1
|
Goh JY, Rueda P, Taylor J, Rathbone A, Scott D, Langmead CJ, Fone KC, Stewart GD, King MV. Transcriptomic analysis of rat prefrontal cortex following chronic stress induced by social isolation - Relevance to psychiatric and neurodevelopmental illness, and implications for treatment. Neurobiol Stress 2024; 33:100679. [PMID: 39502833 PMCID: PMC11536066 DOI: 10.1016/j.ynstr.2024.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Social isolation is an established risk factor for psychiatric illness, and became increasingly topical with the spread of SARS-CoV-2. We used RNA sequencing (RNA-Seq) to enable unbiased assessment of transcriptomic changes within the prefrontal cortex (PFC) of isolation-reared rats. To provide insight into the relevance of this manipulation for studying human illness, we compared differentially expressed genes (DEGs) and enriched biological functions against datasets involving post-mortem frontal cortical tissue from patients with psychiatric and neurodevelopmental illnesses. Sixteen male Sprague-Dawley rats were reared in groups of four or individually from weaning on postnatal day (PND) 22-24 until PFC tissue collection for RNA-Seq (PND64-66). We identified a total of 183 DEGs in isolates, of which 128 mirrored those in PFC tissue from patients with stress-related mental illnesses and/or neurodevelopmental conditions featuring social deficits. Seventy-one encode proteins classed as druggable by the gene-drug interaction database. Interestingly there are antagonists or inhibitors for the products of three of these up-regulated DEGs (Hrh3, Snca and Sod1) and agonists or activators for products of six of these down-regulated DEGs (Chrm4, Klf2, Lrrk2, Nr4a1, Nr4a3 and Prkca). Some have already undergone pre-clinical and clinical evaluation, and studies with the remainder may be warranted. Changes to Hrh3, Sod1, Chrm4, Lrrk2, Nr4a1 and Prkca were replicated in an independent cohort of sixteen male Sprague-Dawley rats via quantitative reverse transcription polymerase chain reaction (qRT-PCR). Our findings support the continued use of post-weaning isolation rearing to investigate the neurobiology of stress-related disorders and evaluate therapeutic targets.
Collapse
Affiliation(s)
- Jen-Yin Goh
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Patricia Rueda
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joy Taylor
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Alex Rathbone
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Daniel Scott
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Christopher J. Langmead
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kevin C.F. Fone
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Gregory D. Stewart
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Madeleine V. King
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
2
|
Kwon OW, Hwang Park Y, Kim D, Kwon HY, Yang HJ. Korean Red Ginseng and Rb1 restore altered social interaction, gene expressions in the medial prefrontal cortex, and gut metabolites under post-weaning social isolation in mice. J Ginseng Res 2024; 48:481-493. [PMID: 39263309 PMCID: PMC11385175 DOI: 10.1016/j.jgr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/18/2024] [Accepted: 03/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Post-weaning social isolation (SI) reduces sociability, gene expressions including myelin genes in the medial prefrontal cortex (mPFC), and alters microbiome compositions in rodent models. Korean Red Ginseng (KRG) and its major ginsenoside Rb1 have been reported to affect myelin formation and gut metabolites. However, their effects under post-weaning SI have not been investigated. This study investigated the effects of KRG and Rb1 on sociability, gene expressions in the mPFC, and gut metabolites under post-weaning SI. Methods C57BL/6J mice were administered with water or KRG (150, 400 mg/kg) or Rb1 (0.1 mg/kg) under SI or regular environment (RE) for 2 weeks during the post-weaning period (P21-P35). After this period, mice underwent a sociability test, and then brains and ceca were collected for qPCR/immunohistochemistry and non-targeted metabolomics, respectively. Results SI reduced sociability compared to RE; however, KRG (400 mg/kg) and Rb1 significantly restored sociability under SI. In the mPFC, expressions of genes related to myelin, neurotransmitter, and oxidative stress were significantly reduced in mice under SI compared to RE conditions. Under SI, KRG and Rb1 recovered the altered expressions of several genes in the mPFC. In gut metabolomics, 313 metabolites were identified as significant among 3027 detected metabolites. Among the significantly changed metabolites in SI, some were recovered by KRG or Rb1, including metabolites related to stress axis, inflammation, and DNA damage. Conclusion Altered sociability, gene expression levels in the mPFC, and gut metabolites induced by two weeks of post-weaning SI were at least partially recovered by KRG and Rb1.
