1
|
Saberi A, Ebneabbasi A, Rahimi S, Sarebannejad S, Sen ZD, Graf H, Walter M, Sorg C, Camilleri JA, Laird AR, Fox PT, Valk SL, Eickhoff SB, Tahmasian M. Convergent functional effects of antidepressants in major depressive disorder: a neuroimaging meta-analysis. Mol Psychiatry 2025; 30:736-751. [PMID: 39406999 PMCID: PMC11746144 DOI: 10.1038/s41380-024-02780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Neuroimaging studies have provided valuable insights into the macroscale impacts of antidepressants on brain functions in patients with major depressive disorder. However, the findings of individual studies are inconsistent. Here, we aimed to provide a quantitative synthesis of the literature to identify convergence of the reported findings at both regional and network levels and to examine their associations with neurotransmitter systems. METHODS Through a comprehensive search in PubMed and Scopus databases, we reviewed 5258 abstracts and identified 36 eligible functional neuroimaging studies on antidepressant effects in major depressive disorder. Activation likelihood estimation was used to investigate regional convergence of the reported foci of antidepressant effects, followed by functional decoding and connectivity mapping of the convergent clusters. Additionally, utilizing group-averaged data from the Human Connectome Project, we assessed convergent resting-state functional connectivity patterns of the reported foci. Next, we compared the convergent circuit with the circuits targeted by transcranial magnetic stimulation therapy. Last, we studied the association of regional and network-level convergence maps with selected neurotransmitter receptors/transporters maps. RESULTS No regional convergence was found across foci of treatment-associated alterations in functional imaging. Subgroup analysis in the Treated > Untreated contrast revealed a convergent cluster in the left dorsolateral prefrontal cortex, which was associated with working memory and attention behavioral domains. Moreover, we found network-level convergence of the treatment-associated alterations in a circuit more prominent in the frontoparietal areas. This circuit was co-aligned with circuits targeted by "anti-subgenual" and "Beam F3" transcranial magnetic stimulation therapy. We observed no significant correlations between our meta-analytic findings with the maps of neurotransmitter receptors/transporters. CONCLUSION Our findings highlight the importance of the frontoparietal network and the left dorsolateral prefrontal cortex in the therapeutic effects of antidepressants, which may relate to their role in improving executive functions and emotional processing.
Collapse
Affiliation(s)
- Amin Saberi
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Amir Ebneabbasi
- Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, UK
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Sama Rahimi
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Neuroscience Center, Goethe University, Frankfurt, Hessen, Germany
| | - Sara Sarebannejad
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zumrut Duygu Sen
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
| | - Heiko Graf
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Christian Sorg
- TUM-Neuroimaging Center, School of Medicine and Healthy, Technical University Munich, Munich, Germany
- Department of Neuroradiology,School of Medicine and Healthy, Technical University Munich, Munich, Germany
- Department of Psychiatry, School of Medicine and Healthy, Technical University Munich, Munich, Germany
| | - Julia A Camilleri
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sofie L Valk
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Simon B Eickhoff
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Masoud Tahmasian
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Saberi A, Ebneabbasi A, Rahimi S, Sarebannejad S, Sen ZD, Graf H, Walter M, Sorg C, Camilleri JA, Laird AR, Fox PT, Valk SL, Eickhoff SB, Tahmasian M. Convergent functional effects of antidepressants in major depressive disorder: a neuroimaging meta-analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.24.23298991. [PMID: 38076878 PMCID: PMC10705609 DOI: 10.1101/2023.11.24.23298991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Background Neuroimaging studies have provided valuable insights into the macroscale impacts of antidepressants on brain functions in patients with major depressive disorder. However, the findings of individual studies are inconsistent. Here, we aimed to provide a quantitative synthesis of the literature to identify convergence of the reported findings at both regional and network levels and to examine their associations with neurotransmitter systems. Methods Through a comprehensive search in PubMed and Scopus databases, we reviewed 5,258 abstracts and identified 36 eligible functional neuroimaging studies on antidepressant effects in major depressive disorder. Activation likelihood estimation was used to investigate regional convergence of the reported foci of consistent antidepressant effects, followed by functional decoding and connectivity mapping of the convergent clusters. Additionally, utilizing group-averaged data from the Human Connectome Project, we assessed convergent resting-state functional connectivity patterns of the reported foci. Next, we compared the convergent circuit with the circuits targeted by transcranial magnetic stimulation (TMS) therapy. Last, we studied the association of regional and network-level convergence maps with selected neurotransmitter receptors/transporters maps. Results No regional convergence was found across foci of treatment-associated alterations in functional imaging. Subgroup analysis across the Treated > Untreated contrast revealed a convergent cluster in the left dorsolateral prefrontal cortex, which was associated with working memory and attention behavioral domains. Moreover, we found network-level convergence of the treatment-associated alterations in a circuit more prominent in the frontoparietal areas. This circuit was co-aligned with circuits targeted by "anti-subgenual" and "Beam F3" TMS therapy. We observed no significant correlations between our meta-analytic findings with the maps of neurotransmitter receptors/transporters. Conclusion Our findings highlight the importance of the frontoparietal network and the left dorsolateral prefrontal cortex in the therapeutic effects of antidepressants, which may relate to their role in improving executive functions and emotional processing.
Collapse
|
3
|
Tassone VK, Gholamali Nezhad F, Demchenko I, Rueda A, Bhat V. Amygdala biomarkers of treatment response in major depressive disorder: An fMRI systematic review of SSRI antidepressants. Psychiatry Res Neuroimaging 2024; 338:111777. [PMID: 38183847 DOI: 10.1016/j.pscychresns.2023.111777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Functional neuroimaging studies have demonstrated abnormal activity and functional connectivity (FC) of the amygdala among individuals with major depressive disorder (MDD), which may be rectified with selective serotonin reuptake inhibitor (SSRI) treatment. This systematic review aimed to identify changes in the amygdala on functional magnetic resonance imaging (fMRI) scans among individuals with MDD who received SSRIs. A search for fMRI studies examining amygdala correlates of SSRI response via fMRI was conducted through OVID (MEDLINE, PsycINFO, and Embase). The end date was April 4th, 2023. In total, 623 records were screened, and 16 studies were included in this review. While the search pertained to SSRIs broadly, the included studies were escitalopram-, citalopram-, fluoxetine-, sertraline-, and paroxetine-specific. Decreases in event-related amygdala activity were found following 6-to-12-week SSRI treatment, particularly in response to negative stimuli. Eight-week courses of SSRI pharmacotherapy were associated with increased event-related amygdala FC (i.e., with the prefrontal [PFC] and anterior cingulate cortices, insula, thalamus, caudate nucleus, and putamen) and decreased resting-state effective connectivity (i.e., amygdala-PFC). Preliminary evidence suggests that SSRIs may alter amygdala activity and FC in MDD. Additional studies are needed to corroborate findings. Future research should employ long-term follow-ups to determine whether effects persist after treatment termination.
Collapse
Affiliation(s)
- Vanessa K Tassone
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - Fatemeh Gholamali Nezhad
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - Alice Rueda
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada; Neuroscience Research Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
4
|
Haaf R, Brandi ML, Albantakis L, Lahnakoski JM, Henco L, Schilbach L. Peripheral oxytocin levels are linked to hypothalamic gray matter volume in autistic adults: a cross-sectional secondary data analysis. Sci Rep 2024; 14:1380. [PMID: 38228703 PMCID: PMC10791615 DOI: 10.1038/s41598-023-50770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
Oxytocin (OXT) is known to modulate social behavior and cognition and has been discussed as pathophysiological and therapeutic factor for autism spectrum disorder (ASD). An accumulating body of evidence indicates the hypothalamus to be of particular importance with regard to the underlying neurobiology. Here we used a region of interest voxel-based morphometry (VBM) approach to investigate hypothalamic gray matter volume (GMV) in autistic (n = 29, age 36.03 ± 11.0) and non-autistic adults (n = 27, age 30.96 ± 11.2). Peripheral plasma OXT levels and the autism spectrum quotient (AQ) were used for correlation analyses. Results showed no differences in hypothalamic GMV in autistic compared to non-autistic adults but suggested a differential association between hypothalamic GMV and OXT levels, such that a positive association was found for the ASD group. In addition, hypothalamic GMV showed a positive association with autistic traits in the ASD group. Bearing in mind the limitations such as a relatively small sample size, a wide age range and a high rate of psychopharmacological treatment in the ASD sample, these results provide new preliminary evidence for a potentially important role of the HTH in ASD and its relationship to the OXT system, but also point towards the importance of interindividual differences.
Collapse
Affiliation(s)
- Raoul Haaf
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany.
- Graduate School, Technical University of Munich, Munich, Germany.
