1
|
Lin HY, Kung FH, Tai YM, Huang SY, Hsu YJ, Tzeng NS. Lithium Hemodialysis Removal-Related Recurrent Manic Episode in a Bipolar Patient. Am J Ther 2024; 31:e420-e421. [PMID: 34010159 DOI: 10.1097/mjt.0000000000001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Hung-Yi Lin
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fan-Hsuan Kung
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yueh-Ming Tai
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - San-Yuan Huang
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
- Student Counseling Center, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
2
|
Markina AA, Kazanskaya RB, Timoshina JA, Zavialov VA, Abaimov DA, Volnova AB, Fedorova TN, Gainetdinov RR, Lopachev AV. Na +,K +-ATPase and Cardiotonic Steroids in Models of Dopaminergic System Pathologies. Biomedicines 2023; 11:1820. [PMID: 37509460 PMCID: PMC10377002 DOI: 10.3390/biomedicines11071820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, enough evidence has accumulated to assert that cardiotonic steroids, Na+,K+-ATPase ligands, play an integral role in the physiological and pathophysiological processes in the body. However, little is known about the function of these compounds in the central nervous system. Endogenous cardiotonic steroids are involved in the pathogenesis of affective disorders, including depression and bipolar disorder, which are linked to dopaminergic system dysfunction. Animal models have shown that the cardiotonic steroid ouabain induces mania-like behavior through dopamine-dependent intracellular signaling pathways. In addition, mutations in the alpha subunit of Na+,K+-ATPase lead to the development of neurological pathologies. Evidence from animal models confirms the neurological consequences of mutations in the Na+,K+-ATPase alpha subunit. This review is dedicated to discussing the role of cardiotonic steroids and Na+,K+-ATPase in dopaminergic system pathologies-both the evidence supporting their involvement and potential pathways along which they may exert their effects are evaluated. Since there is an association between affective disorders accompanied by functional alterations in the dopaminergic system and neurological disorders such as Parkinson's disease, we extend our discussion to the role of Na+,K+-ATPase and cardiotonic steroids in neurodegenerative diseases as well.
Collapse
Affiliation(s)
- Alisa A Markina
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Rogneda B Kazanskaya
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Julia A Timoshina
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
- Biological Department, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow, Russia
| | - Vladislav A Zavialov
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Denis A Abaimov
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Anna B Volnova
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Tatiana N Fedorova
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, 199034 Saint Petersburg, Russia
| | - Alexander V Lopachev
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| |
Collapse
|
3
|
Shin EJ, Nguyen BT, Jeong JH, Hoai Nguyen BC, Tran NKC, Sharma N, Kim DJ, Nah SY, Lichtstein D, Nabeshima T, Kim HC. Ouabain inhibitor rostafuroxin attenuates dextromethorphan-induced manic potential. Food Chem Toxicol 2021; 158:112657. [PMID: 34740715 DOI: 10.1016/j.fct.2021.112657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Dextromethorphan (DM) abuse produces mania-like symptoms in humans. ERK/Akt signaling activation involved in manic potential can be attenuated by the inhibition of ouabain-like cardiac steroids. In this study, increased phosphorylations of ERK/Akt and hyperlocomotion induced by DM (30 mg/kg, i.p./day × 7) were significantly protected by the ouabain inhibitor rostafuroxin (ROSTA), suggesting that DM induces the manic potential. ROSTA significantly attenuated DM-induced protein kinase C δ (PKCδ) phosphorylation, GluN2B (i.e., MDA receptor subunit) expression, and phospho-PKCδ/GluN2B interaction. DM instantly upregulated the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent system. However, DM reduced Nrf2 nuclear translocation, Nrf2 DNA binding activity, γ-glutamylcysteine mRNA expression, and subsequent GSH/GSSG level and enhanced oxidative parameters following 1-h of administration. ROSTA, PKCδ inhibitor rottlerin, and GluN2B inhibitor traxoprodil significantly attenuated DM-induced alterations in Nrf2-related redox parameters and locomotor activity induced by DM in wild-type mice. Importantly, in PKCδ knockout mice, DM failed to alter the above parameters. Further, ROSTA and traxoprodil also failed to enhance PKCδ depletion effect, suggesting that PKCδ is a critical target for the anti-manic potential of ROSTA or GluN2B antagonism. Our results suggest that ROSTA inhibits DM-induced manic potential by attenuating ERK/Akt activation, GluN2B/PKCδ signalings, and Nrf2-dependent system.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Bao-Chau Hoai Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ngoc Kim Cuong Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - David Lichtstein
- Walter and Greta Stiel Chair in Heart Studies, Dean, Faculty of Medicine 2013-2017, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
4
|
Lopachev AV, Lagarkova MA, Lebedeva OS, Ezhova MA, Kazanskaya RB, Timoshina YA, Khutorova AV, Akkuratov EE, Fedorova TN, Gainetdinov RR. Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors. Brain Sci 2021; 11:brainsci11020203. [PMID: 33562186 PMCID: PMC7915459 DOI: 10.3390/brainsci11020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiotonic steroids (CTS) are specific inhibitors and endogenous ligands of a key enzyme in the CNS-the Na+, K+-ATPase, which maintains and creates an ion gradient on the plasma membrane of neurons. CTS cause the activation of various signaling cascades and changes in gene expression in neurons and other cell types. It is known that intracerebroventricular injection of cardiotonic steroid ouabain causes mania-like behavior in rodents, in part due to activation of dopamine-related signaling cascades in the dopamine and cAMP-regulated phosphoprotein 32 (DARPP-32) expressing medium spiny neurons in the striatum. Dopaminergic projections in the striatum innervate these GABAergic medium spiny neurons. The objective of this study was to assess changes in the expression of all genes in human iPSC-derived expressing DARPP-32 and GABA receptors neurons under the influence of ouabain. We noted a large number of statistically significant upregulated and downregulated genes after a 16-h incubation with non-toxic concentration (30 nM) of ouabain. These changes in the transcriptional activity were accomplished with activation of MAP-kinase ERK1/2 and transcriptional factor cAMP response element-binding protein (CREB). Thus, it can be concluded that 30 nM ouabain incubated for 16 h with human iPSC-derived expressing DARPP-32 and GABA receptors neurons activates genes associated with neuronal maturation and synapse formation, by increasing the expression of genes associated with translation, vesicular transport, and increased electron transport chain function. At the same time, the expression of genes associated with proliferation, migration, and early development of neurons decreases. These data indicate that non-toxic concentrations of ouabain may induce neuronal maturation, neurite growth, and increased synaptogenesis in dopamine-receptive GABAergic neurons, suggesting formation of plasticity and the establishment of new neuronal junctions.