Collapse
Affiliation(s)
- Oh Wook Kwon
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Youngja Hwang Park
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong, Republic of Korea
- Omics Research Center, Korea University, Sejong, Republic of Korea
| | - Dalnim Kim
- Korea Institute of Brain Science, Seoul, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
- Korea Institute of Brain Science, Seoul, Republic of Korea
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
| |
Collapse
|
3
|
Aykan D, Genc M, Unal G. Environmental enrichment enhances the antidepressant effect of ketamine and ameliorates spatial memory deficits in adult rats. Pharmacol Biochem Behav 2024; 240:173790. [PMID: 38761992 DOI: 10.1016/j.pbb.2024.173790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Ketamine is a rapid-acting antidepressant associated with various cognitive side effects. To mitigate these side effects while enhancing efficacy, it can be co-administered with other antidepressants. In our study, we adopted a similar strategy by combining ketamine with environmental enrichment, a potent sensory-motor paradigm, in adult male Wistar rats. We divided the animals into four groups based on a combination of housing conditions and ketamine versus vehicle injections. The groups included those housed in standard cages or an enriched environment for 50 days, which encompassed a 13-day-long behavioral testing period. Each group received either two doses of ketamine (20 mg/kg, IP) or saline as a vehicle. We tested the animals in the novel object recognition test (NORT), forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and Morris water maze (MWM), which was followed by ex vivo c-Fos immunohistochemistry. We observed that combining environmental enrichment with ketamine led to a synergistic antidepressant effect. Environmental enrichment also ameliorated the spatial memory deficits caused by ketamine in the MWM. There was enhanced neuronal activity in the habenula of the enrichment only group following the probe trial of the MWM. In contrast, no differential activity was observed in enriched animals that received ketamine injections. The present study showed how environmental enrichment can enhance the antidepressant properties of ketamine while reducing some of its side effects, highlighting the potential of combining pharmacological and sensory-motor manipulations in the treatment of mood disorders.
Collapse
Affiliation(s)
- Deren Aykan
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Mert Genc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
4
|
Kamaei AK, Hosseini SF, Teimourparsaei P, Payamani M, Vaseghi S. The effect of acute crocin on behavioral changes and BDNF expression level in socially isolated rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3929-3944. [PMID: 37987792 DOI: 10.1007/s00210-023-02843-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Social isolation is a reliable method used for the induction of depression and psychiatric disorders in rodents. It has been suggested that social isolation can lead to hyperlocomotion, as a schizophrenic-like symptom in rodents. On the other hand, crocin (the major constituent of Crocus sativus) induces a wide-range of neuroprotective and mood enhancer effects. In the present study, we aimed to investigate the effect of acute crocin on social isolation-induced behavioral changes and BDNF expression in the hippocampus. Novelty-suppressed feeding test, open field test, marble burying test, hot plate, forced swim test, and the shuttle box were used to assess anxiety-like behavior, locomotor activity, obsessive-compulsive-like (OCD-like) behavior, pain threshold, depressive-like behavior, and passive avoidance memory, respectively. Real-time PCR was used to assess BDNF hippocampal expression level. The results showed that social isolation decreased anxiety- and depressive-like behavior, pain threshold, and BDNF expression, and induced OCD-like behavior and hyperlocomotion. Crocin dose-dependently restored the effect of social isolation on pain threshold, locomotor activity, depressive-like behavior, OCD-like behavior, and BDNF expression. Passive avoidance memory performance was also unaffected. In conclusion, we showed a hyperlocomotion profile and OCD-like behaviors, and a robust decrease in pain threshold in socially isolated rats. It can be suggested that social isolation from adolescence induces a "hyperlocomotion state" that affects all the behavioral functions of rats. Also, the function of BDNF can be related to a hyperlocomotion state and OCD-like symptom. It seems that BDNF expression level can be related to the therapeutic effect of crocin.
Collapse
Affiliation(s)
- Amir-Kamyar Kamaei
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran
| | - Seyedeh-Fatemeh Hosseini
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran
| | - Parisa Teimourparsaei
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran
| | - Masoumeh Payamani
- Department of Psychology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
5
|
Guven EB, Pranic NM, Unal G. The differential effects of brief environmental enrichment following social isolation in rats. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:818-832. [PMID: 35199313 PMCID: PMC8865499 DOI: 10.3758/s13415-022-00989-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 11/08/2022]
Abstract
Environmental enrichment (EE) in rodents is associated with a wide range of physiological, affective, and cognitive benefits. A seemingly opposite housing condition, social isolation (SI), is used as a rodent model of stress, negatively affecting several neurobiological mechanisms and hampering cognitive performance. Experimental designs that involve switching between these housing conditions produced mixed results. We evaluated different behavioral and cognitive effects of brief EE following long-term, SI-induced stress. We revealed the influence of enrichment after 30 days of isolation on behavioral despair, anxiety-like behavior, and spatial working memory in adult male Wistar rats and found a substantial anxiolytic effect in the experimental (SI to EE) group. Interestingly, rats exposed to EE also showed increased behavioral despair compared with the control (continuous SI) group. There was no difference in spatial working memory performance at the end of a 5-day water Y-maze (WYM) test. However, the SI to EE animals displayed better memory performance in the first 2 days of the WYM, indicating faster learning. In line with this difference, we recorded significantly more c-Fos-immunopositive (c-Fos+) cells in the retrosplenial and perirhinal cortices of the SI to EE animals. The lateral and basolateral nuclei of the amygdala showed no such difference. These results suggest that brief enrichment following isolation stress leads to differential results in affective and cognitive systems.
