1
|
Franco-Ulloa S, Cesari A, Zanoni G, Riccardi L, Wallace J, Mascitti BB, Rastrelli F, Mancin F, De Vivo M. Rational design of gold nanoparticle-based chemosensors for detection of the tumor marker 3-methoxytyramine. Chem Sci 2025; 16:6282-6289. [PMID: 40092597 PMCID: PMC11908650 DOI: 10.1039/d4sc08758e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
In this study, we combined computational modeling, simulations, and experiments to design gold nanoparticle-based receptors specifically tailored for the NMR detection of 3-methoxytyramine (3-MT), a prognostic marker for asymptomatic neuroblastoma. We used short steered MD simulations to rank a library of 100 newly functionalized, tripeptide-coated AuNPs for their ability to recognize 3-MT. Validation of the computational analysis was performed on a subset of synthesized tripeptide-coated nanoparticles, showing a strong correlation between the predicted and experimental affinities. Eventually, we tested the sensing performance using nanoparticle-assisted NMR chemosensing, a technique which relies on magnetization transfer within a nanoparticle-host/analyte-guest complex to isolate the sole NMR signals of the analyte. This approach led to the identification of novel chemosensors that exhibited better performance compared to existing ones, lowering the limit of detection below 25 μM and demonstrating the utility of this integrated strategy.
Collapse
Affiliation(s)
- Sebastian Franco-Ulloa
- Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
- Expert Analytics Møllergata 8 0179 Oslo Norway
| | - Andrea Cesari
- Department of Chemical Science, University of Padova Via Marzolo 1 35131 Padova Italy
- Department of Chemistry and Industrial Chemistry, University of Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Giordano Zanoni
- Department of Chemical Science, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Laura Riccardi
- Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
| | - Joseph Wallace
- Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
| | | | - Federico Rastrelli
- Department of Chemical Science, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Fabrizio Mancin
- Department of Chemical Science, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
| |
Collapse
|
2
|
Casulli MA, Yan R, Takeuchi S, Cesari A, Mancin F, Hayashita T, Hashimoto T, Taurino I. Cyclodextrin-Based Nanogels for Stabilization and Sensing of Curcumin. ACS APPLIED NANO MATERIALS 2024; 7:20153-20162. [PMID: 39296865 PMCID: PMC11407302 DOI: 10.1021/acsanm.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024]
Abstract
Curcumin (CUR), a polyphenolic substance from turmeric, displays diverse medicinal properties. However, its instability poses challenges in detection. Cyclodextrin-based nanogels (CyDngs) offer a transformative solution, enhancing CUR's stability in aqueous solutions. Multisensing approaches involving fluorescence, electrochemistry, and NMR spectroscopy were employed, demonstrating CyDngs' pivotal role in CUR detection. Langmuir analysis revealed a binding constant of 1.4 × 104 M-1 for CyDngs, highlighting their effectiveness over native β-CyDs. The study emphasized CyDngs' superiority in stabilizing CUR and enabling reliable and sensitive detection with very diverse methods.
Collapse
Affiliation(s)
- Maria Antonietta Casulli
- Micro and Nano-Systems (MNS), Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven (KU Leuven), 3001 Leuven, Belgium
| | - Ruyu Yan
- Graduate School of Science and Technology, Department of Materals and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Satomi Takeuchi
- Graduate School of Science and Technology, Department of Materals and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Andrea Cesari
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Takashi Hayashita
- Graduate School of Science and Technology, Department of Materals and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Takeshi Hashimoto
- Graduate School of Science and Technology, Department of Materals and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Irene Taurino
- Micro and Nano-Systems (MNS), Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven (KU Leuven), 3001 Leuven, Belgium
- Semiconductor Physics (HF), Department of Physics and Astronomy, Katholieke Universiteit Leuven (KU Leuven), 3001 Leuven, Belgium
| |
Collapse
|
3
|
Franco-Ulloa S, Cesari A, Riccardi L, De Biasi F, Rosa-Gastaldo D, Mancin F, De Vivo M, Rastrelli F. Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing. J Phys Chem Lett 2023; 14:6912-6918. [PMID: 37498189 PMCID: PMC10405269 DOI: 10.1021/acs.jpclett.3c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Nanoparticle-assisted nuclear magnetic resonance (NMR) chemosensing exploits monolayer-protected nanoparticles as supramolecular hosts to detect small molecules in complex mixtures via nuclear Overhauser effect experiments with detection limits down to the micromolar range. Still, the structure-sensitivity relationships at the basis of such detection limits are little understood. In this work, we integrate NMR spectroscopy and atomistic molecular dynamics simulations to examine the covariates that affect the sensitivity of different NMR chemosensing experiments [saturation transfer difference (STD), water STD, and high-power water-mediated STD]. Our results show that the intensity of the observed signals correlates with the number and duration of the spin-spin interactions between the analytes and the nanoparticles and/or between the analytes and the nanoparticles' solvation molecules. In turn, these parameters depend on the location and dynamics of each analyte inside the monolayer. This insight will eventually facilitate the tailoring of experimental and computational setups to the analyte's chemistry, making NMR chemosensing an even more effective technique in practical use.