Collapse
Affiliation(s)
- Alexander V. Lopachev
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Correspondence:
| | - Maria A. Lagarkova
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Olga S. Lebedeva
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Margarita A. Ezhova
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia;
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Rogneda B. Kazanskaya
- Biological Department, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Yulia A. Timoshina
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasiya V. Khutorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeny E. Akkuratov
- Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, 171 65 Stockholm, Sweden;
| | - Tatiana N. Fedorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
5
|
Pierone BC, Pereira CA, Garcez ML, Kaster MP. Stress and signaling pathways regulating autophagy: From behavioral models to psychiatric disorders. Exp Neurol 2020; 334:113485. [PMID: 32987001 DOI: 10.1016/j.expneurol.2020.113485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/21/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023]
Abstract
Autophagy is a process of degradation and recycling of cytoplasmatic components by the lysosomes. In the central nervous system (CNS), autophagy is involved in cell surveillance, neuroinflammation, and neuroplasticity. Neuropsychiatric conditions are associated with functional disturbances at molecular and cellular levels, causing significant impairments in cell homeostasis. Additionally, emerging evidence supports that dysfunctions in autophagy contribute to the pathophysiology of neurological diseases. However, the studies on autophagy in psychiatric disorders are highly heterogeneous and have several limitations, mainly to assess causality and determine the autophagy flux in animals and human samples. Besides, the role of this mechanism in non-neuronal cells in the CNS is only recently being explored. Thus, this review summarizes and discusses the changes in the autophagy pathway in animal models of psychiatric disorders and the limitations underlying the significant findings. Moreover, we compared these findings with clinical studies. Understanding the involvement of autophagy in psychiatric conditions, and the limitation of our current models may contribute to the development of more effective research approaches and possibly pharmacological therapies.
Collapse
Affiliation(s)
- Bruna C Pierone
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Caibe A Pereira
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Michelle L Garcez
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
6
|
Intracerebroventricular injection of ouabain causes mania-like behavior in mice through D2 receptor activation. Sci Rep 2019; 9:15627. [PMID: 31666560 PMCID: PMC6821712 DOI: 10.1038/s41598-019-52058-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/11/2019] [Indexed: 01/07/2023] Open
Abstract
Intracerebroventricular (ICV) administration of ouabain, an inhibitor of the Na, K-ATPase, is an approach used to study the physiological functions of the Na, K-ATPase and cardiotonic steroids in the central nervous system, known to cause mania-like hyperactivity in rats. We describe a mouse model of ouabain-induced mania-like behavior. ICV administration of 0.5 µl of 50 µM (25 pmol, 14.6 ng) ouabain into each lateral brain ventricle results in increased locomotor activity, stereotypical behavior, and decreased anxiety level an hour at minimum. Fast-scan cyclic voltammetry showed that administration of 50 µM ouabain causes a drastic drop in dopamine uptake rate, confirmed by elevated concentrations of dopamine metabolites detected in the striatum 1 h after administration. Ouabain administration also caused activation of Akt, deactivation of GSK3β and activation of ERK1/2 in the striatum of ouabain-treated mice. All of the abovementioned effects are attenuated by haloperidol (70 µg/kg intraperitoneally). Observed effects were not associated with neurotoxicity, since no dystrophic neuron changes in brain structures were demonstrated by histological analysis. This newly developed mouse model of ouabain-induced mania-like behavior could provide a perspective tool for studying the interactions between the Na,K-ATPase and the dopaminergic system.
Collapse
|
7
|
El-Mallakh RS, Brar KS, Yeruva RR. Cardiac Glycosides in Human Physiology and Disease: Update for Entomologists. INSECTS 2019; 10:E102. [PMID: 30974764 PMCID: PMC6523104 DOI: 10.3390/insects10040102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022]
Abstract
Cardiac glycosides, cardenolides and bufadienolides, are elaborated by several plant or animal species to prevent grazing or predation. Entomologists have characterized several insect species that have evolved the ability to sequester these glycosides in their tissues to reduce their palatability and, thus, reduce predation. Cardiac glycosides are known to interact with the sodium- and potassium-activated adenosine triphosphatase, or sodium pump, through a specific receptor-binding site. Over the last couple of decades, and since entomologic studies, it has become clear that mammals synthesize endogenous cardenolides that closely resemble or are identical to compounds of plant origin and those sequestered by insects. The most important of these are ouabain-like compounds. These compounds are essential for the regulation of normal ionic physiology in mammals. Importantly, at physiologic picomolar or nanomolar concentrations, endogenous ouabain, a cardenolide, stimulates the sodium pump, activates second messengers, and may even function as a growth factor. This is in contrast to the pharmacologic or toxic micromolar or milimolar concentrations achieved after consumption of exogenous cardenolides (by consuming medications, plants, or insects), which inhibit the pump and result in either a desired medical outcome, or the toxic consequence of sodium pump inhibition.