Collapse
Affiliation(s)
- Elif Beyza Guven
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Nicole Melisa Pranic
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Gunes Unal
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
6
|
Corredor K, Marín DP, García CC, Restrepo DA, Martínez GS, Cardenas FP. Providing Environmental Enrichment without Altering Behavior in Male and Female Wistar Rats ( Rattus norvegicus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:234-240. [PMID: 35379381 PMCID: PMC9137287 DOI: 10.30802/aalas-jaalas-21-000075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/09/2021] [Accepted: 12/21/2021] [Indexed: 06/07/2023]
Abstract
In research using animal models, subjects are commonly maintained under standard housing conditions, mainly because of the idea that enhancing welfare conditions could alter experimental data. Another common practice in many laboratories relates to the preponderant use of males. Several reasons justifying this practice include the rapid hormonal and endocrine change in females, which may require a higher number of female animals to achieve more homogenous groups, thereby creating a dilemma with the reduction principle in animal research. In past decades, a relationship between enriched environments and enhanced cognitive functions has been reported in rats, but many of those enriched environmental protocols were not systematically or rigorously studied, leading to unexpected effects on behavior. Here we report the effects of 4 types of housing conditions (standard, structural changes, exercise, and foraging) in Wistar rats on anxiety (elevated plus maze), exploratory (open field), and stress vulnerability (forced swim test) responses. Sex was used as a blocking factor. Data show no effect of housing conditions on anxiety and exploratory behaviors, but do show an effect on stress responses. These results suggest the possibility of using a protocol for environmental enrichment without concern about altering experimental data. From this stand, new ways to enhance animal welfare in research laboratories could be designed and implemented.
Collapse
Key Words
- ee, environmental enrichment
- of, open field
- epm, elevated plus maze
- fst, forced swim test
- sd, standard condition
- st, structural modification
- ex, exercise, playing, and exploration
- fg, foraging
Collapse
Affiliation(s)
- Karen Corredor
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia; Centro de Investigaciones en Biomodelos, Bogotá, Colombia;,
| | - Daniela P Marín
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia
| | - Christian C García
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia
| | - Daniela A Restrepo
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia
| | | | - Fernando P Cardenas
- Universidad de los Andes, Laboratorio de Neurociencia y Comportamiento, Bogotá, Colombia
| |
Collapse
|
7
|
Happ DF, Wegener G, Tasker RA. Behavioral and histopathological consequences of transient ischemic stroke in the Flinders Sensitive Line rat, a genetic animal model of depression. Brain Res 2021; 1771:147648. [PMID: 34492264 DOI: 10.1016/j.brainres.2021.147648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/30/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Patients with depression have an increased risk for stroke, higher mortality rates following stroke and worse functional outcomes among survivors. Preclinical studies may help to better understand the underlying mechanisms linking these two diseases, but only a few animal studies have investigated the effects of prestroke depression. The present study investigates whether Flinders Sensitive Line (FSL) rats, a genetic depression model, respond differently to focal ischemic stroke compared to control strains (Flinders Resistant Line [FRL] and Sprague-Dawley [SD]). Male adult FSL, FRL and SD rats received a unilateral injection of either vehicle or Endothelin-1 (ET-1) adjacent to the middle cerebral artery (MCA). Motor function was assessed at 48 h followed by euthanasia and infarct volume measurement using 2,3,5-triphenyltetrazolium chloride (TTC) staining and image analysis. In a separate cohort behavior was assessed using standard tests for motor function, locomotor activity, cognition, anxiety- and depression-like behavior beginning at 10 days post-injection followed by infarct quantification. We found that ET-1-induced MCA occlusion produced significant infarcts in all three strains. Stroke animals had slightly impaired motor function, but there was no clear interaction effects between strain and stroke surgery on behavioral outcomes. We conclude that FSL rats show no increased susceptibility to brain damage or behavioral deficits following ET-1-induced focal ischemic stroke compared to controls.