Collapse
Affiliation(s)
- Sebastian Franco-Ulloa
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Expert
Analytics, Møllergata
8, 0179 Oslo, Norway
| | - Andrea Cesari
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Laura Riccardi
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Federico De Biasi
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Daniele Rosa-Gastaldo
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco De Vivo
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Federico Rastrelli
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Hu X, Xu Y, Xu Y, Li Y, Guo J. Nanotechnology and Nanomaterials in Peripheral Nerve Repair and Reconstruction. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
5
|
Sun X, Guo F, Ye Q, Zhou J, Han J, Guo R. Fluorescent Sensing of Glutathione and Related Bio-Applications. BIOSENSORS 2022; 13:16. [PMID: 36671851 PMCID: PMC9855688 DOI: 10.3390/bios13010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Glutathione (GSH), as the most abundant low-molecular-weight biological thiol, plays significant roles in vivo. Abnormal GSH levels have been demonstrated to be related to the dysfunction of specific physiological activities and certain kinds of diseases. Therefore, the sensing of GSH is emerging as a critical issue. Cancer, with typical high morbidity and mortality, remains one of the most serious diseases to threaten public health. As it is clear that much more concentrated GSH is present at tumor sites than at normal sites, the in vivo sensing of GSH offers an option for the early diagnosis of cancer. Moreover, by monitoring the amounts of GSH in specific microenvironments, effective diagnosis of ROS levels, neurological diseases, or even stroke has been developed as well. In this review, we focus on the fluorescent methodologies for GSH detection, since they can be conveniently applied in living systems. First, the fluorescent sensing methods are introduced. Then, the principles for fluorescent sensing of GSH are discussed. In addition, the GSH-sensing-related biological applications are reviewed. Finally, the future opportunities in in the areas of fluorescent GSH sensing-in particular, fluorescent GSH-sensing-prompted disease diagnosis-are addressed.
Collapse
|
6
|
Dumez JN. NMR methods for the analysis of mixtures. Chem Commun (Camb) 2022; 58:13855-13872. [PMID: 36458684 PMCID: PMC9753098 DOI: 10.1039/d2cc05053f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 07/31/2023]
Abstract
NMR spectroscopy is a powerful approach for the analysis of mixtures. Its usefulness arises in large part from the vast landscape of methods, and corresponding pulse sequences, that have been and are being designed to tackle the specific properties of mixtures of small molecules. This feature article describes a selection of methods that aim to address the complexity, the low concentrations, and the changing nature that mixtures can display. These notably include pure-shift and diffusion NMR methods, hyperpolarisation methods, and fast 2D NMR methods such as ultrafast 2D NMR and non-uniform sampling. Examples or applications are also described, in fields such as reaction monitoring and metabolomics, to illustrate the relevance and limitations of different methods.
