interaction coefficient, kD. These parameters are routinely applied for qualitative estimations and identifications of proteins with challenging solution behaviours, such as high viscosities and aggregation, although the assays are prepared for low protein concentration conditions, typically between 0.1 and 20 mg/ml ("ideal" solution conditions). Quantitative analysis of samples of high protein concentration is difficult and it is hard to obtain information about the driving forces of such solution properties and corresponding protein-protein self-interactions. An advantage of using specific spectroscopic methods is the potential of directly analysing highly concentrated protein solutions at different solution conditions. This allows for collecting/gaining valuable information about the fundamental mechanisms of solution properties of the high protein concentration regime. In addition, the derived parameters might be more predictive as compared to the parameters originating from assays which are optimized for the low protein concentration range. The provided information includes structural data, molecular dynamics at various timescales and protein-solvent interactions, which can be obtained at molecular resolution. Herein, we provide an overview about spectroscopic techniques for analysing the origins of macroscopic solution behaviours in general, with a specific focus on pharmaceutically relevant high protein concentration and formulation conditions.
Collapse
Affiliation(s)
- Jacob Blaffert
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany
| | - Haleh Hashemi Haeri
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Protein Science, Birkerndorfer Str. 65, 88397, Biberach/Riß, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany
| | - Patrick Garidel
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Protein Science, Birkerndorfer Str. 65, 88397, Biberach/Riß, Germany.
| |
Collapse
|
7
|
NMR as a Tool to Investigate the Processes of Mitochondrial and Cytosolic Iron-Sulfur Cluster Biosynthesis. Molecules 2018; 23:molecules23092213. [PMID: 30200358 PMCID: PMC6205161 DOI: 10.3390/molecules23092213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters, the ubiquitous protein cofactors found in all kingdoms of life, perform a myriad of functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. The biogenesis of Fe-S clusters is a multi-step process that involves the participation of many protein partners. Recent biophysical studies, involving X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and small angle X-ray scattering (SAXS), have greatly improved our understanding of these steps. In this review, after describing the biological importance of iron sulfur proteins, we focus on the contributions of NMR spectroscopy has made to our understanding of the structures, dynamics, and interactions of proteins involved in the biosynthesis of Fe-S cluster proteins.
Collapse
|
8
|
Chilingaryan Z, Headey SJ, Lo ATY, Xu ZQ, Otting G, Dixon NE, Scanlon MJ, Oakley AJ. Fragment-Based Discovery of Inhibitors of the Bacterial DnaG-SSB Interaction. Antibiotics (Basel) 2018; 7:E14. [PMID: 29470422 PMCID: PMC5872125 DOI: 10.3390/antibiotics7010014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/30/2022] Open
Abstract
In bacteria, the DnaG primase is responsible for synthesis of short RNA primers used to initiate chain extension by replicative DNA polymerase(s) during chromosomal replication. Among the proteins with which Escherichia coli DnaG interacts is the single-stranded DNA-binding protein, SSB. The C-terminal hexapeptide motif of SSB (DDDIPF; SSB-Ct) is highly conserved and is known to engage in essential interactions with many proteins in nucleic acid metabolism, including primase. Here, fragment-based screening by saturation-transfer difference nuclear magnetic resonance (STD-NMR) and surface plasmon resonance assays identified inhibitors of the primase/SSB-Ct interaction. Hits were shown to bind to the SSB-Ct-binding site using 15N-¹H HSQC spectra. STD-NMR was used to demonstrate binding of one hit to other SSB-Ct binding partners, confirming the possibility of simultaneous inhibition of multiple protein/SSB interactions. The fragment molecules represent promising scaffolds on which to build to discover new antibacterial compounds.
Collapse
Affiliation(s)
- Zorik Chilingaryan
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Stephen J Headey
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Allen T Y Lo
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Martin J Scanlon
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Aaron J Oakley
- Molecular Horizons and School of Chemistry, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
9
|
Paul S, Banerjee S, Vogel HJ. Ligand binding specificity of the Escherichia coli periplasmic histidine binding protein, HisJ. Protein Sci 2016; 26:268-279. [PMID: 27865021 DOI: 10.1002/pro.3079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
The HisJ protein from Escherichia coli and related Gram negative bacteria is the periplasmic component of a bacterial ATP-cassette (ABC) transporter system. Together these proteins form a transmembrane complex that can take up L-histidine from the environment and translocate it into the cytosol. We have studied the specificity of HisJ for binding L-His and many related naturally occurring compounds. Our data confirm that L-His is the preferred ligand, but that 1-methyl-L-His and 3-methyl-L-His can also bind, while the dipeptide carnosine binds weakly and D-histidine and the histidine degradation products, histamine, urocanic acid and imidazole do not bind. L-Arg, homo-L-Arg, and post-translationally modified methylated Arg-analogs also bind with reasonable avidity, with the exception of symmetric dimethylated-L-Arg. In contrast, L-Lys and L-Orn have considerably weaker interactions with HisJ and methylated and acetylated Lys variants show relatively poor binding. It was also observed that the carboxylate group of these amino acids and their variants was very important for proper recognition of the ligand. Taken together our results are a key step towards designing HisJ as a specific protein-based reagentless biosensor.
Collapse
Affiliation(s)
- Subrata Paul
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Alberta, T2N 1N4, Canada
| | - Sambuddha Banerjee
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Alberta, T2N 1N4, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
10
|
Abstract
Protein stability is usually studied in simple buffered solutions, but most proteins function inside cells, where the heterogeneous and crowded environment presents a complex, nonideal system. Proteins are expected to behave differently under cellular crowding owing to two types of contacts: hard-core repulsions and weak, chemical interactions. The effect of hard-core repulsions is purely entropic, resulting in volume exclusion owing to the mere presence of the crowders. The weak interactions can be repulsive or attractive, thus enhancing or diminishing the excluded volume, respectively. We used a reductionist approach to assess the effects of intracellular crowding. Escherichia coli cytoplasm was dialyzed, lyophilized, and resuspended at two concentrations. NMR-detected amide proton exchange was then used to quantify the stability of the globular protein chymotrypsin inhibitor 2 (CI2) in these crowded solutions. The cytosol destabilizes CI2, and the destabilization increases with increasing cytosol concentration. This observation shows that the cytoplasm interacts favorably, but nonspecifically, with CI2, and these interactions overcome the stabilizing hard-core repulsions. The effects of the cytosol are even stronger than those of homogeneous protein crowders, reinforcing the biological significance of weak, nonspecific interactions.
Collapse
|
11
|
Sarkar M, Li C, Pielak GJ. Soft interactions and crowding. Biophys Rev 2013; 5:187-194. [PMID: 28510157 DOI: 10.1007/s12551-013-0104-4] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/22/2013] [Indexed: 10/27/2022] Open
Abstract
The intracellular milieu is complex, heterogeneous and crowded-an environment vastly different from dilute solutions in which most biophysical studies are performed. The crowded cytoplasm excludes about a third of the volume available to macromolecules in dilute solution. This excluded volume is the sum of two parts: steric repulsions and chemical interactions, also called soft interactions. Until recently, most efforts to understand crowding have focused on steric repulsions. Here, we summarize the results and conclusions from recent studies on macromolecular crowding, emphasizing the contribution of soft interactions to the equilibrium thermodynamics of protein stability. Despite their non-specific and weak nature, the large number of soft interactions present under many crowded conditions can sometimes overcome the stabilizing steric, excluded volume effect.
Collapse
Affiliation(s)
- Mohona Sarkar
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Molecular and Atomic Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599-3290, USA. .,Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599-3290, USA. .,UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599-3290, USA.
| |
Collapse
|