Collapse
Affiliation(s)
- Denise F Happ
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Pharmaceutical Research Center of Excellence, School of Pharmacy (Pharmacology), North-West University, Potchefstroom, South Africa
| | - R Andrew Tasker
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PEI, Canada.
| |
Collapse
|
8
|
Clinton SM, Shupe EA, Glover ME, Unroe KA, McCoy CR, Cohen JL, Kerman IA. Modeling heritability of temperamental differences, stress reactivity, and risk for anxiety and depression: Relevance to research domain criteria (RDoC). Eur J Neurosci 2021; 55:2076-2107. [PMID: 33629390 PMCID: PMC8382785 DOI: 10.1111/ejn.15158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 01/04/2023]
Abstract
Animal models provide important tools to study biological and environmental factors that shape brain function and behavior. These models can be effectively leveraged by drawing on concepts from the National Institute of Mental Health Research Domain Criteria (RDoC) Initiative, which aims to delineate molecular pathways and neural circuits that underpin behavioral anomalies that transcend psychiatric conditions. To study factors that contribute to individual differences in emotionality and stress reactivity, our laboratory utilized Sprague-Dawley rats that were selectively bred for differences in novelty exploration. Selective breeding for low versus high locomotor response to novelty produced rat lines that differ in behavioral domains relevant to anxiety and depression, particularly the RDoC Negative Valence domains, including acute threat, potential threat, and loss. Bred Low Novelty Responder (LR) rats, relative to their High Responder (HR) counterparts, display high levels of behavioral inhibition, conditioned and unconditioned fear, avoidance, passive stress coping, anhedonia, and psychomotor retardation. The HR/LR traits are heritable, emerge in the first weeks of life, and appear to be driven by alterations in the developing amygdala and hippocampus. Epigenomic and transcriptomic profiling in the developing and adult HR/LR brain suggest that DNA methylation and microRNAs, as well as differences in monoaminergic transmission (dopamine and serotonin in particular), contribute to their distinct behavioral phenotypes. This work exemplifies ways that animal models such as the HR/LR rats can be effectively used to study neural and molecular factors driving emotional behavior, which may pave the way toward improved understanding the neurobiological mechanisms involved in emotional disorders.
Collapse
Affiliation(s)
- Sarah M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth A Shupe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew E Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Keaton A Unroe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chelsea R McCoy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Joshua L Cohen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Ilan A Kerman
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Behavioral Health Service Line, Veterans Affairs Pittsburgh Health System, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Glutamic acid decarboxylase 67 haplodeficiency in mice: consequences of postweaning social isolation on behavior and changes in brain neurochemical systems. Brain Struct Funct 2020; 225:1719-1742. [PMID: 32514634 PMCID: PMC7321906 DOI: 10.1007/s00429-020-02087-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/09/2020] [Indexed: 01/22/2023]
Abstract
Reductions of glutamate acid decarboxylase (GAD67) and subsequent GABA levels have been consistently observed in neuropsychiatric disorders like schizophrenia and depression, but it has remained unclear how GABAergic dysfunction contributes to different symptoms of the diseases. To address this issue, we investigated male mice haplodeficient for GAD67 (GAD67+/GFP mice), which showed a reduced social interaction, social dominance and increased immobility in the forced swim test. No differences were found in rotarod performance and sensorimotor gating. We also addressed potential effects of social deprivation, which is known, during early life, to affect GABAergic function and induces behavioral abnormalities similar to the symptoms found in psychiatric disorders. Indeed, social isolation of GAD67+/GFP mice provoked increased rearing activity in the social interaction test and hyperlocomotion on elevated plus maze. Since GABA closely interacts with the dopaminergic, serotonergic and cholinergic neurotransmitter systems, we investigated GAD67+/GFP and GAD67+/+ mice for morphological markers of the latter systems and found increased tyrosine hydroxylase (TH)-IR fiber densities in CA1 of dorsal hippocampus. By contrast, no differences in numbers and densities of TH-positive neurons of the midbrain dopamine regions, serotonin (5-HT) neurons of the raphe nuclei, or choline acetyltransferase (ChAT)-expressing neurons of basal forebrain and their respective terminal fields were observed. Our results indicate that GAD67 haplodeficiency impairs sociability and increases vulnerability to social stress, provokes depressive-like behavior and alters the catecholaminergic innervation in brain areas associated with schizophrenia. GAD67+/GFP mice may provide a useful model for studying the impact of GABAergic dysfunction as related to neuropsychiatric disorders.