Collapse
|
7
|
Mashiach R, Avram L, Bar-Shir A. Diffusion 19F-NMR of Nanofluorides: In Situ Quantification of Colloidal Diameters and Protein Corona Formation in Solution. NANO LETTERS 2022; 22:8519-8525. [PMID: 36255401 PMCID: PMC9650773 DOI: 10.1021/acs.nanolett.2c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The NMR-detectability of elements of organic ligands that stabilize colloidal inorganic nanocrystals (NCs) allow the study of their diffusion characteristics in solutions. Nevertheless, these measurements are sensitive to dynamic ligand exchange and often lead to overestimation of diffusion coefficients of dispersed colloids. Here, we present an approach for the quantitative assessment of the diffusion properties of colloidal NCs based on the NMR signals of the elements of their inorganic cores. Benefiting from the robust 19F-NMR signals of the fluorides in the core of colloidal CaF2 and SrF2, we show the immunity of 19F-diffusion NMR to dynamic ligand exchange and, thus, the ability to quantify, with high accuracy, the colloidal diameters of different types of nanofluorides in situ. With the demonstrated ability to characterize the formation of protein corona at the surface of nanofluorides, we envision that this study can be extended to additional formulations and applications.
Collapse
Affiliation(s)
- Reut Mashiach
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot, 7610001, Israel
| | - Liat Avram
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot, 7610001, Israel
| | - Amnon Bar-Shir
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot, 7610001, Israel
| |
Collapse
|
8
|
Leong SX, Leong YX, Koh CSL, Tan EX, Nguyen LBT, Chen JRT, Chong C, Pang DWC, Sim HYF, Liang X, Tan NS, Ling XY. Emerging nanosensor platforms and machine learning strategies toward rapid, point-of-need small-molecule metabolite detection and monitoring. Chem Sci 2022; 13:11009-11029. [PMID: 36320477 PMCID: PMC9516957 DOI: 10.1039/d2sc02981b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Speedy, point-of-need detection and monitoring of small-molecule metabolites are vital across diverse applications ranging from biomedicine to agri-food and environmental surveillance. Nanomaterial-based sensor (nanosensor) platforms are rapidly emerging as excellent candidates for versatile and ultrasensitive detection owing to their highly configurable optical, electrical and electrochemical properties, fast readout, as well as portability and ease of use. To translate nanosensor technologies for real-world applications, key challenges to overcome include ultralow analyte concentration down to ppb or nM levels, complex sample matrices with numerous interfering species, difficulty in differentiating isomers and structural analogues, as well as complex, multidimensional datasets of high sample variability. In this Perspective, we focus on contemporary and emerging strategies to address the aforementioned challenges and enhance nanosensor detection performance in terms of sensitivity, selectivity and multiplexing capability. We outline 3 main concepts: (1) customization of designer nanosensor platform configurations via chemical- and physical-based modification strategies, (2) development of hybrid techniques including multimodal and hyphenated techniques, and (3) synergistic use of machine learning such as clustering, classification and regression algorithms for data exploration and predictions. These concepts can be further integrated as multifaceted strategies to further boost nanosensor performances. Finally, we present a critical outlook that explores future opportunities toward the design of next-generation nanosensor platforms for rapid, point-of-need detection of various small-molecule metabolites.
Collapse
Affiliation(s)
- Shi Xuan Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Charlynn Sher Lin Koh
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Emily Xi Tan
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Lam Bang Thanh Nguyen
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Jaslyn Ru Ting Chen
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Carice Chong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Desmond Wei Cheng Pang
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Howard Yi Fan Sim
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Xiaochen Liang
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore
- School of Biological Sciences, Nanyang Technological University Singapore
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore
| |
Collapse
|
9
|
Fraser R, Rutjes FPJT, Feiters MC, Tessari M. Analysis of Complex Mixtures by Chemosensing NMR Using para-Hydrogen-Induced Hyperpolarization. Acc Chem Res 2022; 55:1832-1844. [PMID: 35709417 PMCID: PMC9260963 DOI: 10.1021/acs.accounts.1c00796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Nuclear magnetic resonance (NMR) is a powerful technique for chemical
