1
|
Elucidation of the Landscape of Alternatively Spliced Genes and Features in the Dorsal Striatum of Aggressive/Aggression-Deprived Mice in the Model of Chronic Social Conflicts. Genes (Basel) 2023; 14:genes14030599. [PMID: 36980872 PMCID: PMC10048575 DOI: 10.3390/genes14030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Both aggressive and aggression-deprived (AD) individuals represent pathological cases extensively studied in psychiatry and substance abuse disciplines. We employed the animal model of chronic social conflicts curated in our laboratory for over 30 years. In the study, we pursued the task of evaluation of the key events in the dorsal striatum transcriptomes of aggression-experienced mice and AD species, as compared with the controls, using RNA-seq profiling. We evaluated the alternative splicing-mediated transcriptome dynamics based on the RNA-seq data. We confined our attention to the exon skipping (ES) events as the major AS type for animals. We report the concurrent posttranscriptional and posttranslational regulation of the ES events observed in the phosphorylation cycles (in phosphoproteins and their targets) in the neuron-specific genes of the striatum. Strikingly, we found that major neurospecific splicing factors (Nova1, Ptbp1, 2, Mbnl1, 2, and Sam68) related to the alternative splicing regulation of cAMP genes (Darpp-32, Grin1, Ptpn5, Ppp3ca, Pde10a, Prkaca, Psd95, and Adora1) are upregulated specifically in aggressive individuals as compared with the controls and specifically AD animals, assuming intense switching between isoforms in the cAMP-mediated (de)phosphorylation signaling cascade. We found that the coding alternative splicing events were mostly attributed to synaptic plasticity and neural development-related proteins, while the nonsense-mediated decay-associated splicing events are mostly attributed to the mRNA processing of genes, including the spliceosome and splicing factors. In addition, considering the gene families, the transporter (Slc) gene family manifested most of the ES events. We found out that the major molecular systems employing AS for their plasticity are the ‘spliceosome’, ‘chromatin rearrangement complex’, ‘synapse’, and ‘neural development/axonogenesis’ GO categories. Finally, we state that approximately 35% of the exon skipping variants in gene coding regions manifest the noncoding variants subject to nonsense-mediated decay, employed as a homeostasis-mediated expression regulation layer and often associated with the corresponding gene expression alteration.
Collapse
|
2
|
Redina OE, Babenko VN, Smagin DA, Kovalenko IL, Galyamina AG, Efimov VM, Kudryavtseva NN. Effects of Positive Fighting Experience and Its Subsequent Deprivation on the Expression Profile of Mouse Hippocampal Genes Associated with Neurogenesis. Int J Mol Sci 2023; 24:3040. [PMID: 36769363 PMCID: PMC9918130 DOI: 10.3390/ijms24033040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The hippocampus is known as the brain region implicated in visuospatial processes and processes associated with learning and short- and long-term memory. An important functional characteristic of the hippocampus is lifelong neurogenesis. A decrease or increase in adult hippocampal neurogenesis is associated with a wide range of neurological diseases. We have previously shown that in adult male mice with a chronic positive fighting experience in daily agonistic interactions, there is an increase in the proliferation of progenitor neurons and the production of young neurons in the dentate gyrus (in hippocampus), and these neurogenesis parameters remain modified during 2 weeks of deprivation of further fights. The aim of the present work was to identify hippocampal genes associated with neurogenesis and involved in the formation of behavioral features in mice with the chronic experience of wins in aggressive confrontations, as well as during the subsequent 2-week deprivation of agonistic interactions. Hippocampal gene expression profiles were compared among three groups of adult male mice: chronically winning for 20 days in the agonistic interactions, chronically victorious for 20 days followed by the 2-week deprivation of fights, and intact (control) mice. Neurogenesis-associated genes were identified whose transcription levels changed during the social confrontations and in the subsequent period of deprivation of fights. In the experimental males, some of these genes are associated with behavioral traits, including abnormal aggression-related behavior, an abnormal anxiety-related response, and others. Two genes encoding transcription factors (Nr1d1 and Fmr1) were likely to contribute the most to the between-group differences. It can be concluded that the chronic experience of wins in agonistic interactions alters hippocampal levels of transcription of multiple genes in adult male mice. The transcriptome changes get reversed only partially after the 2-week period of deprivation of fights. The identified differentially expressed genes associated with neurogenesis and involved in the control of a behavior/neurological phenotype can be used in further studies to identify targets for therapeutic correction of the neurological disturbances that develop in winners under the conditions of chronic social confrontations.