Collapse
Affiliation(s)
- Rif S El-Mallakh
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Kanwarjeet S Brar
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Rajashekar Reddy Yeruva
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
8
|
Lichtstein D, Ilani A, Rosen H, Horesh N, Singh SV, Buzaglo N, Hodes A. Na⁺, K⁺-ATPase Signaling and Bipolar Disorder. Int J Mol Sci 2018; 19:E2314. [PMID: 30087257 PMCID: PMC6121236 DOI: 10.3390/ijms19082314] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood and its treatment is unsatisfactory. Although in past decades the "monoamine hypothesis" has dominated our understanding of both the pathophysiology of depressive disorders and the action of pharmacological treatments, recent studies focus on the involvement of additional neurotransmitters/neuromodulators systems and cellular processes in BD. Here, evidence for the participation of Na⁺, K⁺-ATPase and its endogenous regulators, the endogenous cardiac steroids (ECS), in the etiology of BD is reviewed. Proof for the involvement of brain Na⁺, K⁺-ATPase and ECS in behavior is summarized and it is hypothesized that ECS-Na⁺, K⁺-ATPase-induced activation of intracellular signaling participates in the mechanisms underlying BD. We propose that the activation of ERK, AKT, and NFκB, resulting from ECS-Na⁺, K⁺-ATPase interaction, modifies neuronal activity and neurotransmission which, in turn, participate in the regulation of behavior and BD. These observations suggest Na⁺, K⁺-ATPase-mediated signaling is a potential target for drug development for the treatment of BD.
Collapse
Affiliation(s)
- David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Asher Ilani
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Haim Rosen
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Noa Horesh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Shiv Vardan Singh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Nahum Buzaglo
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Anastasia Hodes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
9
|
Buzaglo N, Golomb M, Rosen H, Beeri R, Ami HCB, Langane F, Pierre S, Lichtstein D. Augmentation of Ouabain-Induced Increase in Heart Muscle Contractility by Akt Inhibitor MK-2206. J Cardiovasc Pharmacol Ther 2018; 24:78-89. [DOI: 10.1177/1074248418788301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiac steroids (CSs), such as ouabain and digoxin, increase the force of contraction of heart muscle and are used for the treatment of congestive heart failure (CHF). However, their small therapeutic window limits their use. It is well established that Na+, K+-ATPase inhibition mediates CS-induced increase in heart contractility. Recently, the involvement of intracellular signal transduction was implicated in this effect. The aim of the present study was to test the hypothesis that combined treatment with ouabain and Akt inhibitor (MK-2206) augments ouabain-induced inotropy in mammalian models. We demonstrate that the combined treatment led to an ouabain-induced increase in contractility at concentrations at which ouabain alone was ineffective. This was shown in 3 experimental systems: neonatal primary rat cardiomyocytes, a Langendorff preparation, and an in vivo myocardial infarction induced by left anterior descending coronary artery (LAD) ligation. Furthermore, cell viability experiments revealed that this treatment protected primary cardiomyocytes from MK-2206 toxicity and in vivo reduced the size of scar tissue 10 days post-LAD ligation. We propose that Akt activity imposes a constant inhibitory force on muscle contraction, which is attenuated by low concentrations of MK-2206, resulting in potentiation of the ouabain effect. This demonstration of the increase in the CS effect advocates the development of the combined treatment in CHF.
Collapse
Affiliation(s)
- Nahum Buzaglo
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Mordechai Golomb
- The Heart Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Haim Rosen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ronen Beeri
- The Heart Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hagit Cohen-Ben Ami
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Fattal Langane
- Marshall Institute for Interdisciplinary Research, Huntington, WV, USA
| | - Sandrine Pierre
- Marshall Institute for Interdisciplinary Research, Huntington, WV, USA
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
10
|
Lopachev AV, Abaimov DA, Fedorova TN, Lopacheva OM, Akkuratova NV, Akkuratov EE. Cardiotonic Steroids as Potential Endogenous Regulators in the Nervous System. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Lopachev AV, Lopacheva OM, Nikiforova KA, Filimonov IS, Fedorova TN, Akkuratov EE. Comparative Action of Cardiotonic Steroids on Intracellular Processes in Rat Cortical Neurons. BIOCHEMISTRY (MOSCOW) 2018; 83:140-151. [DOI: 10.1134/s0006297918020062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Lee Y, Kim SG, Lee B, Zhang Y, Kim Y, Kim S, Kim E, Kang H, Han K. Striatal Transcriptome and Interactome Analysis of Shank3-overexpressing Mice Reveals the Connectivity between Shank3 and mTORC1 Signaling. Front Mol Neurosci 2017; 10:201. [PMID: 28701918 PMCID: PMC5487420 DOI: 10.3389/fnmol.2017.00201] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/08/2017] [Indexed: 11/13/2022] Open
Abstract
Mania causes symptoms of hyperactivity, impulsivity, elevated mood, reduced anxiety and decreased need for sleep, which suggests that the dysfunction of the striatum, a critical component of the brain motor and reward system, can be causally associated with mania. However, detailed molecular pathophysiology underlying the striatal dysfunction in mania remains largely unknown. In this study, we aimed to identify the molecular pathways showing alterations in the striatum of SH3 and multiple ankyrin repeat domains 3 (Shank3)-overexpressing transgenic (TG) mice that display manic-like behaviors. The results of transcriptome analysis suggested that mammalian target of rapamycin complex 1 (mTORC1) signaling may be the primary molecular signature altered in the Shank3 TG striatum. Indeed, we found that striatal mTORC1 activity, as measured by mTOR S2448 phosphorylation, was significantly decreased in the Shank3 TG mice compared to wild-type (WT) mice. To elucidate the potential underlying mechanism, we re-analyzed previously reported protein interactomes, and detected a high connectivity between Shank3 and several upstream regulators of mTORC1, such as tuberous sclerosis 1 (TSC1), TSC2 and Ras homolog enriched in striatum (Rhes), via 94 common interactors that we denominated “Shank3-mTORC1 interactome”. We noticed that, among the 94 common interactors, 11 proteins were related to actin filaments, the level of which was increased in the dorsal striatum of Shank3 TG mice. Furthermore, we could co-immunoprecipitate Shank3, Rhes and Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) proteins from the striatal lysate of Shank3 TG mice. By comparing with the gene sets of psychiatric disorders, we also observed that the 94 proteins of Shank3-mTORC1 interactome were significantly associated with bipolar disorder (BD). Altogether, our results suggest a protein interaction-mediated connectivity between Shank3 and certain upstream regulators of mTORC1 that might contribute to the abnormal striatal mTORC1 activity and to the manic-like behaviors of Shank3 TG mice.