Collapse
|
10
|
Behavioral alterations induced by post-weaning isolation rearing of rats are accompanied by reduced VGF/BDNF/TrkB signaling in the hippocampus. Neurochem Int 2019; 129:104473. [DOI: 10.1016/j.neuint.2019.104473] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/21/2022]
|
11
|
Podolan M, Dos Santos J, Walber T, Possamai F, Viola GG, Lino de Oliveira C. A single injection of imipramine affected proliferation in the hippocampus of adult Swiss mice depending on the route of administration, doses, survival time and lodging conditions. J Chem Neuroanat 2019; 100:101655. [PMID: 31202729 DOI: 10.1016/j.jchemneu.2019.101655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/03/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022]
Abstract
Swiss mice may be valuable for the screening of antidepressants in preclinical trials. Acute treatment with antidepressants may affect the behaviour of Swiss mice, but the effects on their hippocampal neurogenesis remain unknown. The present work aims to assess the influence of acute treatment with antidepressants on cell proliferation in the dentate gyrus of the hippocampus of adult Swiss mice. Cell proliferation was estimated by ex vivo counting of Ki-67 immunoreactive nuclei (Ki-67-ir) in the dentate gyrus of Swiss mice housed in standard or enriched environments, at survival-times 2 or 24 h after imipramine injection Independent of the experimental group, intraperitoneal imipramine (0 or 30 mg/kg) failed to change the number of Ki-67-ir in the hippocampus of mice. Through intracerebroventricular route, imipramine reduced the number of Ki-67-ir in the hippocampus of Swiss mice at the dose of 0.06 nmol and increased it at the dose 0.2 nmol. At the dose 0.2 nmol, not 0.06 nmol, imipramine increased the immunoreactivity to doublecortin (a marker for immature neurons) in the hippocampus of mice. The effects of intracerebroventricular injection of imipramine on neurogenesis markers were seen 24 h after the injection in mice housed in standard conditions. The effects of intracerebroventricular injection of imipramine on neurogenesis markers were absent in mice housed in enrichment or 2 h after the injection. These data suggest that acute treatment with imipramine may affect proliferation in the hippocampus of adult Swiss mice depending on the route of administration, doses, survival time and lodging conditions.
Collapse
Affiliation(s)
- Martina Podolan
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina - UFSC, Florianópolis, 88040-900, SC, Brazil; Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina - UFSC, CEP: 88040-900, Florianópolis, SC, Brazil.
| | - Juliano Dos Santos
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina - UFSC, Florianópolis, 88040-900, SC, Brazil.
| | - Thais Walber
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina - UFSC, Florianópolis, 88040-900, SC, Brazil.
| | - Fernanda Possamai
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina - UFSC, Florianópolis, 88040-900, SC, Brazil; Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina - UFSC, CEP: 88040-900, Florianópolis, SC, Brazil.
| | - Giordano Gubert Viola
- Programa de Pós-graduação em Ciências Fisiológicas, Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil.
| | - Cilene Lino de Oliveira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina - UFSC, Florianópolis, 88040-900, SC, Brazil; Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina - UFSC, CEP: 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
12
|
Whole-body hyperthermia and a subthreshold dose of citalopram act synergistically to induce antidepressant-like behavioral responses in adolescent rats. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:162-168. [PMID: 28619470 DOI: 10.1016/j.pnpbp.2017.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 05/31/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Open and randomized, double blind, placebo-controlled clinical trials have demonstrated clinical efficacy of infrared whole-body hyperthermia in treatment of major depressive disorder (MDD). Demonstration of antidepressant-like behavioral effects of whole-body hyperthermia in preclinical rodent models would provide further support for the clinical use of infrared whole-body hyperthermia for the treatment of MDD, and would provide additional opportunities to explore underlying mechanisms. METHODS Adolescent male Wistar rats were habituated daily for 7days to an incubator (23°C, 15min), then exposed, 24h later, to an 85-min period of whole-body hyperthermia (37°C) or control conditions (23°C), with or without pretreatment with a subthreshold dose of the selective serotonin reuptake inhibitor, citalopram (5mg/kg, s.c., 23h, 5h, and 1h before behavioral testing in a 5-min forced swim test). Rectal temperature was monitored daily and immediately before and after the forced swim test to determine the relationship between body temperature and antidepressant-like behavioral responses. RESULTS Whole-body hyperthermia and citalopram independently increased body temperature and acted synergistically to induce antidepressant-like behavioral responses, as measured by increased swimming and decreased immobility in the absence of any effect on climbing behaviors in the forced swim test, consistent with a serotonergic mechanism of action. CONCLUSIONS Preclinical data support use of infrared whole-body hyperthermia in the treatment of MDD.