Collapse
Affiliation(s)
- Olga E. Redina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vladimir N. Babenko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Dmitry A. Smagin
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Irina L. Kovalenko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna G. Galyamina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vadim M. Efimov
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalia N. Kudryavtseva
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg 199034, Russia
| |
Collapse
|
3
|
Smagin DA, Galyamina AG, Kovalenko IL, Kudryavtseva NN. Altered Expression of Genes Associated with Major Neurotransmitter Systems in the Reward-Related Brain Regions of Mice with Positive Fighting Experience. Int J Mol Sci 2022; 23:13644. [PMID: 36362437 PMCID: PMC9655062 DOI: 10.3390/ijms232113644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
The main neurotransmitters in the brain-dopamine, γ-aminobutyric acid (GABA), glutamate, and opioids-are recognized to be the most important for the regulation of aggression and addiction. The aim of this work was to study differentially expressed genes (DEGs) in the main reward-related brain regions, including the ventral tegmental area (VTA), dorsal striatum (STR), ventral striatum (nucleus accumbens, NAcc), prefrontal cortex (PFC), and midbrain raphe nuclei (MRNs), in male mice with 20-day positive fighting experience in daily agonistic interactions. Expression of opioidergic, catecholaminergic, glutamatergic, and GABAergic genes was analyzed to confirm or refute the influence of repeated positive fighting experience on the development of "addiction-like" signs shown in our previous studies. High-throughput RNA sequencing was performed to identify differentially expressed genes in the brain regions of chronically aggressive mice. In the aggressive mice, upregulation of opioidergic genes was shown (Oprk1 in VTA, Pdyn in NAcc, Penk in PFC, and Oprd1 in MRNs and PFC), as was downregulation of genes Opcml and Oprk1 in STR and Pomc in VTA and NAcc. Upregulation of catecholaminergic genes in VTA (Ddc and Slc6a2) and in NAcc (Th and Drd2) and downregulation of some differentially expressed genes in MRNs (Th, Ddc, Dbh, Drd2, Slc18a2, and Sncg) and in VTA (Adra2c, Sncg, and Sncb) were also documented. The expression of GABAergic and glutamatergic genes that participate in drug addiction changed in all brain regions. According to literature data, the proteins encoded by genes Drd2, Oprk1, Oprd1, Pdyn, Penk, and Pomc are directly involved in drug addiction in humans. Thus, our results confirm our earlier claim about the formation of addiction-like signs following repeated positive fighting experience in mice, as shown previously in our biobehavioral studies.
Collapse
Affiliation(s)
| | | | | | - Natalia N. Kudryavtseva
- Neuropathology Modeling Laboratory, Neurogenetics of Social Behavior Sector, FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Babenko V, Redina O, Smagin D, Kovalenko I, Galyamina A, Babenko R, Kudryavtseva N. Dorsal Striatum Transcriptome Profile Profound Shift in Repeated Aggression Mouse Model Converged to Networks of 12 Transcription Factors after Fighting Deprivation. Genes (Basel) 2021; 13:genes13010021. [PMID: 35052361 PMCID: PMC8774333 DOI: 10.3390/genes13010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
Both aggressive and aggression-deprived (AD) species represent pathologic cases intensely addressed in psychiatry and substance abuse disciplines. Previously, we reported that AD mice displayed a higher aggressive behavior score than the aggressive group, implying the manifestation of a withdrawal effect. We employed an animal model of chronic social conflicts, curated in our lab for more than 30 years. In the study, we pursued the task of evaluating key events in the dorsal striatum transcriptome of aggression experienced mice and AD species compared to controls using RNA-Seq profiling. Aggressive species were subjected to repeated social conflict encounters (fights) with regular positive (winners) experience in the course of 20 consecutive days (A20 group). This led to a profoundly shifted transcriptome expression profile relative to the control group, outlined by more than 1000 differentially expressed genes (DEGs). RNA-Seq cluster analysis revealed that elevated cyclic AMP (cAMP) signaling cascade and associated genes comprising 170 differentially expressed genes (DEGs) in aggressive (A20) species were accompanied by a downturn in the majority of other metabolic/signaling gene networks (839 DEGs) via the activation of transcriptional repressor DEGs. Fourteen days of a consecutive fighting deprivation period (AD group) featured the basic restoration of the normal (control) transcriptome expression profile yielding only 62 DEGs against the control. Notably, we observed a network of 12 coordinated DEG Transcription Factor (TF) activators from 62 DEGs in total that were distinctly altered in AD compared to control group, underlining the distinct transcription programs featuring AD group, partly retained from the aggressive encounters and not restored to normal in 14 days. We found circadian clock TFs among them, reported previously as a withdrawal effect factor. We conclude that the aggressive phenotype selection with positive reward effect (winning) manifests an addiction model featuring a distinct opioid-related withdrawal effect in AD group. Along with reporting profound transcriptome alteration in A20 group and gaining some insight on its specifics, we outline specific TF activator gene networks associated with transcriptional repression in affected species compared to controls, outlining Nr1d1 as a primary candidate, thus offering putative therapeutic targets in opioid-induced withdrawal treatment.