Collapse
Affiliation(s)
- Yeunkum Lee
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Sun Gyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS)Daejeon, South Korea
| | - Bokyoung Lee
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
| | - Yinhua Zhang
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Yoonhee Kim
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
| | - Shinhyun Kim
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS)Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)Daejeon, South Korea
| | - Hyojin Kang
- HPC-enabled Convergence Technology Research Division, Korea Institute of Science and Technology InformationDaejeon, South Korea
| | - Kihoon Han
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| |
Collapse
|
13
|
Valvassori SS, Dal-Pont GC, Resende WR, Jornada LK, Peterle BR, Machado AG, Farias HR, de Souza CT, Carvalho AF, Quevedo J. Lithium and valproate act on the GSK-3β signaling pathway to reverse manic-like behavior in an animal model of mania induced by ouabain. Neuropharmacology 2017; 117:447-459. [DOI: 10.1016/j.neuropharm.2016.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022]
|
14
|
Amodeo DA, Grospe G, Zang H, Dwivedi Y, Ragozzino ME. Cognitive flexibility impairment and reduced frontal cortex BDNF expression in the ouabain model of mania. Neuroscience 2017; 345:229-242. [PMID: 27267245 PMCID: PMC5136525 DOI: 10.1016/j.neuroscience.2016.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/26/2022]
Abstract
Central infusion of the Na+/K+-ATPase inhibitor, ouabain in rats serves as an animal model of mania because it leads to hyperactivity, as well as reproduces ion dysregulation and reduced brain-derived neurotrophic factor (BDNF) levels similar to that observed in bipolar disorder. Bipolar disorder is also associated with cognitive inflexibility and working memory deficits. It is unknown whether ouabain treatment in rats leads to similar cognitive flexibility and working memory deficits. The present study examined the effects of an intracerebral ventricular infusion of ouabain in rats on spontaneous alternation, probabilistic reversal learning and BDNF expression levels in the frontal cortex. Ouabain treatment significantly increased locomotor activity, but did not affect alternation performance in a Y-maze. Ouabain treatment selectively impaired reversal learning in a spatial discrimination task using an 80/20 probabilistic reinforcement procedure. The reversal learning deficit in ouabain-treated rats resulted from an impaired ability to maintain a new choice pattern (increased regressive errors). Ouabain treatment also decreased sensitivity to negative feedback during the initial phase of reversal learning. Expression of BDNF mRNA and protein levels was downregulated in the frontal cortex which also negatively correlated with regressive errors. These findings suggest that the ouabain model of mania may be useful in understanding the neuropathophysiology that contributes to cognitive flexibility deficits and test potential treatments to alleviate cognitive deficits in bipolar disorder.
Collapse
Affiliation(s)
- Dionisio A Amodeo
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Gena Grospe
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Hui Zang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60608, United States
| | - Yogesh Dwivedi
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL 35209, United States
| | - Michael E Ragozzino
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States.
| |
Collapse
|
15
|
Lopachev AV, Lopacheva OM, Osipova EA, Vladychenskaya EA, Smolyaninova LV, Fedorova TN, Koroleva OV, Akkuratov EE. Ouabain-induced changes in MAP kinase phosphorylation in primary culture of rat cerebellar cells. Cell Biochem Funct 2017; 34:367-77. [PMID: 27338714 DOI: 10.1002/cbf.3199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
Abstract
Cardiotonic steroid (CTS) ouabain is a well-established inhibitor of Na,K-ATPase capable of inducing signalling processes including changes in the activity of the mitogen activated protein kinases (MAPK) in various cell types. With increasing evidence of endogenous CTS in the blood and cerebrospinal fluid, it is of particular interest to study ouabain-induced signalling in neurons, especially the activation of MAPK, because they are the key kinases activated in response to extracellular signals and regulating cell survival, proliferation and apoptosis. In this study we investigated the effect of ouabain on the level of phosphorylation of three MAPK (ERK1/2, JNK and p38) and on cell survival in the primary culture of rat cerebellar cells. Using Western blotting we described the time course and concentration dependence of phosphorylation for ERK1/2, JNK and p38 in response to ouabain. We discovered that ouabain at a concentration of 1 μM does not cause cell death in cultured neurons while it changes the phosphorylation level of the three MAPK: ERK1/2 is phosphorylated transiently, p38 shows sustained phosphorylation, and JNK is dephosphorylated after a long-term incubation. We showed that ERK1/2 phosphorylation increase does not depend on ouabain-induced calcium increase and p38 activation. Changes in p38 phosphorylation, which is independent from ERK1/2 activation, are calcium dependent. Changes in JNK phosphorylation are calcium dependent and also depend on ERK1/2 and p38 activation. Ten-micromolar ouabain leads to cell death, and we conclude that different effects of 1-μM and 10-μM ouabain depend on different ERK1/2 and p38 phosphorylation profiles. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alexander V Lopachev
- Research Center of Neurology, Moscow, Russia.,Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Olga M Lopacheva
- Research Center of Neurology, Moscow, Russia.,Lomonosov Moscow State University, International Biotechnological Center, Moscow, Russia
| | - Ekaterina A Osipova