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| | - Marie-Luise Brandi
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Albantakis
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Outpatient and Day Clinic for Disorders of Social Interaction, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Juha M Lahnakoski
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Neurosciences and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lara Henco
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
| | - Leonhard Schilbach
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Outpatient and Day Clinic for Disorders of Social Interaction, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
5
|
Peng Y, Huang Y, Chen B, He M, Jiang L, Li Y, Huang X, Pei C, Zhang S, Li C, Zhang X, Zhang T, Zheng Y, Yao D, Li F, Xu P. Electroencephalographic Network Topologies Predict Antidepressant Responses in Patients with Major Depressive Disorder. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2577-2588. [PMID: 36044502 DOI: 10.1109/tnsre.2022.3203073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Medication therapy seems to be an effective treatment for major depressive disorder (MDD). However, although the efficacies of various medicines are equal or similar on average, they vary widely among individuals. Therefore, an understanding of methods for the timely evaluation of short-term therapeutic response and prediction of symptom improvement after a specific course of medication at the individual level at the initial stage of treatment is very important. In our present study, we sought to identify a neurobiological signature of the response to short-term antidepressant treatment. Related brain network analysis was applied in resting-state electroencephalogram (EEG) datasets from patients with MDD. The corresponding EEG networks were constructed accordingly and then quantitatively measured to predict the efficacy after eight weeks of medication, as well as to distinguish the therapeutic responders from non-responders. The results of our present study revealed that the corresponding resting-state EEG networks became significantly weaker after one week of treatment, and the eventual medication efficacy was reliably predicted using the changes in those network properties within the one-week medication regimen. Moreover, the corresponding resting-state networks at baseline were also proven to precisely distinguish those responders from other individuals with an accuracy of 96.67% when using the spatial network topologies as the discriminative features. These findings consistently provide a deeper neurobiological understanding of antidepressant treatment and a reliable and quantitative approach for personalized treatment of MDD.
Collapse
|
6
|
Personalized Diagnosis and Treatment for Neuroimaging in Depressive Disorders. J Pers Med 2022; 12:jpm12091403. [PMID: 36143188 PMCID: PMC9504356 DOI: 10.3390/jpm12091403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/10/2023] Open
Abstract
Depressive disorders are highly heterogeneous in nature. Previous studies have not been useful for the clinical diagnosis and prediction of outcomes of major depressive disorder (MDD) at the individual level, although they provide many meaningful insights. To make inferences beyond group-level analyses, machine learning (ML) techniques can be used for the diagnosis of subtypes of MDD and the prediction of treatment responses. We searched PubMed for relevant studies published until December 2021 that included depressive disorders and applied ML algorithms in neuroimaging fields for depressive disorders. We divided these studies into two sections, namely diagnosis and treatment outcomes, for the application of prediction using ML. Structural and functional magnetic resonance imaging studies using ML algorithms were included. Thirty studies were summarized for the prediction of an MDD diagnosis. In addition, 19 studies on the prediction of treatment outcomes for MDD were reviewed. We summarized and discussed the results of previous studies. For future research results to be useful in clinical practice, ML enabling individual inferences is important. At the same time, there are important challenges to be addressed in the future.
Collapse
|
7
|
Bang M, Park YW, Eom J, Ahn SS, Kim J, Lee SK, Lee SH. An interpretable radiomics model for the diagnosis of panic disorder with or without agoraphobia using magnetic resonance imaging. J Affect Disord 2022; 305:47-54. [PMID: 35248666 DOI: 10.1016/j.jad.2022.02.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/02/2022] [Accepted: 02/27/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Early and accurate diagnosis of panic disorder with or without agoraphobia (PDA) is crucial to reducing disease burden and individual suffering. However, its diagnosis is challenging for lack of validated biomarkers. This study aimed to investigate whether radiomic features extracted from T1-weighted images (T1) of major fear-circuit structures (amygdala, insula, and anterior cingulate cortex [ACC]) could differentiate patients with PDA from healthy controls (HCs). METHODS The 213 participants (93 PDA, 120 HCs) were allocated to training (n = 149) and test (n = 64) sets after undergoing magnetic resonance imaging. Radiomic features (n = 1498) were extracted from T1 of the studied structures. Machine learning models were trained after feature selection and then validated in the test set. SHapley Additive exPlanations (SHAP) explored the model interpretability. RESULTS We identified 29 radiomic features to differentiate participants with PDA from HCs. The area under the curve, accuracy, sensitivity, and specificity of the best performing radiomics model in the test set were 0.84 (95% confidence interval: 0.74-0.95), 81.3%, 75.0%, and 86.1%, respectively. The SHAP model explanation suggested that the energy features extracted from the bilateral long insula gyrus and central sulcus of the insula and right ACC were highly associated with the risk of PDA. LIMITATIONS This was a cross-sectional study with a relatively small sample size, and the causality of changes in radiomic features and their biological and clinical meanings remained to be elucidated. CONCLUSIONS Our findings suggest that radiomic features from the fear-circuit structures could unveil hidden microstructural aberrations underlying the pathogenesis of PDA that could help identify PDA.
Collapse
Affiliation(s)
- Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihwan Eom
- Department of Computer Science, Yonsei University, Seoul, Republic of Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinna Kim
- Department of Radiology and Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
8
|
Cotovio G, Rodrigues da Silva D, Real Lage E, Seybert C, Oliveira-Maia AJ. Hemispheric asymmetry of motor cortex excitability in mood disorders - Evidence from a systematic review and meta-analysis. Clin Neurophysiol 2022; 137:25-37. [PMID: 35240425 DOI: 10.1016/j.clinph.2022.01.137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Mood disorders have been associated with lateralized brain dysfunction, on the left-side for depression and right-side for mania. Consistently, asymmetry of cortical excitability, as measured by transcranial magnetic stimulation (TMS) has been reported. Here, we reviewed and summarized work assessing such measures bilaterally in mood disorders. METHODS We performed a systematic review and extracted data to perform meta-analyses of interhemispheric asymmetry of motor cortex excitability, assessed with TMS, across different mood disorders and in healthy subjects. Additionally, potential predictors of interhemispheric asymmetry were explored. RESULTS Asymmetry of resting motor threshold (MT) among healthy volunteers was significant, favoring lower right relative to left-hemisphere excitability. MT was also significantly asymmetric in major depressive disorder (MDD), but with lower excitability of the left -hemisphere, when compared to the right, no longer observed in recovered patients. Findings on intracortical facilitation were similar. The few trials including bipolar depression revealed similar trends for imbalance, but with lower right hemisphere excitability, relative to the left. CONCLUSIONS There is interhemispheric asymmetry of motor cortical excitability in MDD, with lower excitability on left when compared to right-side. Interhemispheric asymmetry, with lower right relative to left-sided excitability, was found for bipolar depression and was also suggested for healthy volunteers, in a pattern that is clearly distinct from MDD. SIGNIFICANCE Mood disorders display asymmetric motor cortical excitability that is distinct from that found in healthy volunteers, supporting the presence of lateralized brain dysfunction in these disorders.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal; NOVA Medical School, NMS , Universidade Nova de Lisboa, Lisboa, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | | | - Estela Real Lage
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal; NOVA Medical School, NMS , Universidade Nova de Lisboa, Lisboa, Portugal
| | - Carolina Seybert
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal; NOVA Medical School, NMS , Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
9
|
Tai Y, Obayashi K, Yamagami Y, Kurumatani N, Saeki K. Association Between Passive Body Heating by Hot Water Bathing Before Bedtime and Depressive Symptoms Among Community-Dwelling Older Adults. Am J Geriatr Psychiatry 2022; 30:161-170. [PMID: 34275727 DOI: 10.1016/j.jagp.2021.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Passive body heating can have an antidepressant effect by activating warm-sensitive neural pathways associated with affective functions. Interventional studies showed that patients with depression had reduced depressive symptoms after passive body heating. However, the effect of hot water bathing at home on depressive symptoms in the general population remains unclear. Thus, we evaluated the association between objectively measured hot water bathing and depressive symptoms among older adults. DESIGN Cross-sectional analysis. SETTING A baseline survey of community-based cohort study in Japan. PARTICIPANTS Community-dwelling older volunteers (n = 1,103; mean age: 72.0 years). MEASUREMENTS The authors evaluated bathing conditions and distal skin temperature for 2 consecutive days. Depressive symptoms were defined as the 15-item Geriatric Depression Scale score of ≥6. RESULTS Logistic regression showed that the no bathing group (adjusted odds ratio [OR] 2.60, 95% confidence interval [CI] 1.36-4.95, χ² = 8.40, degrees of freedom [df] = 1) and the either-day bathing group (adjusted OR 1.68, 95% CI 1.11-2.56, χ² = 5.89, df = 1) had higher odds of depressive symptoms than the both-day bathing group independent of potential confounders including age, sex, body mass index, alcohol intake, income, living alone, hypnotic use, diabetes, and physical activity. Shorter interval from bathing to bedtime was significantly associated with lower odds of depressive symptoms and higher nighttime distal skin temperature after adjusting for water temperature and duration. CONCLUSION A higher frequency of hot water bathing and shorter interval from bathing to bedtime were associated with lower odds of depressive symptoms.