Collapse
|
13
|
Murínová J, Hlaváčová N, Chmelová M, Riečanský I. The Evidence for Altered BDNF Expression in the Brain of Rats Reared or Housed in Social Isolation: A Systematic Review. Front Behav Neurosci 2017; 11:101. [PMID: 28620285 PMCID: PMC5449742 DOI: 10.3389/fnbeh.2017.00101] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022] Open
Abstract
There is evidence that development and maintenance of neural connections are disrupted in major mental disorders, which indicates that neurotrophic factors could play a critical role in their pathogenesis. Stress is a well-established risk factor for psychopathology and recent research suggests that disrupted signaling via brain-derived neurotrophic factor (BDNF) may be involved in mediating the negative effects of stress on the brain. Social isolation of rats elicits chronic stress and is widely used as an animal model of mental disorders such as schizophrenia and depression. We carried out a systematic search of published studies to review current evidence for an altered expression of BDNF in the brain of rats reared or housed in social isolation. Across all age groups (post-weaning, adolescent, adult), majority of the identified studies (16/21) reported a decreased expression of BDNF in the hippocampus. There are far less published data on BDNF expression in other brain regions. Data are also scarce to assess the behavioral changes as a function of BDNF expression, but the downregulation of BDNF seems to be associated with increased anxiety-like symptoms. The reviewed data generally support the putative involvement of BDNF in the pathogenesis of stress-related mental illness. However, the mechanisms linking chronic social isolation, BDNF expression and the elicited behavioral alterations are currently unknown.
Collapse
Affiliation(s)
- Jana Murínová
- Laboratory of Cognitive Neuroscience, Institute of Normal and Pathological Physiology, Slovak Academy of SciencesBratislava, Slovakia
| | - Nataša Hlaváčová
- Laboratory of Pharmacological Neuroendocrinology, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of SciencesBratislava, Slovakia
| | - Magdaléna Chmelová
- Laboratory of Pharmacological Neuroendocrinology, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of SciencesBratislava, Slovakia
| | - Igor Riečanský
- Laboratory of Cognitive Neuroscience, Institute of Normal and Pathological Physiology, Slovak Academy of SciencesBratislava, Slovakia
- Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of ViennaVienna, Austria
| |
Collapse
|
14
|
Rethinking psychopharmacotherapy: The role of treatment context and brain plasticity in antidepressant and antipsychotic interventions. Neurosci Biobehav Rev 2015; 60:51-64. [PMID: 26616735 DOI: 10.1016/j.neubiorev.2015.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023]
Abstract
Emerging evidence indicates that treatment context profoundly affects psychopharmacological interventions. We review the evidence for the interaction between drug application and the context in which the drug is given both in human and animal research. We found evidence for this interaction in the placebo response in clinical trials, in our evolving knowledge of pharmacological and environmental effects on neural plasticity, and in animal studies analyzing environmental influences on psychotropic drug effects. Experimental placebo research has revealed neurobiological trajectories of mechanisms such as patients' treatment expectations and prior treatment experiences. Animal research confirmed that "enriched environments" support positive drug effects, while unfavorable environments (low sensory stimulation, low rates of social contacts) can even reverse the intended treatment outcome. Finally we provide recommendations for context conditions under which psychotropic drugs should be applied. Drug action should be steered by positive expectations, physical activity, and helpful social and physical environmental stimulation. Future drug trials should focus on fully controlling and optimizing such drug×environment interactions to improve trial sensitivity and treatment outcome.
Collapse
|
15
|
Soga T, Teo CH, Cham KL, Idris MM, Parhar IS. Early-Life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats. Front Endocrinol (Lausanne) 2015; 6:172. [PMID: 26617573 PMCID: PMC4639717 DOI: 10.3389/fendo.2015.00172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022] Open
Abstract
Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic-GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP-GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP-GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP-GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP-GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure.