- Lomonosov Moscow State University, International Biotechnological Center, Moscow, Russia.,Lomonosov Moscow State University, Faculty of Chemistry, Department of Chemical Enzymology, Moscow, Russia
| | | | - Larisa V Smolyaninova
- Lomonosov Moscow State University, International Biotechnological Center, Moscow, Russia.,Lomonosov Moscow State University, Faculty of Biology, Department of Biochemistry, Moscow, Russia
| | | | - Olga V Koroleva
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny E Akkuratov
- St. Petersburg State University, Institute of Translational Biomedicine, St. Petersburg, Russia
| |
Collapse
|
16
|
Hodes A, Rosen H, Deutsch J, Lifschytz T, Einat H, Lichtstein D. Endogenous cardiac steroids in animal models of mania. Bipolar Disord 2016; 18:451-9. [PMID: 27393337 DOI: 10.1111/bdi.12413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/25/2016] [Accepted: 06/04/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) is a complex psychiatric disorder characterized by mania and depression. Alterations in brain Na(+) , K(+) -ATPase and cardiac steroids (CSs) have been detected in BD, raising the hypothesis of their involvement in this pathology. The present study investigated the behavioral and biochemical consequences of a reduction in endogenous brain CS activity in animal models of mania. METHODS Amphetamine (AMPH)-induced hyperactivity in BALB/c and black Swiss mice served as a model of mania. Behavior was evaluated in the open-field test in naïve mice or in mice treated with anti-ouabain antibodies. CS levels were determined by enzyme-linked immunosorbent assay (ELISA), using sensitive and specific anti-ouabain antibodies. Extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) phosphorylation levels in the frontal cortex were determined by western blot analysis. RESULTS Administration of AMPH to BALB/c and black Swiss mice resulted in a marked increase in locomotor activity, accompanied by a threefold increase in brain CSs. The lowering of brain CSs by the administration of anti-ouabain antibodies prevented the hyperactivity and the increase in brain CS levels. AMPH caused an increase in phosphorylated ERK (p-ERK) and phosphorylated Akt (p-Akt) levels in the frontal cortex, which was significantly reduced by administration of the antibodies. A synthetic 'functional antagonist' of CSs, 4-(3'α-15'β-dihydroxy-5'β-estran-17'β-yl) furan-2-methyl alcohol, also resulted in attenuation of AMPH-induced hyperactivity. CONCLUSIONS These results are in accordance with the notion that malfunctioning of the Na(+) , K(+) -ATPase/CS system may be involved in the manifestation of mania and identify this system as a potential new target for drug development.
Collapse
Affiliation(s)
- Anastasia Hodes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Haim Rosen
- Departments of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Joseph Deutsch
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem, Israel
| | - Tzuri Lifschytz
- Department of Psychiatry, Hadassah Hospital, Jerusalem, Israel
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
17
|
Kurauchi Y, Hisatsune A, Seki T, Katsuki H. Na+, K+-ATPase dysfunction causes cerebrovascular endothelial cell degeneration in rat prefrontal cortex slice cultures. Brain Res 2016; 1644:249-57. [DOI: 10.1016/j.brainres.2016.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 01/17/2023]
|
18
|
Holm TH, Lykke-Hartmann K. Insights into the Pathology of the α3 Na(+)/K(+)-ATPase Ion Pump in Neurological Disorders; Lessons from Animal Models. Front Physiol 2016; 7:209. [PMID: 27378932 PMCID: PMC4906016 DOI: 10.3389/fphys.2016.00209] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/22/2016] [Indexed: 01/08/2023] Open
Abstract
The transmembrane Na(+)-/K(+) ATPase is located at the plasma membrane of all mammalian cells. The Na(+)-/K(+) ATPase utilizes energy from ATP hydrolysis to extrude three Na(+) cations and import two K(+) cations into the cell. The minimum constellation for an active Na(+)-/K(+) ATPase is one alpha (α) and one beta (β) subunit. Mammals express four α isoforms (α1-4), encoded by the ATP1A1-4 genes, respectively. The α1 isoform is ubiquitously expressed in the adult central nervous system (CNS) whereas α2 primarily is expressed in astrocytes and α3 in neurons. Na(+) and K(+) are the principal ions involved in action potential propagation during neuronal depolarization. The α1 and α3 Na(+)-/K(+) ATPases are therefore prime candidates for restoring neuronal membrane potential after depolarization and for maintaining neuronal excitability. The α3 isoform has approximately four-fold lower Na(+) affinity compared to α1 and is specifically required for rapid restoration of large transient increases in [Na(+)]i. Conditions associated with α3 deficiency are therefore likely aggravated by suprathreshold neuronal activity. The α3 isoform been suggested to support re-uptake of neurotransmitters. These processes are required for normal brain activity, and in fact autosomal dominant de novo mutations in ATP1A3 encoding the α3 isoform has been found to cause the three neurological diseases Rapid Onset Dystonia Parkinsonism (RDP), Alternating Hemiplegia of Childhood (AHC), and Cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS). All three diseases cause acute onset of neurological symptoms, but the predominant neurological manifestations differ with particularly early onset of hemiplegic/dystonic episodes and mental decline in AHC, ataxic encephalopathy and impairment of vision and hearing in CAPOS syndrome and late onset of dystonia/parkinsonism in RDP. Several mouse models have been generated to study the in vivo consequences of Atp1a3 modulation. The different mice show varying degrees of hyperactivity, gait problems, and learning disability as well as stress-induced seizures. With the advent of several Atp1a3-gene or chemically modified animal models that closely phenocopy many aspects of the human disorders, we will be able to reach a much better understanding of the etiology of RDP, AHC, and CAPOS syndrome.