Collapse
Affiliation(s)
- Yoshiaki Tai
- Department of Epidemiology, Nara Medical University School of Medicine, Kashihara, Nara, Japan.
| | - Kenji Obayashi
- Department of Epidemiology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Yuki Yamagami
- Department of Epidemiology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Norio Kurumatani
- Department of Epidemiology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Keigo Saeki
- Department of Epidemiology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| |
Collapse
|
10
|
The Oscillatory Profile Induced by the Anxiogenic Drug FG-7142 in the Amygdala-Hippocampal Network Is Reversed by Infralimbic Deep Brain Stimulation: Relevance for Mood Disorders. Biomedicines 2021; 9:biomedicines9070783. [PMID: 34356846 PMCID: PMC8301458 DOI: 10.3390/biomedicines9070783] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/02/2023] Open
Abstract
Anxiety and depression exhibit high comorbidity and share the alteration of the amygdala–hippocampal–prefrontal network, playing different roles in the ventral and dorsal hippocampi. Deep brain stimulation of the infralimbic cortex in rodents or the human equivalent—the subgenual cingulate cortex—constitutes a fast antidepressant treatment. The aim of this work was: (1) to describe the oscillatory profile in a rodent model of anxiety, and (2) to deepen the therapeutic basis of infralimbic deep brain stimulation in mood disorders. First, the anxiogenic drug FG-7142 was administered to anaesthetized rats to characterize neural oscillations within the amygdala and the dorsoventral axis of the hippocampus. Next, deep brain stimulation was applied. FG-7142 administration drastically reduced the slow waves, increasing delta, low theta, and beta oscillations in the network. Moreover, FG-7142 altered communication in these bands in selective subnetworks. Deep brain stimulation of the infralimbic cortex reversed most of these FG-7142 effects. Cross-frequency coupling was also inversely modified by FG-7142 and by deep brain stimulation. Our study demonstrates that the hyperactivated amygdala–hippocampal network associated with the anxiogenic drug exhibits an oscillatory fingerprint. The study contributes to comprehending the neurobiological basis of anxiety and the effects of infralimbic deep brain stimulation.
Collapse
|
11
|
Zhu DM, Zhang C, Yang Y, Zhang Y, Zhao W, Zhang B, Zhu J, Yu Y. The relationship between sleep efficiency and clinical symptoms is mediated by brain function in major depressive disorder. J Affect Disord 2020; 266:327-337. [PMID: 32056895 DOI: 10.1016/j.jad.2020.01.155] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/29/2019] [Accepted: 01/26/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sleep disturbance is a common and key symptom that affects most of patients with major depressive disorder (MDD). However, neural substrates underlying sleep disturbance and their clinical relevance in depression remain unclear. METHODS Ninety-six MDD patients underwent resting-state functional MRI. Fractional amplitude of low-frequency fluctuation (fALFF) and resting-state functional connectivity (rsFC) were used to measure brain function. Overnight polysomnography was performed to objectively measure sleep efficiency (SE), which was used to classify patients into normal sleep efficiency (NSE) and low sleep efficiency (LSE) groups. Between-group differences in fALFF and rsFC were examined using two-sample t-tests. Moreover, correlation and mediation analyses were conducted to test for potential associations between SE, brain functional changes, and clinical variables. RESULTS LSE group showed decreased fALFF in right cuneus, thalamus, and middle temporal gyrus compared to NSE group. MDD patients with low SE also exhibited lower rsFC of right cuneus to right lateral temporal cortex, which was associated with more severe depression and anxiety symptoms. More importantly, mediation analyses revealed that the relationships between SE and severity of depression and anxiety symptoms were significantly mediated by the altered rsFC. In addition, these low SE-related brain functional alterations were not affected by antidepressant medication and were independent of structural changes. LIMITATIONS The lack of healthy controls because of "first-night effect". CONCLUSION These findings not only may expand existing knowledge about neuropathology of sleep disturbance in depression, but also may inform real-world clinical practice by improving depression and anxiety symptoms through sleep regulation.
Collapse
Affiliation(s)
- Dao-Min Zhu
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Ying Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Yu Zhang
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Biao Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China.
| |
Collapse
|
12
|
Madonna D, Delvecchio G, Soares JC, Brambilla P. Structural and functional neuroimaging studies in generalized anxiety disorder: a systematic review. ACTA ACUST UNITED AC 2019; 41:336-362. [PMID: 31116259 PMCID: PMC6804309 DOI: 10.1590/1516-4446-2018-0108] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/16/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Brain imaging studies carried out in patients suffering from generalized anxiety disorder (GAD) have contributed to better characterize the pathophysiological mechanisms underlying this disorder. The present study reviews the available functional and structural brain imaging evidence on GAD, and suggests further strategies for investigations in this field. METHODS A systematic literature review was performed in PubMed, PsycINFO, and Google Scholar, aiming to identify original research evaluating GAD patients with the use of structural and functional magnetic resonance imaging as well as diffusion tensor imaging. RESULTS The available studies have shown impairments in ventrolateral and dorsolateral prefrontal cortex, anterior cingulate, posterior parietal regions, and amygdala in both pediatric and adult GAD patients, mostly in the right hemisphere. However, the literature is often tentative, given that most studies have employed small samples and included patients with comorbidities or in current use of various medications. Finally, different methodological aspects, such as the type of imaging equipment used, also complicate the generalizability of the findings. CONCLUSIONS Longitudinal neuroimaging studies with larger samples of both juvenile and adult GAD patients, as well as at risk individuals and unaffected relatives, should be carried out in order to shed light on the specific biological signature of GAD.
Collapse
Affiliation(s)
- Domenico Madonna
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Universitá di Milano, Milano, Italy.,Dipartimento di Neuroscienze e Salute Mentale, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giuseppe Delvecchio
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Universitá di Milano, Milano, Italy
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Paolo Brambilla
- Dipartimento di Neuroscienze e Salute Mentale, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of Psychiatry and Behavioral Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| |
Collapse
|
13
|
Milak MS, Potter WA, Pantazatos SP, Keilp JG, Zanderigo F, Schain M, Sublette ME, Oquendo MA, Malone KM, Brandenburg H, Parsey RV, Mann JJ. Resting regional brain activity correlates of verbal learning deficit in major depressive disorder. Psychiatry Res Neuroimaging 2019; 283:96-103. [PMID: 30580237 DOI: 10.1016/j.pscychresns.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/31/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
Memory deficits are reported in major depressive disorder (MDD). Prefrontal cortical and mesiotemporal cortical (MTC)/subcortical regions are involved in the Buschke Selective Reminding Task (SRT), a verbal list-learning task. To determine whether depression-related changes in resting brain metabolism explain (in part) the deficits in SRT performance found in MDD, statistical correlation maps were calculated between SRT total recall score (TR) and relative regional cerebral metabolic rate for glucose (rCMRglu), measured by [18F]-flourodeoxyglucose (FDG) positron emission tomography (PET), in unmedicated, depressed MDD patients (N = 29). Subsequently, to explore hypothesized loss of top-down control in MDD, we compared the correlations between rCMRglu of SRT-relevant regions of the dorsolateral prefrontal cortex (dlPFC) and amygdala in a larger cohort of MDD (N = 60; 29 inclusive) versus healthy controls (HC) (N = 43). SRT performance of patients is on average 0.5 standard deviation below published normative mean. TR and rCMRglu positively correlate in bilateral dorsomedial PFC, dlPFC, dorsal anterior cingulate; negatively correlate in bilateral MTC/subcortical regions, and cerebellum. rCMRglu in dlPFC correlates negatively with that in amygdala in HC but not in MDD. Depression-related changes present in FDG-PET measured resting brain activity may be in part responsible for memory deficit found in MDD.
Collapse
Affiliation(s)
- Matthew S Milak
- Departments of Psychiatry and Radiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - W Antonio Potter
- Departments of Psychiatry and Radiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Spiro P Pantazatos
- Departments of Psychiatry and Radiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - John G Keilp
- Departments of Psychiatry and Radiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Francesca Zanderigo
- Departments of Psychiatry and Radiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Martin Schain
- Departments of Psychiatry and Radiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - M Elizabeth Sublette
- Departments of Psychiatry and Radiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Maria A Oquendo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin M Malone
- Departments of Psychiatry and Radiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Holly Brandenburg
- Departments of Psychiatry and Radiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Ramin V Parsey
- Stony Brook Medicine, Stony Brook University, Stony Brook, NY, USA
| | - J John Mann
- Departments of Psychiatry and Radiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
14
|
Tang Y, Zhang X, Sheng J, Zhang X, Zhang J, Xu J, Zhu Y, Wang J, Zhang T, Tong S, Ning L, Liu M, Li Y, Wang J. Elevated hippocampal choline level is associated with altered functional connectivity in females with major depressive disorder: A pilot study. Psychiatry Res Neuroimaging 2018; 278:48-55. [PMID: 29880254 DOI: 10.1016/j.pscychresns.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
Abstract
Metabolic and functional alterations in hippocampus have been associated with the pathophysiology of major depressive disorder (MDD). However, how the hippocampal biochemical disruptions lead to dysfunction of limbic-cortical circuit remains unclear. The present pilot study combined magnetic resonance spectroscopy (MRS) and resting-state functional magnetic resonance imaging (rs-fMRI) to investigate the hippocampal metabolic alteration and its relationship with the intrinsic functional connectivity (FC) changes in MDD. Both MRS and fMRI data were obtained from twelve women with MDD and twelve age-matched, healthy women. Bilateral hippocampi were chosen as regions of interest, in which metabolite concentrations of total choline (tCho), N-acetylaspartate and creatine were quantified. Bilateral hippocampal FC to the whole brain and its correlations with hippocampal metabolite concentrations were conducted. Females with MDD showed significantly elevated left hippocampal tCho level, and decreased anti-correlations between the left hippocampus and bilateral superior frontal gyrus (SFG), left inferior frontal gyrus, and right superior temporal gyrus. More importantly, the left hippocampal tCho level was associated with FC to the right SFG and right fusiform gyrus in healthy women, whereas it was significantly associated with FC to the right lingual gyrus in women with MDD. Our findings suggested that regional metabolic alterations in the left hippocampus might be related to the network-level dysfunction.