analysis. The use of NMR to investigate dilute analytes in complex
systems is, however, hampered by its relatively low sensitivity. An
additional obstacle is represented by the NMR signal overlap. Because
solutes in a complex mixture are usually not isotopically labeled,
NMR studies are often limited to 1H measurements, which,
because of the modest dispersion of the 1H resonances (typically
∼10 ppm), can result in challenging signal crowding. The low
NMR sensitivity issue can be alleviated by nuclear spin hyperpolarization
(i.e., transiently increasing the differences in nuclear spin populations),
which determines large NMR signal enhancements. This has been demonstrated
for hyperpolarization methods such as dynamic nuclear polarization,
spin-exchange optical pumping and para-hydrogen-induced
polarization (PHIP). In particular, PHIP has grown into a fast, efficient,
and versatile technique since the recent discovery of non-hydrogenative
routes to achieve nuclear spin hyperpolarization. For instance,
signal amplification by reversible exchange (SABRE)
can generate proton as well as heteronuclear spin hyperpolarization
in a few seconds in compounds that are able to transiently bind to
an iridium catalyst in the presence of para-hydrogen
in solution. The hyperpolarization transfer catalyst acts as a chemosensor
in the sense that it is selective for analytes that can coordinate
to the metal center, such as nitrogen-containing aromatic heterocycles,
sulfur heteroaromatic compounds, nitriles, Schiff bases, diaziridines,
carboxylic acids, and amines. We have demonstrated that the signal
enhancement achieved by SABRE allows rapid NMR detection and quantification
of a mixture of substrates down to low-micromolar concentration. Furthermore,
in the transient complex, the spin configuration of p-H2 can be easily converted to spin hyperpolarization
to produce up to 1000-fold enhanced NMR hydride signals. Because the
hydrides’ chemical shifts are highly sensitive to the structure
of the analyte associating with the iridium complex, they can be employed
as hyperpolarized “probes” to signal the presence of
specific compounds in the mixture. This indirect detection of the
analytes in solution provides important benefits in the case of complex
systems, as hydrides resonate in a region of the 1H spectrum
(at ca. −20 ppm) that is generally signal-free. The enhanced
sensitivity provided by non-hydrogenative PHIP (nhPHIP), together
with the absence of interference from the complex matrix (usually
resonating between 0 and 10 ppm), set the detection limit for this
NMR chemosensor down to sub-μM concentrations, approximately
3 orders of magnitude lower than for conventional NMR. This nhPHIP
approach represents, therefore, a powerful tool for NMR analysis of
dilute substrates in complex mixtures as it addresses at once the
issues of signal crowding and NMR sensitivity. Importantly, being
performed at high field inside the NMR spectrometer, the method allows
for rapid acquisition of multiple scans, multidimensional hyperpolarized
NMR spectra, in a fashion comparable to that of standard NMR measurements. In this Account, we focus on our chemosensing NMR technology, detailing
its principles, advantages, and limitations and presenting a number
of applications to real systems such as biofluids, beverages, and
natural extracts.
Collapse
Affiliation(s)
- Roan Fraser
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Martin C Feiters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Marco Tessari
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
10
|
De Biasi F, Mascitti BB, Kupče Ē, Rastrelli F. Uniform water-mediated saturation transfer: A sensitivity-improved alternative to WaterLOGSY. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 338:107190. [PMID: 35306453 DOI: 10.1016/j.jmr.2022.107190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
In the study of small molecule ligands and candidate macromolecular targets, water spins in long-lived association with macromolecules (proteins or nanoparticles) constitute a remarkable source of magnetization that can be exploited to reveal ligand-target binding. In this work we show how the selective saturation of water spins complemented with adiabatic off-resonance spin-locks can remove the NOE contribution of bulk water in the final difference spectrum, leading to uniformly enhanced signals that reveal weak ligand-target interactions.
Collapse
Affiliation(s)
- Federico De Biasi
- Department of Chemical Sciences, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | | | - Ēriks Kupče
- Bruker UK Ltd, Banner Lane, Coventry CV4 9GH, UK.