Collapse
Affiliation(s)
- Thomas H. Holm
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
19
|
Buzaglo N, Rosen H, Ben Ami HC, Inbal A, Lichtstein D. Essential Opposite Roles of ERK and Akt Signaling in Cardiac Steroid-Induced Increase in Heart Contractility. J Pharmacol Exp Ther 2016; 357:345-56. [PMID: 26941172 DOI: 10.1124/jpet.115.230763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/16/2016] [Indexed: 03/08/2025] Open
Abstract
Interaction of cardiac steroids (CS) with the Na(+), K(+)-ATPase elicits, in addition to inhibition of the enzyme's activity, the activation of intracellular signaling such as extracellular signal-regulated (ERK) and protein kinase B (Akt). We hypothesized that the activities of these pathways are involved in CS-induced increase in heart contractility. This hypothesis was tested using in vivo and ex vivo wild type (WT) and sarcoplasmic reticulum Ca(2+) atpase1a-deficient zebrafish (accordion, acc mutant) experimental model. Heart contractility was measured in vivo and in primary cardiomyocytes in WT zebrafish larvae and acc mutant. Ca(2+) transients were determined ex vivo in adult zebrafish hearts. CS dose dependently augmented the force of contraction of larvae heart muscle and cardiomyocytes and increased Ca(2+) transients in WT but not in acc mutant. CS in vivo increased the phosphorylation rate of ERK and Akt in the adult zebrafish heart of the two strains. Pretreatment of WT zebrafish larvae or cardiomyocytes with specific MAPK inhibitors completely abolished the CS-induced increase in contractility. On the contrary, pretreatment with Akt inhibitor significantly enhanced the CS-induced increase in heart contractility both in vivo and ex vivo without affecting CS-induced Ca(2+) transients. Furthermore, pretreatment of the acc mutant larvae or cardiomyocytes with Akt inhibitor restored the CS-induced increase in heart contractility also without affecting Ca(2+) transients. These results support the notion that the activity of MAPK pathway is obligatory for CS-induced increases in heart muscle contractility. Akt activity, on the other hand, plays a negative role, via Ca(2+) independent mechanisms, in CS action. These findings point to novel potential pharmacological intervention to increase CS efficacy.
Collapse
Affiliation(s)
- Nahum Buzaglo
- Department of Medical Neurobiology (N.B., H.C. B.A, A.I., D.L.) and Department of Microbiology and Molecular Genetics (H.R.), Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Haim Rosen
- Department of Medical Neurobiology (N.B., H.C. B.A, A.I., D.L.) and Department of Microbiology and Molecular Genetics (H.R.), Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hagit Cohen Ben Ami
- Department of Medical Neurobiology (N.B., H.C. B.A, A.I., D.L.) and Department of Microbiology and Molecular Genetics (H.R.), Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Adi Inbal
- Department of Medical Neurobiology (N.B., H.C. B.A, A.I., D.L.) and Department of Microbiology and Molecular Genetics (H.R.), Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - David Lichtstein
- Department of Medical Neurobiology (N.B., H.C. B.A, A.I., D.L.) and Department of Microbiology and Molecular Genetics (H.R.), Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
20
|
Gao Y, Peterson S, Masri B, Hougland MT, Adham N, Gyertyán I, Kiss B, Caron MG, El-Mallakh RS. Cariprazine exerts antimanic properties and interferes with dopamine D2 receptor β-arrestin interactions. Pharmacol Res Perspect 2014; 3:e00073. [PMID: 25692006 PMCID: PMC4317219 DOI: 10.1002/prp2.73] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/11/2014] [Accepted: 02/19/2014] [Indexed: 12/27/2022] Open
Abstract
Activation of dopamine D2 receptors (D2R) modulates G protein/cAMP-dependent signaling and also engages Akt-GSK-3 signaling through D2R/β-arrestin 2 scaffolding of Akt and PP2A. This G protein-independent pathway may be important in mediating the antimanic effects of mood stabilizers and antipsychotics. The mood stabilizer lithium influences behavior and Akt/GSK-3 signaling in mice and many antipsychotics have been shown to more potently antagonize the activity of the β-arrestin-2 pathway relative to the G protein-dependent pathway. Cariprazine, an antipsychotic with potent D3R/D2R partial agonist activity and preferential binding to D3R, was investigated for its effects on the mediators of D2R pathways in vitro and its efficacy in animal models of mania. Effects on G protein-dependent activity were measured via inhibition of isoproterenol-induced cAMP production; effects on D2R/β-arrestin 2 signaling were determined using bioluminescence resonance energy transfer (BRET). Cariprazine was tested in vivo for antimanic-like activity, using the ouabain-induced hyperactivity model in rats. Cariprazine was more potent than aripiprazole in inhibiting isoproterenol-induced cAMP although both compounds showed similar maximum efficacy. In assays of D2R/β-arrestin 2-dependent interactions, cariprazine showed very weak partial agonist activity, unless the levels of receptor kinase were increased; as an antagonist it showed similar potency to haloperidol and ∼fivefold greater potency than aripiprazole. In an animal model of mania, cariprazine showed similar efficacy as lithium in attenuating the effects of ouabain-induced hyperactivity. In summary, the differential effects of cariprazine on D2R G protein and β-arrestin 2 mediators of signal transduction pathways could contribute to its potent antimanic-like activity.
Collapse
Affiliation(s)
- Yonglin Gao
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - Sean Peterson
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - Bernard Masri
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - M Tyler Hougland
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - Nika Adham
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - Istvan Gyertyán
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - Béla Kiss
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - Marc G Caron
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| | - Rif S El-Mallakh
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine MedCenter One, 501 East Broadway, Suite 340, Louisville, Kentucky, 40202
| |
Collapse
|
21
|
Hodes A, Lichtstein D. Natriuretic hormones in brain function. Front Endocrinol (Lausanne) 2014; 5:201. [PMID: 25506340 PMCID: PMC4246887 DOI: 10.3389/fendo.2014.00201] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/12/2014] [Indexed: 01/11/2023] Open
Abstract
Natriuretic hormones (NH) include three groups of compounds: the natriuretic peptides (ANP, BNP and CNP), the gastrointestinal peptides (guanylin and uroguanylin), and endogenous cardiac steroids. These substances induce the kidney to excrete sodium and therefore participate in the regulation of sodium and water homeostasis, blood volume, and blood pressure (BP). In addition to their peripheral functions, these hormones act as neurotransmitters or neuromodulators in the brain. In this review, the established information on the biosynthesis, release and function of NH is discussed, with particular focus on their role in brain function. The available literature on the expression patterns of each of the NH and their receptors in the brain is summarized, followed by the evidence for their roles in modulating brain function. Although numerous open questions exist regarding this issue, the available data support the notion that NH participate in the central regulation of BP, neuroprotection, satiety, and various psychiatric conditions, including anxiety, addiction, and depressive disorders. In addition, the interactions between the different NH in the periphery and the brain are discussed.