Collapse
Affiliation(s)
- Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoliu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Sheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuanhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianye Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiale Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yajing Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Junjie Wang
- Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lipeng Ning
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Manhua Liu
- Department of Instrument Science and Engineering, School of EIEE, Shanghai Jiao Tong University, China, 200240
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of EEG and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
15
|
Bensassi I, Lopez-Castroman J, Maller JJ, Meslin C, Wyart M, Ritchie K, Courtet P, Artero S, Calati R. Smaller hippocampal volume in current but not in past depression in comparison to healthy controls: Minor evidence from an older adults sample. J Psychiatr Res 2018; 102:159-167. [PMID: 29665490 DOI: 10.1016/j.jpsychires.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Structural neuroimaging studies revealed a consistent pattern of volumetric reductions in both hippocampus (HC) and anterior cingulate cortex (ACC) of individuals with major depressive episode(s) (MDE). This study investigated HC and ACC volume differences in currently depressed individuals (n = 150), individuals with a past lifetime MDE history (n = 79) and healthy controls (n = 287). METHODS Non-demented individuals were recruited from a cohort of community-dwelling older adults (ESPRIT study). T1-weighted magnetic resonance images and FreeSurfer Software (automated method) were used. Concerning HC, a manual method of measurement dividing HC into head, body, and tail was also used. General Linear Model was applied adjusting for covariates. RESULTS Current depression was associated with lower left posterior HC volume, using manual measurement, in comparison to healthy status. However, when we slightly changed sub-group inclusion criteria, results did not survive to correction for multiple comparisons. CONCLUSIONS The finding of lower left posterior HC volume in currently depressed individuals but not in those with a past MDE compared to healthy controls could be related to brain neuroplasticity. Additionally, our results may suggest manual measures to be more sensitive than automated methods.
Collapse
Affiliation(s)
- Ismaïl Bensassi
- INSERM, University of Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France; Department of Adult Psychiatry, CHRU Nimes, Nimes, France
| | - Jorge Lopez-Castroman
- INSERM, University of Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France; Department of Adult Psychiatry, CHRU Nimes, Nimes, France
| | - Jerome J Maller
- Monash Alfred Psychiatry Research Centre, The Alfred & Monash University Central Clinical School, Melbourne, Victoria, Australia; General Electric Healthcare, Victoria, Australia
| | - Chantal Meslin
- Centre for Mental Health Research, Australian National University, Canberra, Australia
| | - Marilyn Wyart
- Department of Adult Psychiatry, CHRU Nimes, Nimes, France
| | - Karen Ritchie
- INSERM, University of Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France; Centre for Clinical Brain Sciences, Faculty of Medicine, University of Edinburgh, United Kingdom
| | - Philippe Courtet
- INSERM, University of Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France; Department of Psychiatric Emergency & Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; FondaMental Foundation, Créteil, France
| | - Sylvaine Artero
- INSERM, University of Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
| | - Raffaella Calati
- INSERM, University of Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France; FondaMental Foundation, Créteil, France.
| |
Collapse
|
16
|
Lowry C, Flux M, Raison C. Whole-Body Heating: An Emerging Therapeutic Approach to Treatment of Major Depressive Disorder. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2018; 16:259-265. [PMID: 31975920 DOI: 10.1176/appi.focus.20180009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Major depressive disorder is the leading cause of disability worldwide. Currently available pharmacological approaches to the treatment of depression (which are the mainstay of treatment in the United States) suffer from important shortcomings, including limited efficacy, delayed onset of action, increased relapse risk upon withdrawal, and significant side effects that impair quality of life and promote treatment nonadherence and/or discontinuation. There is an emerging interest in the potential use of evolutionarily conserved interoceptive pathways (i.e., pathways that relay sensory information, related to the internal, physiologic state of the body, from the periphery to the central nervous system) as "gateways" to neural systems controlling affective and cognitive function relevant to the pathophysiology of depression. In support of the potential utility of this approach, we have shown in open and randomized, double-blind, sham-controlled trials that infrared whole-body heating has significant and long-lasting antidepressant effects relative to a sham condition. In this review, we explore the potential role of thermosensory pathways in the etiology, pathophysiology, and symptomatology of major depressive disorder, as well as its potential as a novel therapeutic approach to the treatment of major depressive disorder.
Collapse
Affiliation(s)
- Christopher Lowry
- Dr. Lowry is with the Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder. Mr. Flux is with the Department of Psychology and Neuroscience, University of Colorado, Boulder. Dr. Raison is with the School of Human Ecology and the School of Medicine and Public Health, University of Wisconsin-Madison
| | - Michael Flux
- Dr. Lowry is with the Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder. Mr. Flux is with the Department of Psychology and Neuroscience, University of Colorado, Boulder. Dr. Raison is with the School of Human Ecology and the School of Medicine and Public Health, University of Wisconsin-Madison
| | - Charles Raison
- Dr. Lowry is with the Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder. Mr. Flux is with the Department of Psychology and Neuroscience, University of Colorado, Boulder. Dr. Raison is with the School of Human Ecology and the School of Medicine and Public Health, University of Wisconsin-Madison
| |
Collapse
|
17
|
Kim YK, Na KS. Application of machine learning classification for structural brain MRI in mood disorders: Critical review from a clinical perspective. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 28648568 DOI: 10.1016/j.pnpbp.2017.06.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mood disorders are a highly prevalent group of mental disorders causing substantial socioeconomic burden. There are various methodological approaches for identifying the underlying mechanisms of the etiology, symptomatology, and therapeutics of mood disorders; however, neuroimaging studies have provided the most direct evidence for mood disorder neural substrates by visualizing the brains of living individuals. The prefrontal cortex, hippocampus, amygdala, thalamus, ventral striatum, and corpus callosum are associated with depression and bipolar disorder. Identifying the distinct and common contributions of these anatomical regions to depression and bipolar disorder have broadened and deepened our understanding of mood disorders. However, the extent to which neuroimaging research findings contribute to clinical practice in the real-world setting is unclear. As traditional or non-machine learning MRI studies have analyzed group-level differences, it is not possible to directly translate findings from research to clinical practice; the knowledge gained pertains to the disorder, but not to individuals. On the other hand, a machine learning approach makes it possible to provide individual-level classifications. For the past two decades, many studies have reported on the classification accuracy of machine learning-based neuroimaging studies from the perspective of diagnosis and treatment response. However, for the application of a machine learning-based brain MRI approach in real world clinical settings, several major issues should be considered. Secondary changes due to illness duration and medication, clinical subtypes and heterogeneity, comorbidities, and cost-effectiveness restrict the generalization of the current machine learning findings. Sophisticated classification of clinical and diagnostic subtypes is needed. Additionally, as the approach is inevitably limited by sample size, multi-site participation and data-sharing are needed in the future.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
18
|
Ciappolino V, Delvecchio G, Agostoni C, Mazzocchi A, Altamura AC, Brambilla P. The role of n-3 polyunsaturated fatty acids (n-3PUFAs) in affective disorders. J Affect Disord 2017; 224:32-47. [PMID: 28089169 DOI: 10.1016/j.jad.2016.12.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Among emerging treatments for depressive disorders several studies suggested that n-3 polyunsaturated fatty acids (n-3PUFAs) supplementation can be used. However, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differ in terms of biochemistry, metabolism and therapeutic effects. Therefore, a clear picture of their specific and different role on affective disorders has not yet emerged. OBJECTIVES To investigate the effects of n-3PUFAs on affective disorders including major depression, bipolar disorder and perinatal depression. METHODS a comprehensive search on PUBMED, Medline and PsychINFO of all RCTs using n-3PUFAs patients with depressive symptoms published up to April 2016 was performed. We included trials that examined unipolar or bipolar disorder and trials that investigated depressive symptoms in relation to pregnancy. Trials were excluded if the depressive symptomatology was related to other primary organic diseases. RESULTS 264 RCT studies were identified but only 36 met the inclusion criteria. First, it has been reported that n-3PUFAs supplementation might have clinical benefits on depressive symptoms. Second, EPA supplement, rather than DHA, seems to be more effective in treating major depression. Third, n-3PUFAs can have beneficial effects in bipolar depression but not in perinatal depression. CONCLUSIONS there are only some evidence on the efficacy of n-3PUFAs in affective disorders especially to unipolar and bipolar depression not powered enough to confirm a therapeutic effect for affective disorder. Therefore, further studies with larger and more homogeneous samples, are required to confirm these effects.