Collapse
Affiliation(s)
- Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Selangor, Malaysia
| | - Chuin Hau Teo
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Selangor, Malaysia
| | - Kai Lin Cham
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Selangor, Malaysia
| | - Marshita Mohd Idris
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Selangor, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Selangor, Malaysia
| |
Collapse
|
16
|
Possamai F, dos Santos J, Walber T, Marcon JC, dos Santos TS, Lino de Oliveira C. Influence of enrichment on behavioral and neurogenic effects of antidepressants in Wistar rats submitted to repeated forced swim test. Prog Neuropsychopharmacol Biol Psychiatry 2015; 58:15-21. [PMID: 25485962 DOI: 10.1016/j.pnpbp.2014.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 12/27/2022]
Abstract
Repeated forced swimming test (rFST) may detect gradual effects of antidepressants in adult rats. Antidepressants, as enrichment, affected behavior and neurogenesis in rats. However, the influence of enrichment on behavioral and neurogenic effects of antidepressants is unknown. Here, effects of antidepressants on rFST and hippocampal neurogenesis were investigated in rats under enriched conditions. Behaviors of male Wistar rats, housed from weaning in standard (SE) or enriched environment (EE), were registered during rFST. The rFST consisted of 15min of swimming (pretest) followed by 5min of swimming in the first (test), seventh (retest 1) and fourteenth (retest 2) days after pretest. One hour before the test, rats received an intraperitoneal injection of saline (1ml/kg), fluoxetine (2.5mg/kg) or imipramine (2.5 or 5mg/kg). These treatments were performed daily until the day of the retest 2. After retest 2, rats were euthanized for the identification of markers for neurogenesis in the hippocampus. Fluoxetine or imipramine decreased immobility in retests 1 and 2, as compared to saline. EE abolished these differences. In EE, fluoxetine or imipramine (5mg/kg) reduced immobility time in retest 2, as compared to the test. Independent of the housing conditions, fluoxetine and imipramine (5mg/kg) increased the ratio of immature neurons per progenitor cell in the hippocampus. In summary, antidepressants or enrichment counteracted the high immobility in rFST. Enrichment changed the effects of antidepressants in rFST depending on the type, and the dose of a substance but failed to change neurogenesis in control or antidepressant treated-rats. Effects of antidepressants and enrichment on rFST seemed neurogenesis-independent.
Collapse
Affiliation(s)
- Fernanda Possamai
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, Florianópolis, 88040-900 SC, Brazil
| | - Juliano dos Santos
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, Florianópolis, 88040-900 SC, Brazil
| | - Thais Walber
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, Florianópolis, 88040-900 SC, Brazil
| | - Juliana C Marcon
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, Florianópolis, 88040-900 SC, Brazil
| | - Tiago Souza dos Santos
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, Florianópolis, 88040-900 SC, Brazil
| | - Cilene Lino de Oliveira
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, Florianópolis, 88040-900 SC, Brazil.
| |
Collapse
|
17
|
Mosaferi B, Babri S, Ebrahimi H, Mohaddes G. Enduring effects of post-weaning rearing condition on depressive- and anxiety-like behaviors and motor activity in male rats. Physiol Behav 2015; 142:131-6. [PMID: 25666307 DOI: 10.1016/j.physbeh.2015.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/25/2023]
Abstract
Environmental manipulation at early critical periods could have long-lasting effects. In spite of the great interest in the biological effects of the environmental condition so far, its long-lasting effects are less documented. This study looks at the enduring effects of rearing condition on tasks that measure affective responses and exploratory behavior in male Wistar rats. The animals were reared from weaning to adulthood in an enriched environment, standard laboratory condition, or isolated condition. Then, all rats were housed in standard laboratory cages to provide a common environment, and successively exposed to different tests between 0 and 11 weeks post-manipulation. The open field test indicated a more efficient exploratory behavior in the enriched group, and an enhanced spontaneous motor activity in both standard and isolated groups. In addition, rats reared in standard condition showed heightened motor activity in forced swimming test and elevated plus maze. Forced swimming test showed an antidepressive-like effect in the enriched environment group by increased climbing behavior. In respect to the anxiety behavior, environmental enrichment improved threat detection ability. It is concluded that rearing condition from weaning to adulthood has important and long-lasting effects on depressive- and anxiety-like and exploratory behaviors as well as motor activity.
Collapse
Affiliation(s)
- Belal Mosaferi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Babri
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Ebrahimi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Akkerman S, Prickaerts J, Bruder AK, Wolfs KHM, De Vry J, Vanmierlo T, Blokland A. PDE5 inhibition improves object memory in standard housed rats but not in rats housed in an enriched environment: implications for memory models? PLoS One 2014; 9:e111692. [PMID: 25372140 PMCID: PMC4221101 DOI: 10.1371/journal.pone.0111692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022] Open
Abstract
Drug effects are usually evaluated in animals housed under maximally standardized conditions. However, it is assumed that an enriched environment (EE) more closely resembles human conditions as compared to maximally standardized laboratory conditions. In the present study, we examined the acute cognition enhancing effects of vardenafil, a PDE5 inhibitor, which stimulates protein kinase G/CREB signaling in cells, in three different groups of male Wistar rats tested in an object recognition task (ORT). Rats were either housed solitarily (SOL) or socially (SOC) under standard conditions, or socially in an EE. Although EE animals remembered object information longer in the vehicle condition, vardenafil only improved object memory in SOL and SOC animals. While EE animals had a heavier dorsal hippocampus, we found no differences between experimental groups in total cell numbers in the dentate gyrus, CA2-3 or CA1. Neither were there any differences in markers for pre- and postsynaptic density. No changes in PDE5 mRNA- and protein expression levels were observed. Basal pCREB levels were increased in EE rats only, whereas β-catenin was not affected, suggesting specific activation of the MAP kinase signaling pathway and not the AKT pathway. A possible explanation for the inefficacy of vardenafil could be that CREB signaling is already optimally stimulated in the hippocampus of EE rats. Since previous data has shown that acute PDE5 inhibition does not improve memory performance in humans, the use of EE animals could be considered as a more valid model for testing cognition enhancing drugs.