Collapse
Affiliation(s)
- Anastasia Hodes
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lichtstein
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Abstract
Digoxin and digitoxin are widely used in the treatment of heart diseases. The exact mechanism of action of these drugs has remained an enigma. Ouabain has become the standard tool to investigate the mode of action of cardiotonic steroids, and results with ouabain are regarded as generally valid for all cardiac glycosides. However, there are marked differences between the effects of ouabain and digitalis glycosides. Ouabain has a different therapeutic profile from digitalis derivatives. Unlike digitalis glycosides, ouabain has a fast onset of action and stimulates myocardial metabolism. The inotropic effect of cardiotonic steroids is not related to inhibition of the Na-K-ATPase. Ouabain and digitalis derivatives develop their effects in different cellular spaces. Digitalis glycosides increase the intracellular calcium concentration by entering the cell interior and acting on the ryanodine receptors and by forming transmembrane calcium channels. Ouabain, by activation of the Na-K-ATPase from the extracellular side, triggers release of calcium from intracellular stores via signal transduction pathways and activates myocardial metabolism. These data no longer support the concept that all cardiotonic steroids exhibit their therapeutic effects by partial inhibition of the ion-pumping function of the Na-K-ATPase. Hence, it is suggested that this deeply rooted dogma be revised.
Collapse
|
23
|
Dai H, Song D, Xu J, Li B, Hertz L, Peng L. Ammonia-induced Na,K-ATPase/ouabain-mediated EGF receptor transactivation, MAPK/ERK and PI3K/AKT signaling and ROS formation cause astrocyte swelling. Neurochem Int 2013; 63:610-25. [PMID: 24044899 DOI: 10.1016/j.neuint.2013.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022]
Abstract
Ammonia toxicity is clinically important and biologically poorly understood. We reported previously that 3mM ammonia chloride (ammonia), a relevant concentration for hepatic encephalopathy studies, increases production of endogenous ouabain and activity of Na,K-ATPase in astrocytes. In addition, ammonia-induced upregulation of gene expression of α2 isoform of Na,K-ATPase in astrocytes could be inhibited by AG1478, an inhibitor of the EGF receptor (EGFR), and by PP1, an inhibitor of Src, but not by GM6001, an inhibitor of metalloproteinase and shedding of growth factor, suggesting the involvement of endogenous ouabain-induced EGF receptor transactivation. In the present cell culture study, we investigated ammonia effects on phosphorylation of EGF receptor and its intracellular signal pathway towards MAPK/ERK1/2 and PI3K/AKT; interaction between EGF receptor, α1, and α2 isoforms of Na,K-ATPase, Src, ERK1/2, AKT and caveolin-1; and relevance of these signal pathways for ammonia-induced cell swelling, leading to brain edema, an often fatal complication of ammonia toxicity. We found that (i) ammonia increases EGF receptor phosphorylation at EGFR(845) and EGFR(1068); (ii) ammonia-induced ERK1/2 and AKT phosphorylation depends on the activity of EGF receptor and Src, but not on metalloproteinase; (iii) AKT phosphorylation occurs upstream of ERK1/2 phosphorylation; (iv) ammonia stimulates association between the α1 Na,K-ATPase isoform, Src, EGF receptor, ERK1/2, AKT and caveolin-1; (v) ammonia-induced ROS production might occur later than EGFR transactivation; (vi) both ammonia induced ERK phosphorylation and ROS production can be abolished by canrenone, an inhibitor of ouabain, and (vii) ammonia-induced cell swelling depends on signaling via the Na,K-ATPase/ouabain/Src/EGF receptor/PI3K-AKT/ERK1/2, but in response to 3mM ammonia it does not appear until after 12h. Based on literature data it is suggested that the delayed appearance of the ammonia-induced swelling at this concentration reflects required ouabain-induced oxidative damage of the ion and water cotransporter NKCC1. This information may provide new therapeutic targets for treatment of hyperammonic brain disorders.