Collapse
Affiliation(s)
- Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Carlo Agostoni
- Pediatric Clinic, Fondazione IRCCS Ospedale Cà Granda-Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, 20121 Milan, Italy
| | - Alessandra Mazzocchi
- Pediatric Clinic, Fondazione IRCCS Ospedale Cà Granda-Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, 20121 Milan, Italy
| | - Alfredo Carlo Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, TX, USA.
| |
Collapse
|
19
|
Progressive disability and prefrontal shrinkage in schizophrenia patients with poor outcome: A 3-year longitudinal study. Schizophr Res 2017; 179:104-111. [PMID: 27624681 DOI: 10.1016/j.schres.2016.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Schizophrenia is a severe disabling disorder with heterogeneous illness courses. In this longitudinal study we characterized schizophrenia patients with poor and good outcome (POS, GOS), using functional and imaging metrics. Patients were defined in accordance to Keefe's criteria (i.e. Kraepelinian and non-Kraepelinian patients). METHODS 35 POS patients, 35 GOS patients and 76 healthy controls (H) underwent clinical, functioning and magnetic resonance imaging (MRI) assessments twice over three years of follow-up. Information on psychopathology, treatment, disability (using the World Health Organization Disability Assessment Scale II, WHO-DAS-2) and prefrontal morphology was collected. Dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC) were manually traced. RESULTS At baseline, subjects with POS showed significantly decreased right dorsolateral prefrontal cortex (DLPFC) white matter volumes (WM) compared to healthy controls and GOS patients (POS VS HC, p<0.001; POS vs GOS, p=0.03), with shrinkage of left DLPFC WM volumes at follow up (t=2.66, p=0.01). Also, POS patients had higher disability in respect to GOS subjects both at baseline and after 3years at the WHO-DAS-2 (p<0.05). DISCUSSION Our study supports the hypothesis that POS is characterized by progressive deficits in brain structure and in "real-life" functioning. These are particularly notable in the DLPFC.
Collapse
|
20
|
Hypericum perforatum as a cognitive enhancer in rodents: A meta-analysis. Sci Rep 2016; 6:35700. [PMID: 27762349 PMCID: PMC5071825 DOI: 10.1038/srep35700] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/30/2016] [Indexed: 01/08/2023] Open
Abstract
Considered an antidepressant and anti-anxiety agent, Hypericum perforatum affects multiple neurotransmitters in a non-competitive synergistic manner, and may have nootropic potential. We quantitatively reviewed the pre-clinical literature to examine if there is a cognitive-enhancing effect of H. perforatum in healthy rodents. Additionally, within these studies, we compared the effects observed in intact rodents versus those whose performance has been impaired, mostly through stress manipulations. The meta-analysis incorporated studies that examined the effect of H. perforatum versus placebo on memory indices of task performance. All analyses were based on weighting different studies according to their inverse variance. Thirteen independent studies (published 2000-2014) involving 20 experimental comparisons met our inclusion criteria. The results showed a large positive effect of H. perforatum on cognitive performance for intact, healthy rodents (d = 1.11), though a larger effect emerged for stress-impaired rodents (d = 3.10 for restraint stress). The positive effect on intact rodents was observed in tasks assessing reference memory as well as working memory, and was not moderated by the type of memory or motivation (appetitive versus aversive). Thus, while primarily considered as a medication for depression, H. perforatum shows considerable nootropic potential in rodents.
Collapse
|
21
|
Abstract
OBJECTIVE Although cognitive behavioural therapy (CBT) has been shown to be an effective treatment for depression, the biological mechanisms underpinning it are less clear. This review examines if it is associated with changes identifiable with current brain imaging technologies. METHODS To better understand the mechanisms by which CBT exerts its effects, we undertook a systematic review of studies examining brain imaging changes associated with CBT treatment of depression. RESULTS Ten studies were identified, five applying functional magnetic resonance imaging, three positron emission tomography, one single photon emission computer tomography, and one magnetic resonance spectroscopy. No studies used structural MRI. Eight studies included a comparator group; in only one of these studies was there randomised allocation to another treatment. CBT-associated changes were most commonly observed in the anterior cingulate cortex (ACC), posterior cingulate, ventromedial prefrontal cortex/orbitofrontal cortex (VMPFC/OFC) and amygdala/hippocampus. DISCUSSION The evidence, such as it is, suggests resting state activity in the dorsal ACC is decreased by CBT. It has previously been suggested that treatment with CBT may result in increased efficiency of a putative 'dorsal cognitive circuit', important in cognitive control and effortful regulation of emotion. It is speculated this results in an increased capacity for 'top-down' emotion regulation, which is employed when skills taught in CBT are engaged. Though changes in activity of the dorsal ACC could be seen as in-keeping with this model, the data are currently insufficient to make definitive statements about how CBT exerts its effects. Data do support the contention that CBT is associated with biological brain changes detectable with current imaging technologies.
Collapse
|
22
|
Faingold CL, Blumenfeld H. Targeting Neuronal Networks with Combined Drug and Stimulation Paradigms Guided by Neuroimaging to Treat Brain Disorders. Neuroscientist 2015; 21:460-74. [PMID: 26150315 PMCID: PMC6287502 DOI: 10.1177/1073858415592377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Improved therapy of brain disorders can be achieved by focusing on neuronal networks, utilizing combined pharmacological and stimulation paradigms guided by neuroimaging. Neuronal networks that mediate normal brain functions, such as hearing, interact with other networks, which is important but commonly neglected. Network interaction changes often underlie brain disorders, including epilepsy. "Conditional multireceptive" (CMR) brain areas (e.g., brainstem reticular formation and amygdala) are critical in mediating neuroplastic changes that facilitate network interactions. CMR neurons receive multiple inputs but exhibit extensive response variability due to milieu and behavioral state changes and are exquisitely sensitive to agents that increase or inhibit GABA-mediated inhibition. Enhanced CMR neuronal responsiveness leads to expression of emergent properties--nonlinear events--resulting from network self-organization. Determining brain disorder mechanisms requires animals that model behaviors and neuroanatomical substrates of human disorders identified by neuroimaging. However, not all sites activated during network operation are requisite for that operation. Other active sites are ancillary, because their blockade does not alter network function. Requisite network sites exhibit emergent properties that are critical targets for pharmacological and stimulation therapies. Improved treatment of brain disorders should involve combined pharmacological and stimulation therapies, guided by neuroimaging, to correct network malfunctions by targeting specific network neurons.
Collapse
Affiliation(s)
- Carl L Faingold
- Departments of Pharmacology and Neurology, Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Hal Blumenfeld
- Departmens of Neurology, Neurobiology, and Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
23
|
Challis C, Berton O. Top-Down Control of Serotonin Systems by the Prefrontal Cortex: A Path toward Restored Socioemotional Function in Depression. ACS Chem Neurosci 2015; 6:1040-54. [PMID: 25706226 DOI: 10.1021/acschemneuro.5b00007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social withdrawal, increased threat perception, and exaggerated reassurance seeking behaviors are prominent interpersonal symptoms in major depressive disorder (MDD). Altered serotonin (5-HT) systems and corticolimbic dysconnectivity have long been suspected to contribute to these symptomatic facets; however, the underlying circuits and intrinsic cellular mechanisms that control 5-HT output during socioemotional interactions remain poorly understood. We review literature that implicates a direct pathway between the ventromedial prefrontal cortex (vmPFC) and dorsal raphe nucleus (DRN) in the adaptive and pathological control of social approach-avoidance behaviors. Imaging and neuromodulation during approach-avoidance tasks in humans point to the cortical control of brainstem circuits as an essential regulator of socioemotional decisions and actions. Parallel rodent studies using viral-based connectomics and optogenetics are beginning to provide a cellular blueprint of the underlying circuitry. In these studies, manipulations of vmPFC synaptic inputs to the DRN have revealed bidirectional influences on socioaffective behaviors via direct monosynaptic excitation and indirect disynaptic inhibition of 5-HT neurons. Additionally, adverse social experiences that result in permanent avoidance biases, such as social defeat, drive long-lasting plasticity in this microcircuit, potentiating the indirect inhibition of 5-HT output. Conversely, neuromodulation of the vmPFC via deep brain stimulation (DBS) attenuates avoidance biases by restoring the direct excitatory drive of 5-HT neurons and strengthening a key subset of forebrain 5-HT projections. Better understanding the cellular organization of the vmPFC-DRN pathway and identifying molecular determinants of its neuroplasticity can open fundamentally novel avenues for the treatment of affective disorders.