Collapse
Affiliation(s)
- Vladimir Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
- Correspondence:
| | - Olga Redina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Dmitry Smagin
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Irina Kovalenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Anna Galyamina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Roman Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Natalia Kudryavtseva
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| |
Collapse
|
5
|
Smagin DA, Babenko VN, Redina OE, Kovalenko IL, Galyamina AG, Kudryavtseva NN. Reduced Expression of Slc Genes in the VTA and NAcc of Male Mice with Positive Fighting Experience. Genes (Basel) 2021; 12:genes12071099. [PMID: 34356115 PMCID: PMC8306410 DOI: 10.3390/genes12071099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
A range of several psychiatric medications targeting the activity of solute carrier (SLC) transporters have proved effective for treatment. Therefore, further research is needed to elucidate the expression profiles of the Slc genes, which may serve as markers of altered brain metabolic processes and neurotransmitter activities in psychoneurological disorders. We studied the Slc differentially expressed genes (DEGs) using transcriptomic profiles in the ventral tegmental area (VTA), nucleus accumbens (NAcc), and prefrontal cortex (PFC) of control and aggressive male mice with psychosis-like behavior induced by repeated experience of aggression accompanied with wins in daily agonistic interactions. The majority of the Slc DEGs were shown to have brain region-specific expression profiles. Most of these genes in the VTA and NAcc (12 of 17 and 25 of 26, respectively) were downregulated, which was not the case in the PFC (6 and 5, up- and downregulated, respectively). In the VTA and NAcc, altered expression was observed for the genes encoding the transporters of neurotransmitters as well as inorganic and organic ions, amino acids, metals, glucose, etc. This indicates an alteration in transport functions for many substrates, which can lead to the downregulation or even disruption of cellular and neurotransmitter processes in the VTA and NAcc, which are attributable to chronic stimulation of the reward systems induced by positive fighting experience. There is not a single Slc DEG common to all three brain regions. Our findings show that in male mice with repeated experience of aggression, altered activity of neurotransmitter systems leads to a restructuring of metabolic and neurotransmitter processes in a way specific for each brain region. We assume that the scoring of Slc DEGs by the largest instances of significant expression co-variation with other genes may outline a candidate for new prognostic drug targets. Thus, we propose that the Slc genes set may be treated as a sensitive genes marker scaffold in brain RNA-Seq studies.
Collapse
Affiliation(s)
- Dmitry A. Smagin
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
- Neurogenetics of Social Behavior Sector, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Vladimir N. Babenko
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
| | - Olga E. Redina
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
| | - Irina L. Kovalenko
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
- Neurogenetics of Social Behavior Sector, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Anna G. Galyamina
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
- Neurogenetics of Social Behavior Sector, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Natalia N. Kudryavtseva
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
- Neurogenetics of Social Behavior Sector, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
6
|
Goodwin NL, Nilsson SRO, Golden SA. Rage Against the Machine: Advancing the study of aggression ethology via machine learning. Psychopharmacology (Berl) 2020; 237:2569-2588. [PMID: 32647898 PMCID: PMC7502501 DOI: 10.1007/s00213-020-05577-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/01/2020] [Indexed: 12/24/2022]
Abstract
RATIONALE Aggression, comorbid with neuropsychiatric disorders, exhibits with diverse clinical presentations and places a significant burden on patients, caregivers, and society. This diversity is observed because aggression is a complex behavior that can be ethologically demarcated as either appetitive (rewarding) or reactive (defensive), each with its own behavioral characteristics, functionality, and neural basis that may transition from adaptive to maladaptive depending on genetic and environmental factors. There has been a recent surge in the development of preclinical animal models for studying appetitive aggression-related behaviors and identifying the neural mechanisms guiding their progression and expression. However, adoption of these procedures is often impeded by the arduous task of manually scoring complex social interactions. Manual observations are generally susceptible to observer drift, long analysis times, and poor inter-rater reliability, and are further incompatible with the sampling frequencies required of modern neuroscience methods. OBJECTIVES In this review, we discuss recent advances in the preclinical study of appetitive aggression in mice, paired with our perspective on the potential for machine learning techniques in producing automated, robust scoring of aggressive social behavior. We discuss critical considerations for implementing valid computer classifications within behavioral pharmacological studies. KEY RESULTS Open-source automated classification platforms can match or exceed the performance of human observers while removing the confounds of observer drift, bias, and inter-rater reliability. Furthermore, unsupervised approaches can identify previously uncharacterized aggression-related behavioral repertoires in model species. DISCUSSION AND CONCLUSIONS Advances in open-source computational approaches hold promise for overcoming current manual annotation caveats while also introducing and generalizing computational neuroethology to the greater behavioral neuroscience community. We propose that currently available open-source approaches are sufficient for overcoming the main limitations preventing wide adoption of machine learning within the context of preclinical aggression behavioral research.