Collapse
Affiliation(s)
- Sven Akkerman
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - Ann K. Bruder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Kevin H. M. Wolfs
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - Jochen De Vry
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- Department of Immunology and Biochemistry, Biomedical research institute, Hasselt University, Hasselt, Belgium
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Butler TR, Ariwodola OJ, Weiner JL. The impact of social isolation on HPA axis function, anxiety-like behaviors, and ethanol drinking. Front Integr Neurosci 2014; 7:102. [PMID: 24427122 PMCID: PMC3877772 DOI: 10.3389/fnint.2013.00102] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/14/2013] [Indexed: 01/27/2023] Open
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is often observed in alcoholics and humans subjected to early life stress, and animal models of ethanol (EtOH) dependence. We examined HPA axis function in a rodent model of early life stress that engenders increases in behavioral and neurobiological risk factors of alcoholism. Long-Evans male rats were group housed (GH) or socially isolated (SI) for 6 weeks during adolescence. We examined the corticosterone (CORT) response to stress with and without dexamethasone (DEX) and anxiety-like behaviors. Following the DEX suppression test and behavioral assays, half of the cohort engaged in 6 weeks of EtOH drinking in a homecage, two-bottle choice intermittent access model. A subset of the cohort was not exposed to EtOH, but was used for electrophysiological measurement of glutamatergic synaptic plasticity in the basolateral amygdala (BLA). Correlational analyses examined relationships between measures of CORT, anxiety-like behaviors, and EtOH intake/preference. With DEX pre-treatment, SI rats failed to suppress CORT in response to an acute stress; GH rats showed a significant suppression. In SI rats, there was a significant negative correlation between baseline CORT and elevated plus maze open arm time, as well as significant positive correlations between baseline CORT and both EtOH intake and preference. No significant relationships between baseline CORT and behavioral measures were observed in GH rats. Glutamatergic plasticity in the BLA was similar in magnitude between GH and SI rats, and was not altered by exogenous application of CORT. These data suggest that HPA axis function is affected by SI, and this is related to antecedent anxiety-like behavior and may predispose for future EtOH self-administration. Relationships between HPA axis function, anxiety, and EtOH measures in SI rats further strengthens the utility of this paradigm in modeling vulnerability for affective disorders and alcoholism.
Collapse
Affiliation(s)
- Tracy R Butler
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine Winston-Salem, NC, USA
| | - Olusegun J Ariwodola
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine Winston-Salem, NC, USA
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
20
|
Bogdanova OV, Kanekar S, D'Anci KE, Renshaw PF. Factors influencing behavior in the forced swim test. Physiol Behav 2013; 118:227-39. [PMID: 23685235 DOI: 10.1016/j.physbeh.2013.05.012] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/31/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
The forced swim test (FST) is a behavioral test in rodents which was developed in 1978 by Porsolt and colleagues as a model for predicting the clinical efficacy of antidepressant drugs. A modified version of the FST added the classification of active behaviors into swimming and climbing, in order to facilitate the differentiation between serotonergic and noradrenergic classes of antidepressant drugs. The FST is now widely used in basic research and the pharmaceutical screening of potential antidepressant treatments. It is also one of the most commonly used tests to assess depressive-like behavior in animal models. Despite the simplicity and sensitivity of the FST procedure, important differences even in baseline immobility rates have been reported between different groups, which complicate the comparison of results across studies. In spite of several methodological papers and reviews published on the FST, the need still exists for clarification of factors which can influence the procedure. While most recent reviews have focused on antidepressant effects observed with the FST, this one considers the methodological aspects of the procedure, aiming to summarize issues beyond antidepressant action in the FST. The previously published literature is analyzed for factors which are known to influence animal behavior in the FST. These include biological factors, such as strain, age, body weight, gender and individual differences between animals; influence of preconditioning before the FST: handling, social isolation or enriched environment, food manipulations, various kinds of stress, endocrine manipulations and surgery; schedule and routes of treatment, dosage and type of the drugs as well as experimental design and laboratory environmental effects. Consideration of these factors in planning experiments may result in more consistent FST results.
Collapse
Affiliation(s)
- Olena V Bogdanova
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT84108, USA.
| | | | | | | |
Collapse
|