Collapse
Affiliation(s)
- Collin Challis
- Department of Psychiatry, ‡Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Olivier Berton
- Department of Psychiatry, ‡Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Ma Y. Neuropsychological mechanism underlying antidepressant effect: a systematic meta-analysis. Mol Psychiatry 2015; 20:311-9. [PMID: 24662929 DOI: 10.1038/mp.2014.24] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/16/2014] [Accepted: 02/03/2014] [Indexed: 11/09/2022]
Abstract
Antidepressants are widely used in clinical practice for the treatment of depression and other mood disorders. Numerous neuroimaging studies have recently examined how antidepressants influence emotional processes. However, both clinical trials and neuroimaging studies have reported inconsistent responses to antidepressants. Moreover, the neuropsychological mechanisms by which antidepressants act to improve depressive features remain underspecified. This systematic meta-analysis summarizes pharmacological neuroimaging studies (before February 2013) and the antidepressant effects on human brain activity underlying emotional processes. Sixty fMRI studies (involving 1569 subjects) applying antidepressants vs control were included in the current quantitative Activation Likelihood Estimation (ALE) meta-analysis. Pooling of results by ALE meta-analyses was stratified for population (mood disorder patients/healthy volunteers), emotional valence (positive/negative emotions) and treatment effects (increased/decreased brain activity). For both patients and healthy volunteers, the medial prefrontal and core limbic parts of the emotional network (for example, anterior cingulate, amygdala and thalamus) were increased in response to positive emotions but decreased to negative emotions by repeated antidepressant administration. Moreover, selective antidepressant effects were uncovered in patients and healthy volunteers, respectively. Antidepressants increased activity in the dorsolateral prefrontal (dlPFC), a key region mediating emotion regulation, during both negative and positive emotions in patients. Repeated antidepressant administration decreased brain responses to positive emotions in the nucleus accumbens, putamen, medial prefrontal and midbrain in healthy volunteers. Antidepressants act to normalize abnormal neural responses in depressed patients by increasing brain activity to positive stimuli and decreasing activity to negative stimuli in the emotional network, and increasing engagement of the regulatory mechanism in dlPFC.
Collapse
Affiliation(s)
- Y Ma
- 1] Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA [2] Psychological and brain sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
25
|
Stretton J, Pope RA, Winston GP, Sidhu MK, Symms M, Duncan JS, Koepp M, Thompson PJ, Foong J. Temporal lobe epilepsy and affective disorders: the role of the subgenual anterior cingulate cortex. J Neurol Neurosurg Psychiatry 2015; 86:144-51. [PMID: 24876189 PMCID: PMC4316913 DOI: 10.1136/jnnp-2013-306966] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Reduced deactivation within the default mode network (DMN) is common in individuals with primary affective disorders relative to healthy volunteers (HVs). It is unknown whether similar network abnormalities are present in temporal lobe epilepsy (TLE) patients with a history of affective psychopathology. METHODS 17 TLE patients with a lifetime affective diagnosis, 31 TLE patients with no formal psychiatric history and 30 HVs were included. We used a visuo-spatial 'n-back' paradigm to compare working memory (WM) network activation between these groups. Post hoc analyses included voxel-based morphometry and diffusion tensor imaging. The Beck Depression Inventory-Fast Screen and Beck Anxiety Inventory were completed on the day of scanning. FINDINGS Each group activated the fronto-parietal WM networks and deactivated the typical DMN in response to increasing task demands. Group comparison revealed that TLE patients with lifetime affective morbidity showed significantly greater deactivation in subgenual anterior cingulate cortex (sACC) than either the TLE-only or the HVs (p<0.001). This effect persisted after covarying for current psychotropic medication and severity of current depressive/anxiety symptoms (all p<0.001). Correlational analysis revealed that this finding was not driven by differences in task performance. There were no significant differences in grey matter volume or structural connectivity between the TLE groups. CONCLUSIONS Our results provide novel evidence suggesting that affective psychopathology in TLE has a neurobiological correlate, and in this context the sACC performs differently compared with network activity in primary affective disorders.
Collapse
Affiliation(s)
- J Stretton
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK MRC Cognition and Brain Science Unit, Cambridge, UK
| | - R A Pope
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK Clinical Psychopharmacology Unit, University College London, London, UK
| | - G P Winston
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | - M K Sidhu
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | - M Symms
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | - J S Duncan
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | - M Koepp
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | - P J Thompson
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| | - J Foong
- Epilepsy Society MRI Unit, Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| |
Collapse
|
26
|
Dusi N, Barlati S, Vita A, Brambilla P. Brain Structural Effects of Antidepressant Treatment in Major Depression. Curr Neuropharmacol 2015; 13:458-65. [PMID: 26412065 PMCID: PMC4790407 DOI: 10.2174/1570159x1304150831121909] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/16/2014] [Accepted: 12/19/2015] [Indexed: 01/26/2023] Open
Abstract
Depressive disorder is a very frequent and heterogeneous syndrome. Structural imaging techniques offer a useful tool in the comprehension of neurobiological alterations that concern depressive disorder. Altered brain structures in depressive disorder have been particularly located in the prefrontal cortex (medial prefrontal cortex and orbitofrontal cortex, OFC) and medial temporal cortex areas (hippocampus). These brain areas belong to a structural and functional network related to cognitive and emotional processes putatively implicated in depressive symptoms. These volumetric alterations may also represent biological predictors of response to pharmacological treatment. In this context, major findings of magnetic resonance (MR) imaging, in relation to treatment response in depressive disorder, will here be presented and discussed.
Collapse
Affiliation(s)
| | | | | | - Paolo Brambilla
- Dipartimento di Neuroscienze e Salute Mentale, Università degli Studi di Milano, U.O.C. Psichiatria, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35 - 20122 Milano.
| |
Collapse
|
27
|
Singh MK, Gotlib IH. The neuroscience of depression: implications for assessment and intervention. Behav Res Ther 2014; 62:60-73. [PMID: 25239242 PMCID: PMC4253641 DOI: 10.1016/j.brat.2014.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/16/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022]
Abstract
Major Depressive Disorder (MDD) is among the most prevalent of all psychiatric disorders and is the single most burdensome disease worldwide. In attempting to understand the profound deficits that characterize MDD across multiple domains of functioning, researchers have identified aberrations in brain structure and function in individuals diagnosed with this disorder. In this review we synthesize recent data from human neuroimaging studies in presenting an integrated neural network framework for understanding the impairments experienced by individuals with MDD. We discuss the implications of these findings for assessment of and intervention for MDD. We conclude by offering directions for future research that we believe will advance our understanding of neural factors that contribute to the etiology and course of depression, and to recovery from this debilitating disorder.
Collapse
Affiliation(s)
| | - Ian H Gotlib
- Department of Psychology, Stanford University, United States
| |
Collapse
|
28
|
Zhong S, Wang Y, Zhao G, Xiang Q, Ling X, Liu S, Huang L, Jia Y. Similarities of biochemical abnormalities between major depressive disorder and bipolar depression: a proton magnetic resonance spectroscopy study. J Affect Disord 2014; 168:380-6. [PMID: 25106035 DOI: 10.1016/j.jad.2014.07.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Depression in the context of bipolar disorder (BD) is often misdiagnosed as major depressive disorder (MDD), leading to mistreatments and poor clinical outcomes for many bipolar patients. Previous neuroimaging studies found mixed results on brain structure, and biochemical metabolism of the two disorders. To eliminate the compounding effects of medication, and aging, this study sought to investigate the brain biochemical changes of treatment-naïve, non-late-life patients with MDD and BD in white matter in prefrontal (WMP) lobe, anterior cingulate cortex (ACC) and hippocampus by using proton magnetic resonance spectroscopy ((1)H-MRS). METHODS Three groups of participants were recruited: 26 MDD patients, 20 depressed BD patients, and 13 healthy controls. The multi-voxel (1)H-MRS [repetition time (TR)=1000ms; echo-time (TE)=144ms] was used for the measurement of N-acetylaspartate(NAA), choline containg compounds (Cho), and creatine (Cr) in three brain locations: white matter in prefrontal (WMP) lobe, anterior cingulate cortex (ACC), and hippocampus. Two ratios of NAA/Cr and Cho/Cr as a measure of brain biochemical changes were compared among three experimental groups. RESULTS On the comparison of brain biochemical changes, both MDD patients and BD patients showed many similarities compared to the controls. They both had a significantly lower NAA/Cr ratio in the left WMP lobe. There were no significant differences among three experimental groups for Cho/Cr ratio in the WMP lobe, and for the ratios of NAA/Cr and Cho/Cr in the bilateral ACC and hippocampus. The only difference between MDD and BD patients existed for the NAA/Cr ratio in the right WMP lobe. While MDD patients had a significantly lower NAA/Cr ratio than controls, BD patients showed no such differences. On the comparison of correlation of medical variables and brain biochemical changes, all participants demonstrated no significant correlations. CONCLUSION Reduced NAA/Cr ratio at the left WMP lobe indicated the dysfunction of neuronal viability in deep white matter, in both MDD and BD patients who shared similarities of brain biochemical abnormalities, which might imply an overlap in neuropathology of depression.