| | - Federico Rastrelli
- Department of Chemical Sciences, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
11
|
Brancolini G, Rotello VM, Corni S. Role of Ionic Strength in the Formation of Stable Supramolecular Nanoparticle-Protein Conjugates for Biosensing. Int J Mol Sci 2022; 23:ijms23042368. [PMID: 35216496 PMCID: PMC8874478 DOI: 10.3390/ijms23042368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
Monolayer-protected gold nanoparticles (AuNPs) exhibit distinct physical and chemical properties depending on the nature of the ligand chemistry. A commonly employed NP monolayer comprises hydrophobic molecules linked to a shell of PEG and terminated with functional end group, which can be charged or neutral. Different layers of the ligand shell can also interact in different manners with proteins, expanding the range of possible applications of these inorganic nanoparticles. AuNP-fluorescent Green Fluorescent Protein (GFP) conjugates are gaining increasing attention in sensing applications. Experimentally, their stability is observed to be maintained at low ionic strength conditions, but not at physiologically relevant conditions of higher ionic strength, limiting their applications in the field of biosensors. While a significant amount of fundamental work has been done to quantify electrostatic interactions of colloidal nanoparticle at the nanoscale, a theoretical description of the ion distribution around AuNPs still remains relatively unexplored. We perform extensive atomistic simulations of two oppositely charged monolayer-protected AuNPs interacting with fluorescent supercharged GFPs co-engineered to have complementary charges. These simulations were run at different ionic strengths to disclose the role of the ionic environment on AuNP–GFP binding. The results highlight the capability of both AuNPs to intercalate ions and water molecules within the gold–sulfur inner shell and the different tendency of ligands to bend inward allowing the protein to bind not only with the terminal ligands but also the hydrophobic alkyl chains. Different binding stability is observed in the two investigated cases as a function of the ligand chemistry.
Collapse
Affiliation(s)
- Giorgia Brancolini
- Institute of Nanoscience, CNR-NANO S3, via G. Campi 213/A, 41125 Modena, Italy;
- Correspondence: ; Tel.: +39-059-2055333
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA;
| | - Stefano Corni
- Institute of Nanoscience, CNR-NANO S3, via G. Campi 213/A, 41125 Modena, Italy;
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
12
|
Hu X, Xu Y, Xu Y, Li Y, Guo J. Nanotechnology and Nanomaterials in Peripheral Nerve Repair and Reconstruction. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_30-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Cesari A, Rosa-Gastaldo D, Pedrini A, Rastrelli F, Dalcanale E, Pinalli R, Mancin F. Selective NMR detection of N-methylated amines using cavitand-decorated silica nanoparticles as receptors. Chem Commun (Camb) 2022; 58:10861-10864. [DOI: 10.1039/d2cc04199e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a strategy for the realization of NMR chemosensors based on the spontaneous self-assembly of lower rim pyridinium-functionalized tetraphopshonate cavitands on commercial silica nanoparticles. These nanohybrids enable the selective...
Collapse
|
14
|
Riccardi L, Decherchi S, Rocchia W, Zanoni G, Cavalli A, Mancin F, De Vivo M. Molecular Recognition by Gold Nanoparticle-Based Receptors as Defined through Surface Morphology and Pockets Fingerprint. J Phys Chem Lett 2021; 12:5616-5622. [PMID: 34110174 PMCID: PMC8280747 DOI: 10.1021/acs.jpclett.1c01365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Ligand shell-protected gold nanoparticles can form nanoreceptors that recognize and bind to specific molecules in solution, with numerous potential innovative applications in science and industry. At this stage, the challenge is to rationally design such nanoreceptors to optimize their performance and boost their further development. Toward this aim, we have developed a new computational tool, Nanotron. This allows the analysis of molecular dynamics simulations of ligand shell-protected nanoparticles to define their exact surface morphology and pocket fingerprints of binding cavities in the coating monolayer. Importantly, from dissecting the well-characterized pairing formed by the guest salicylate molecule and specific host nanoreceptors, our work reveals that guest binding at such nanoreceptors occurs via preformed deep pockets in the host. Upon the interaction with the guest, such pockets undergo an induced-fit-like structural optimization for best host-guest fitting. Our findings and methodological advancement will accelerate the rational design of new-generation nanoreceptors.
Collapse
Affiliation(s)
- Laura Riccardi
- Laboratory
of Molecular Modeling & Drug Discovery, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sergio Decherchi
- Computational
and Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BiKi
Technologies s.r.l., Via XX Settembre 33/10, 1621 Genova, Italy
| | - Walter Rocchia
- BiKi
Technologies s.r.l., Via XX Settembre 33/10, 1621 Genova, Italy
- CONCEPT
Lab, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giordano Zanoni
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Andrea Cavalli
- Computational
and Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BiKi
Technologies s.r.l., Via XX Settembre 33/10, 1621 Genova, Italy
| | - Fabrizio Mancin
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco De Vivo
- Laboratory
of Molecular Modeling & Drug Discovery, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|