Collapse
Affiliation(s)
- Hongliang Dai
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Dan Song
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Junnan Xu
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Baoman Li
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Leif Hertz
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Liang Peng
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| |
Collapse
|
24
|
Kim SH, Yu HS, Park HG, Ha K, Kim YS, Shin SY, Ahn YM. Intracerebroventricular administration of ouabain, a Na/K-ATPase inhibitor, activates mTOR signal pathways and protein translation in the rat frontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:73-82. [PMID: 23643758 DOI: 10.1016/j.pnpbp.2013.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/02/2013] [Accepted: 04/21/2013] [Indexed: 11/16/2022]
Abstract
Intracerebroventricular (ICV) injection of ouabain, a specific Na/K-ATPase inhibitor, induces behavioral changes in rats in a putative animal model of mania. The binding of ouabain to Na/K-ATPase affects signaling molecules in vitro, including ERK1/2 and Akt, which promote protein translation. We have also reported that ERK1/2 and Akt in the brain are involved in the ouabain-induced hyperactivity of rats. In this study, rats were given an ICV injection of ouabain, and then their frontal cortices were examined to determine the effects of ouabain on the mTOR/p70S6K/S6 signaling pathway and protein translation, which are important in modifications of neural circuits and behavior. Rats showed ouabain-induced hyperactivity up to 8h following injection, and increased phosphorylation levels of mTOR, p70S6K, S6, eIF4B, and 4E-BP at 1, 2, 4, and 8h following ouabain injection. Immunohistochemical analyses revealed that increased p-S6 immunoreactivity in the cytoplasm of neurons by ouabain was evident in the prefrontal, cingulate, and orbital cortex. These findings suggested increased translation initiation in response to ouabain. The rate of protein synthesis was measured as the amount of [(3)H]-leucine incorporation in the cell-free extracts of frontal cortical tissues, and showed a significant increase at 8h after ouabain injection. These results suggest that ICV injection of ouabain induced activation of the protein translation initiation pathway regulated by ERK1/2 and Akt, and prolonged hyperactivity in rats. In conclusion, protein translation pathway could play an important role in ouabain-induced hyperactivity in a rodent model of mania.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Psychiatry and Behavioral Science & Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Intracerebroventricular administration of ouabain alters synaptic plasticity and dopamine release in rat medial prefrontal cortex. J Neural Transm (Vienna) 2013; 120:1191-9. [DOI: 10.1007/s00702-013-0973-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/04/2013] [Indexed: 12/29/2022]
|
26
|
Intracerebroventricular administration of ouabain, a Na/K-ATPase inhibitor, activates tyrosine hydroxylase through extracellular signal-regulated kinase in rat striatum. Neurochem Int 2011; 59:779-86. [DOI: 10.1016/j.neuint.2011.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 01/28/2023]
|
27
|
Mania-like behavior induced by genetic dysfunction of the neuron-specific Na+,K+-ATPase α3 sodium pump. Proc Natl Acad Sci U S A 2011; 108:18144-9. [PMID: 22025725 DOI: 10.1073/pnas.1108416108] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bipolar disorder is a debilitating psychopathology with unknown etiology. Accumulating evidence suggests the possible involvement of Na(+),K(+)-ATPase dysfunction in the pathophysiology of bipolar disorder. Here we show that Myshkin mice carrying an inactivating mutation in the neuron-specific Na(+),K(+)-ATPase α3 subunit display a behavioral profile remarkably similar to bipolar patients in the manic state. Myshkin mice show increased Ca(2+) signaling in cultured cortical neurons and phospho-activation of extracellular signal regulated kinase (ERK) and Akt in the hippocampus. The mood-stabilizing drugs lithium and valproic acid, specific ERK inhibitor SL327, rostafuroxin, and transgenic expression of a functional Na(+),K(+)-ATPase α3 protein rescue the mania-like phenotype of Myshkin mice. These findings establish Myshkin mice as a unique model of mania, reveal an important role for Na(+),K(+)-ATPase α3 in the control of mania-like behavior, and identify Na(+),K(+)-ATPase α3, its physiological regulators and downstream signal transduction pathways as putative targets for the design of new antimanic therapies.
Collapse
|
28
|
Maternal Depression Model: Long-Lasting Effects on the Mother Following Separation from Pups. Neurochem Res 2011; 37:126-33. [DOI: 10.1007/s11064-011-0590-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/24/2011] [Accepted: 08/29/2011] [Indexed: 12/12/2022]
|
29
|
Park HG, Kim SH, Kim HS, Ahn YM, Kang UG, Kim YS. Repeated electroconvulsive seizure treatment in rats reduces inducibility of early growth response genes and hyperactivity in response to cocaine administration. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1014-21. [PMID: 21334415 DOI: 10.1016/j.pnpbp.2011.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 12/27/2022]
Abstract
Regulated expression of immediate early genes (IEGs) in the brain reflects neuronal activity in response to various stimuli and recruits specific gene programs involved in long-term neuronal modification and behavioral alterations. Repeated electroconvulsive seizure (ECS) treatment reduces the expression level of several IEGs, such as c-fos, which play important roles in psychostimulant-induced behavioral changes. In this study, we investigated the effects of repeated ECS treatment on the basal expression level of IEGs and its effects on cocaine-induced activation of IEGs and locomotor activity in rats. Repeated ECS treatment for 10days (E10×) reduced Egr1, Egr2, Egr3, and c-fos mRNA and protein levels in the rat frontal cortex at 24h after the last ECS treatment, and these changes were evident in the neuronal cells of the prefrontal cortex. In particular, downregulation of Egr1 and c-fos was evident until 5days after the last ECS treatment. Moreover, E10× pretreatment attenuated the cocaine-induced increase in Egr1, Egr2, and c-fos expression in the rat frontal cortex, whereas phosphorylation of ERK1/2, one of the representative upstream activators of these genes, increased significantly following cocaine treatment. Additionally, E10× pretreatment attenuated the increase in locomotor activity in response to a cocaine injection. In conclusion, repeated ECS treatment reduced the expression and inducibility of Egrs and c-fos, which could attenuate the response of the brain to psychostimulants.
Collapse
Affiliation(s)
- Hong Geun Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
30
|
Jackson TC, Verrier JD, Semple-Rowland S, Kumar A, Foster TC. PHLPP1 splice variants differentially regulate AKT and PKCα signaling in hippocampal neurons: characterization of PHLPP proteins in the adult hippocampus. J Neurochem 2010; 115:941-55. [PMID: 20819118 DOI: 10.1111/j.1471-4159.2010.06984.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pleckstrin homology and leucine rich repeat protein phosphatases (PHLPPs) are a novel class of potent protein kinase B (AKT) inhibitors that have been intensely investigated in relation to AKT activity in cancer. Currently, our understanding of the role of PHLPP1α in the central nervous system is limited. In this study, we characterized PHLPP protein expression and target kinases in the adult hippocampus. We directly verify PHLPP1α inhibits AKT in hippocampal neurons and demonstrate a novel role for PHLPP1β/SCOP, to promote AKT activation. PHLPP1α expression changes dramatically in the hippocampus during development, constituting the most abundant PHLPP protein in adult neurons. Further, while all PHLPP proteins could be observed in the cytosolic fraction, only PHLPP1α could be localized to the nucleus. The results provide unique evidence for a divergence in the function of PHLPP1α and PHLPP1β/SCOP, and suggest that PHLPP1α plays a major role in regulating AKT signaling in neurons.
Collapse
Affiliation(s)
- Travis C Jackson
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0244, USA
| | | | | | | | | |
Collapse
|