Collapse
Affiliation(s)
- Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guoxiang Zhao
- Department of Science and Education, Guangdong Emergency Hospital, Guangzhou 510316, China
| | - Qi Xiang
- Institute of Biomedicine, Jinan University, Guangzhou 510630, China
| | - Xueying Ling
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Sirun Liu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
29
|
Increased neural activity during overt and continuous semantic verbal fluency in major depression: mainly a failure to deactivate. Eur Arch Psychiatry Clin Neurosci 2014; 264:631-45. [PMID: 24557502 DOI: 10.1007/s00406-014-0491-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 02/07/2014] [Indexed: 12/15/2022]
Abstract
Major depression is associated with impairments in semantic verbal fluency (VF). However, the neural correlates underlying dysfunctional cognitive processing in depressed subjects during the production of semantic category members still remain unclear. In the current study, an overt and continuous semantic VF paradigm was used to examine these mechanisms in a representative sample of 33 patients diagnosed with a current episode of unipolar depression and 33 statistically matched healthy controls. Subjects articulated words in response to semantic category cues while brain activity was measured with functional magnetic resonance imaging (fMRI). Compared to controls, patients showed poorer task performance. On the neural level, a group by condition interaction analysis, corrected for task performance, revealed a reduced task-related deactivation in patients in the right parahippocampal gyrus, the right fusiform gyrus, and the right supplementary motor area. An additional and an increased task-related activation in patients were observed in the right precentral gyrus and the left cerebellum, respectively. These results indicate that a failure to suppress potentially interfering activity from inferior temporal regions involved in default-mode network functions and visual imagery, accompanied by an enhanced recruitment of areas implicated in speech initiation and higher-order language processes, may underlie dysfunctional cognitive processing during semantic VF in depression. The finding that patients with depression demonstrated both decreased performance and aberrant brain activation during the current semantic VF task demonstrates that this paradigm is a sensitive tool for assessing brain dysfunctions in clinical populations.
Collapse
|
30
|
Graf H, Walter M, Metzger CD, Abler B. Antidepressant-related sexual dysfunction — Perspectives from neuroimaging. Pharmacol Biochem Behav 2014; 121:138-45. [DOI: 10.1016/j.pbb.2013.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/23/2013] [Accepted: 12/03/2013] [Indexed: 12/26/2022]
|
31
|
|
32
|
Bajs Janović M, Kalember P, Janović S, Hrabač P, Folnegović Grošić P, Grošić V, Radoš M, Henigsberg N. No change in N-acetyl aspartate in first episode of moderate depression after antidepressant treatment: (1)H magnetic spectroscopy study of left amygdala and left dorsolateral prefrontal cortex. Neuropsychiatr Dis Treat 2014; 10:1753-62. [PMID: 25278754 PMCID: PMC4179760 DOI: 10.2147/ndt.s64702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The role of brain metabolites as biological correlates of the intensity, symptoms, and course of major depression has not been determined. It has also been inconclusive whether the change in brain metabolites, measured with proton magnetic spectroscopy, could be correlated with the treatment outcome. METHODS Proton magnetic spectroscopy was performed in 29 participants with a first episode of moderate depression occurring in the left dorsolateral prefrontal cortex and left amygdala at baseline and after 8 weeks of antidepressant treatment with escitalopram. The Montgomery-Asberg Depression Rating Scale, the Hamilton Rating Scale for Depression, and the Beck Depression Inventory were used to assess the intensity of depression at baseline and at the endpoint of the study. At endpoint, the participants were identified as responders (n=17) or nonresponders (n=12) to the antidepressant therapy. RESULTS There was no significant change in the N-acetyl aspartate/creatine ratio (NAA/Cr) after treatment with antidepressant medication. The baseline and endpoint NAA/Cr ratios were not significantly different between the responder and nonresponder groups. The correlation between NAA/Cr and changes in the scores of clinical scales were not significant in either group. CONCLUSION This study could not confirm any significant changes in NAA after antidepressant treatment in the first episode of moderate depression, or in regard to therapy response in the left dorsolateral prefrontal cortex or left amygdala. Further research is necessary to conclude whether NAA alterations in the first episode of depression could possibly be different from chronic or late-onset depression, and whether NAA alterations in stress-induced (reactive) depression are different from endogenous depression. The potential role of NAA as a biomarker of a treatment effect has yet to be established.
Collapse
Affiliation(s)
- Maja Bajs Janović
- University Department of Psychiatry, Clinical Hospital Center Zagreb, Zagreb, Croatia ; University North, Varaždin, Croatia
| | - Petra Kalember
- Polyclinic Neuron, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Spiro Janović
- University Department of Psychiatry, Clinical Hospital Center Zagreb, Zagreb, Croatia ; University North, Varaždin, Croatia
| | - Pero Hrabač
- Polyclinic Neuron, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | - Marko Radoš
- University Department of Radiology, Clinical Hospital Center Zagreb, Zagreb, Croatia
| | - Neven Henigsberg
- Polyclinic Neuron, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia ; Psychiatric Clinic Vrapče, Zagreb, Croatia
| |
Collapse
|
33
|
Callahan LB, Tschetter KE, Ronan PJ. Inhibition of corticotropin releasing factor expression in the central nucleus of the amygdala attenuates stress-induced behavioral and endocrine responses. Front Neurosci 2013; 7:195. [PMID: 24194694 PMCID: PMC3810776 DOI: 10.3389/fnins.2013.00195] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/08/2013] [Indexed: 11/13/2022] Open
Abstract
Corticotropin releasing factor (CRF) is a primary mediator of endocrine, autonomic and behavioral stress responses. Studies in both humans and animal models have implicated CRF in a wide-variety of psychiatric conditions including anxiety disorders such as post-traumatic stress disorder (PTSD), depression, sleep disorders and addiction among others. The central nucleus of the amygdala (CeA), a key limbic structure with one of the highest concentrations of CRF-producing cells outside of the hypothalamus, has been implicated in anxiety-like behavior and a number of stress-induced disorders. This study investigated the specific role of CRF in the CeA on both endocrine and behavioral responses to stress. We used RNA Interference (RNAi) techniques to locally and specifically knockdown CRF expression in CeA. Behavior was assessed using the elevated plus maze (EPM) and open field test (OF). Knocking down CRF expression in the CeA had no significant effect on measures of anxiety-like behavior in these tests. However, it did have an effect on grooming behavior, a CRF-induced behavior. Prior exposure to a stressor sensitized an amygdalar CRF effect on stress-induced HPA activation. In these stress-challenged animals silencing CRF in the CeA significantly attenuated corticosterone responses to a subsequent behavioral stressor. Thus, it appears that while CRF projecting from the CeA does not play a significant role in the expression stress-induced anxiety-like behaviors on the EPM and OF it does play a critical role in stress-induced HPA activation.
Collapse
Affiliation(s)
- Leah B Callahan
- Avera Research Institute, Avera McKennan Hospital and University Health Center Sioux Falls, SD, USA ; Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine Vermillion, SD, USA ; Department of Psychiatry, University of South Dakota Sanford School of Medicine Sioux Falls, SD, USA ; Research Service, Sioux Falls VA Health Care System Sioux Falls, SD, USA
| | | | | |
Collapse
|
34
|
Wang Y, Jia Y, Chen X, Ling X, Liu S, Xu G, Huang L. Hippocampal N-acetylaspartate and morning cortisol levels in drug-naive, first-episode patients with major depressive disorder: effects of treatment. J Psychopharmacol 2012; 26:1463-70. [PMID: 22706518 DOI: 10.1177/0269881112450781] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An excess of glucocorticoids has been associated with hippocampal pathology in major depressive disorder (MDD). However, the relationships between depression, hippocampal structure and function, and cortisol levels are unclear, and the effects of antidepressant treatment on the measures are not well studied. For this study, 26 first-episode, treatment-naive, non-late-life adult depressed patients and 13 healthy controls were enrolled. Subjects underwent proton magnetic resonance spectroscopy ((1)H MRS) to obtain metabolite levels from the bilateral hippocampus. Patients with MDD were treated with serotonergic-noradrenergic reuptake inhibitor duloxetine for 12 weeks. After the 12-week period, all subjects with MDD underwent (1)H MRS again. Morning serum cortisol levels also were measured both before and after antidepressant treatment. Comparison of baseline values indicated that there were no significant differences in any of the metabolite ratios (N-acetyl aspartate/creatine (NAA/Cr) and choline (Cho)/Cr) in the bilateral hippocampus. After treatment, NAA/Cr ratios increased significantly in the right hippocampus compared with pre-treatment values. There was no correlation between morning serum cortisol levels and bilateral hippocampal NAA/Cr or Cho/Cr in patients with MDD. These findings suggest that there are unaltered hippocampal metabolites in the early stage of MDD. Antidepressant treatment may affect hippocampal NAA levels in patients with MDD. In addition, the results do not support cortisol-mediated hippocampal neurotoxicity as the major etiological mechanism.