Collapse
Affiliation(s)
- Nastacia L Goodwin
- Department of Biological Structure, University of Washington, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Simon R O Nilsson
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Sam A Golden
- Department of Biological Structure, University of Washington, Seattle, WA, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Helmy M, Zhang J, Wang H. Neurobiology and Neural Circuits of Aggression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1284:9-22. [DOI: 10.1007/978-981-15-7086-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Animal Models of (or for) Aggression Reward, Addiction, and Relapse: Behavior and Circuits. J Neurosci 2019; 39:3996-4008. [PMID: 30833504 DOI: 10.1523/jneurosci.0151-19.2019] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
Inappropriate and pathological aggression plays a leading role in the suffering and death of millions of people, and further places an untenable strain on the caregivers and families of those afflicted. In some cases, such as addictive drugs, aggression can be highly rewarding (appetitive) and continually pursued despite short- and long-term negative consequences. Similarly, recidivism (relapse) rates for repeat violent offenders are as high as relapse rates for drug addicts. Appetitive aggression and relapse to aggression seeking can be modeled in mice studies using conditioned place preference and self-administration procedures followed by a period of abstinence and subsequent tests for relapse to aggression preference and aggression seeking. These procedures allow for the study of the mechanisms that control the appetitive versus the consummatory (attack) phases of aggressive behavior. In this review, we first discuss the behavioral procedures developed to probe appetitive aggression in mouse models, spanning from Pavlovian to operant tasks, and we also describe the recently proposed phenomenon of "aggression addiction." Next, we discuss the pharmacological and circuit mechanisms of aggression conditioned place preference and aggression self-administration, seeking, and relapse, highlighting mechanistic congruence and divergence between appetitive and consummatory phases of aggression. We conclude by discussing clinical implications of the studies reviewed.
Collapse
|
9
|
Smagin DA, Park JH, Michurina TV, Peunova N, Glass Z, Sayed K, Bondar NP, Kovalenko IN, Kudryavtseva NN, Enikolopov G. Altered Hippocampal Neurogenesis and Amygdalar Neuronal Activity in Adult Mice with Repeated Experience of Aggression. Front Neurosci 2015; 9:443. [PMID: 26648838 PMCID: PMC4664700 DOI: 10.3389/fnins.2015.00443] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/06/2015] [Indexed: 12/17/2022] Open
Abstract
Repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here, we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos-positive) cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights.
Collapse
Affiliation(s)
- Dmitry A. Smagin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
- Department of Nano-, Bio-, Information Technology and Cognitive Science, Moscow Institute of Physics and TechnologyMoscow, Russia
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
| | - June-Hee Park
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
| | - Tatyana V. Michurina
- Department of Nano-, Bio-, Information Technology and Cognitive Science, Moscow Institute of Physics and TechnologyMoscow, Russia
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
- Department of Anesthesiology, Stony Brook School of MedicineStony Brook, NY, USA
- Center for Developmental Genetics, Stony Brook UniversityStony Brook, NY, USA
| | - Natalia Peunova
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
- Department of Anesthesiology, Stony Brook School of MedicineStony Brook, NY, USA
- Center for Developmental Genetics, Stony Brook UniversityStony Brook, NY, USA
| | - Zachary Glass
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
| | - Kasim Sayed
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
| | - Natalya P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Irina N. Kovalenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Natalia N. Kudryavtseva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Grigori Enikolopov
- Department of Nano-, Bio-, Information Technology and Cognitive Science, Moscow Institute of Physics and TechnologyMoscow, Russia
- Cold Spring Harbor Laboratory, Cold Spring HarborNY, USA
- Department of Anesthesiology, Stony Brook School of MedicineStony Brook, NY, USA
- Center for Developmental Genetics, Stony Brook UniversityStony Brook, NY, USA
| |
Collapse
|
10
|
Abstract
Repeated aggression is a frequent symptom of many psychiatric and neurological disorders, including obsessive-compulsive and attention deficit hyperactivity disorders, bipolar and post-traumatic stress disorders, epilepsy, autism, schizophrenia and drug abuse. However, repeated aggression is insufficiently studied because there is a lack of adequate models in animals. The sensory contact model (SCM), widely used to study the effects of chronic social defeat stress, can also be used to investigate the effects of repeated aggression. Mice with repeated positive fighting experience in daily agonistic interactions in this model develop pronounced aggressiveness, anxiety and impulsivity, disturbances in motivated and cognitive behaviors, and impairments of sociability; they also demonstrate hyperactivity, attention-deficit behavior, motor dysfunctions and repetitive stereotyped behaviors, such as jerks, rotations and head twitches. In this protocol, we describe how to apply the SCM to study repeated aggression in mice. Severe neuropathology develops in male mice after 20-21 d of agonistic interactions.
Collapse
|