Collapse
Affiliation(s)
- Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Wang L, Dai W, Su Y, Wang G, Tan Y, Jin Z, Zeng Y, Yu X, Chen W, Wang X, Si T. Amplitude of low-frequency oscillations in first-episode, treatment-naive patients with major depressive disorder: a resting-state functional MRI study. PLoS One 2012; 7:e48658. [PMID: 23119084 PMCID: PMC3485382 DOI: 10.1371/journal.pone.0048658] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 09/28/2012] [Indexed: 01/13/2023] Open
Abstract
Background Resting-state fMRI is a novel approach to measure spontaneous brain activity in patients with major depressive disorder (MDD). Although most resting-state fMRI studies have focused on the examination of temporal correlations between low-frequency oscillations (LFOs), few studies have explored the amplitude of these LFOs in MDD. In this study, we applied the approaches of amplitude of low-frequency fluctuation (ALFF) and fractional ALFF to examine the amplitude of LFOs in MDD. Methodology/Principal Findings A total of 36 subjects, 18 first-episode, treatment-naive patients with MDD matched with 18 healthy controls (HCs) completed the fMRI scans. Compared with HCs, MDD patients showed increased ALFF in the right fusiform gyrus and the right anterior and posterior lobes of the cerebellum but decreased ALFF in the left inferior temporal gyrus, bilateral inferior parietal lobule, and right lingual gyrus. The fALFF in patients was significantly increased in the right precentral gyrus, right inferior temporal gyrus, bilateral fusiform gyrus, and bilateral anterior and posterior lobes of the cerebellum but was decreased in the left dorsolateral prefrontal cortex, bilateral medial orbitofrontal cortex, bilateral middle temporal gyrus, left inferior temporal gyrus, and right inferior parietal lobule. After taking gray matter (GM) volume as a covariate, the results still remained. Conclusions/Significance These findings indicate that MDD patients have altered LFO amplitude in a number of regions distributed over the frontal, temporal, parietal, and occipital cortices and the cerebellum. These aberrant regions may be related to the disturbances of multiple emotion- and cognition-related networks observed in MDD and the apparent heterogeneity in depressive symptom domains. Such brain functional alteration of MDD may contribute to further understanding of MDD-related network imbalances demonstrated in previous fMRI studies.
Collapse
Affiliation(s)
- Li Wang
- Institute of Mental Health, Peking University, Beijing, China
- The Key Laboratory for Mental Health, Ministry of Health, Beijing, China
| | - Wenji Dai
- Institute of Mental Health, Peking University, Beijing, China
- The Key Laboratory for Mental Health, Ministry of Health, Beijing, China
| | - Yunai Su
- Institute of Mental Health, Peking University, Beijing, China
- The Key Laboratory for Mental Health, Ministry of Health, Beijing, China
| | - Gang Wang
- Mood Disorders Center, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yunlong Tan
- Center for Psychiatric Research, Beijing Huilongguan Hospital, Beijing, China
| | - Zhen Jin
- Department of Radiology, 306 Hospital of People's Liberation Army, Beijing, China
| | - Yawei Zeng
- Department of Radiology, 306 Hospital of People's Liberation Army, Beijing, China
| | - Xin Yu
- Institute of Mental Health, Peking University, Beijing, China
- The Key Laboratory for Mental Health, Ministry of Health, Beijing, China
| | - Wei Chen
- The Key Laboratory of Medical Neurobiology of Chinese Ministry of Health, Hangzhou, China
| | | | - Tianmei Si
- Institute of Mental Health, Peking University, Beijing, China
- The Key Laboratory for Mental Health, Ministry of Health, Beijing, China
- * E-mail:
| |
Collapse
|
36
|
Eyre H, Baune BT. Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology 2012; 37:1397-416. [PMID: 22525700 DOI: 10.1016/j.psyneuen.2012.03.019] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/15/2012] [Accepted: 03/22/2012] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that there is a rich cross-talk between the neuroimmune system and neuroplasticity mechanisms under both physiological conditions and pathophysiological conditions in depression. Anti-neuroplastic changes which occur in depression include a decrease in proliferation of neural stem cells (NSCs), decreased survival of neuroblasts and immature neurons, impaired neurocircuitry (cortical-striatal-limbic circuits), reduced levels of neurotrophins, reduced spine density and dendritic retraction. Since both humoral and cellular immune factors have been implicated in neuroplastic processes, in this review we present a model suggesting that neuroplastic processes in depression are mediated through various neuroimmune mechanisms. The review puts forward a model in that both humoral and cellular neuroimmune factors are involved with impairing neuroplasticity under pathophysiological conditions such as depression. Specifically, neuroimmune factors including interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, CD4⁺CD25⁺T regulatory cells (T reg), self-specific CD4⁺T cells, monocyte-derived macrophages, microglia and astrocytes are shown to be vital to processes of neuroplasticity such as long-term potentiation (LTP), NSC survival, synaptic branching, neurotrophin regulation and neurogenesis. In rodent models of depression, IL-1, IL-6 and TNF are associated with reduced hippocampal neurogenesis; mechanisms which are associated with this include the stress-activated protein kinase (SAPK)/Janus Kinase (JNK) pathway, hypoxia-inducible factors (HIF)-1α, JAK-Signal Transducer and Activator of Transcription (STAT) pathway, mitogen-activated protein kinase (MAPK)/cAMP responsive element binding protein (CREB) pathway, Ras-MAPK, PI-3 kinase, IKK/nuclear factor (NF)-κB and TGFβ activated kinase-1 (TAK-1). Neuroimmunological mechanisms have an active role in the neuroplastic changes associated with depression. Since therapies in depression, including antidepressants (AD), omega-3 polyunsaturated fatty acids (PUFAs) and physical activity exert neuroplasticity-enhancing effects potentially mediated by neuroimmune mechanisms, the immune system might serve as a promising target for interventions in depression.
Collapse
Affiliation(s)
- Harris Eyre
- Discipline of Psychiatry, School of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | | |
Collapse
|
37
|
Matsuo K, Nakano M, Nakashima M, Watanuki T, Egashira K, Matsubara T, Watanabe Y. Neural correlates of plasma acylated ghrelin level in individuals with major depressive disorder. Brain Res 2012; 1473:185-92. [PMID: 22819931 DOI: 10.1016/j.brainres.2012.07.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 12/20/2022]
Abstract
Anhedonic symptoms, which include loss of pleasure, appetite and motivation, are key symptoms of major depressive disorder (MDD) and are thought to depend on a neural circuit of the mesolimbic system. The neuropeptide ghrelin plays a crucial role in appetite and reward. Little is known, however, about the role of ghrelin in MDD. We examined the association between morphometric change and plasma ghrelin levels in patients with MDD. Twenty-four patients with MDD and 24 healthy control subjects were studied. Plasma concentration of acylated ghrelin was measured after a period of fasting. Using voxel-based morphometry, we found a main effect of ghrelin on the volume of several brain regions. We then compared these regional volumes in patients with MDD versus healthy subjects. We also compared brain volumes between the two groups, controlling for ghrelin level. There was no significant difference in plasma acylated ghrelin level between patients with MDD and healthy subjects. In the MDD group, ghrelin levels positively correlated with the severity of reduced appetite. Ghrelin levels negatively correlated with gray matter volume of the ventral tegmental area (VTA) in the total sample. The patients with MDD showed significantly smaller VTA gray matter volume compared to healthy subjects. Controlling for the plasma acylated ghrelin level, patients with MDD showed significantly smaller gray matter volume of right substantia nigra compared to healthy subjects. Our findings suggest that plasma acylated ghrelin is associated with neural abnormalities of the pleasure/reward system and may be involved in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University of Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Neuroimmunomodulation in unipolar depression: a focus on chronobiology and chronotherapeutics. J Neural Transm (Vienna) 2012; 119:1147-66. [PMID: 22653515 DOI: 10.1007/s00702-012-0819-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/05/2012] [Indexed: 12/21/2022]
Abstract
The rising burden of unipolar depression along with its often related sleep disturbances, as well as increasing rates of sleep restriction in modern society, make the search for an extended understanding of the aetiology and pathophysiology of depression necessary. Accumulating evidence suggests an important role for the immune system in mediating disrupted neurobiological and chronobiological processes in depression. This review aims to provide an overview of the neuroimmunomodulatory processes involved with depression and antidepressant treatments with a special focus on chronobiology, chronotherapeutics and the emerging field of immune-circadian bi-directional crosstalk. Increasing evidence suggests that chronobiological disruption can mediate immune changes in depression, and likewise, immune processes can mediate chronobiological disruption. This may suggest a bi-directional relationship in immune-circadian crosstalk. Furthermore, given the immunomodulatory effects of antidepressants and chronotherapeutics, as well as their associated beneficial effects on circadian disturbance, we--and others--suggest that these therapeutic agents may exert their chronobiotic effects partially via the neuroimmune system. Further research is required to better elucidate the mechanisms of immune involvement in the chronobiology of depression.
Collapse
|
39
|
Abstract
Despite being a first-line treatment for adolescent depression and anxiety, antidepressant drugs appear to have questionable efficacy and carry an increased risk of adverse effects in this population. The neural mechanisms underlying this phenomenon are currently unknown. Recent research into the neural effects of alcohol and recreational drugs suggests that the developmental trajectory of the adolescent brain may be particularly vulnerable to pharmacological disturbance. It is therefore important to consider whether prescription psychotropic drugs may have analogous effects. This article reviews the contribution of recent preclinical, clinical and pharmacogenetic literature to current knowledge on the short-term and enduring neural effects of antidepressants on the adolescent brain, with a particular focus on the major neurotransmitter systems and neuroplasticity.
Collapse
Affiliation(s)
- Emily Karanges
- School of Psychology A18, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|